
Symmetric Multiprocessing

Main issues:

• locking,

• cache coherence,

• scheduling.

Good discussion of issues in [Sch94].

cse/UNSW COMP9242 2002/S2 W10 P1

Kernel Locking

• Several CPUs can be executing kernel code concurrently.
⇒ Need mutual exclusion on shared kernel data.

• Issues:
? Lock implementation
? Granularity of locking

cse/UNSW COMP9242 2002/S2 W10 P2

Mutual Exclusion Techniques

• Disabling interrupts (CLI — STI).

cse/UNSW COMP9242 2002/S2 W10 P3

Mutual Exclusion Techniques

• Disabling interrupts (CLI — STI).
➜ Unsuitable for multiprocessor systems.

cse/UNSW COMP9242 2002/S2 W10 P3

Mutual Exclusion Techniques

• Disabling interrupts (CLI — STI).
➜ Unsuitable for multiprocessor systems.

• Spin locks.

cse/UNSW COMP9242 2002/S2 W10 P3

Mutual Exclusion Techniques

• Disabling interrupts (CLI — STI).
➜ Unsuitable for multiprocessor systems.

• Spin locks.
➜ Busy-waiting wastes cycles.

cse/UNSW COMP9242 2002/S2 W10 P3

Mutual Exclusion Techniques

• Disabling interrupts (CLI — STI).
➜ Unsuitable for multiprocessor systems.

• Spin locks.
➜ Busy-waiting wastes cycles.

• Lock objects.
➜ Flag indicates object is locked.
➜ Manipulating lock requires mutual exclusion.

cse/UNSW COMP9242 2002/S2 W10 P3

Spin locks

void lock (volatile lock t *l) {
while (test and set(l)) ;

}

void unlock (volatile lock t *l) {
*l = 0;

}

Busy waits. Good idea?

cse/UNSW COMP9242 2002/S2 W10 P4

SPIN LOCK BUSY -WAITS UNTIL LOCK IS RELEASED :

• Stupid on uniprocessors, as nothing will change while spinning.
➜ Should release (yield) CPU immediately.

• Maybe ok on SMPs: locker may execute on other CPU.
➜ Minimal overhead.
➜ Still, should only spin for short time.

cse/UNSW COMP9242 2002/S2 W10 P5

SPIN LOCK BUSY -WAITS UNTIL LOCK IS RELEASED :

• Stupid on uniprocessors, as nothing will change while spinning.
➜ Should release (yield) CPU immediately.

• Maybe ok on SMPs: locker may execute on other CPU.
➜ Minimal overhead.
➜ Still, should only spin for short time.

Generally restrict spin locking to:

➜ short critical sections,

➜ unlikely to be contended by the same CPU.

➜ local contention can be prevented
➜ by design
➜ by turning off interrupts

cse/UNSW COMP9242 2002/S2 W10 P5

ALTERNATIVE : CONDITIONAL LOCK

bool cond lock (volatile lock t *l) {
if (test and set(l))

return FALSE; // couldn’t lock
else

return TRUE; // acquired lock
}

➜ Can do useful work if fail to aquire lock.

cse/UNSW COMP9242 2002/S2 W10 P6

ALTERNATIVE : CONDITIONAL LOCK

bool cond lock (volatile lock t *l) {
if (test and set(l))

return FALSE; // couldn’t lock
else

return TRUE; // acquired lock
}

➜ Can do useful work if fail to aquire lock.

➜ But may not have much else to do.

➜ Starvation: May never get lock!

cse/UNSW COMP9242 2002/S2 W10 P6

MORE APPROPRIATE MUTEX PRIMITIVE :
void mutex lock (volatile lock t *l) {

while (1) {
for (int i=0; i<MUTEX N; i++)

if (!test and set(l))
return;

yield();
}

}

cse/UNSW COMP9242 2002/S2 W10 P7

MORE APPROPRIATE MUTEX PRIMITIVE :
void mutex lock (volatile lock t *l) {

while (1) {
for (int i=0; i<MUTEX N; i++)

if (!test and set(l))
return;

yield();
}

}

• Spins for limited time only
➜ assumes enough for other CPU to exit critical section

• Useful if critical section is shorther than N iterations.

• Starvation possible.

cse/UNSW COMP9242 2002/S2 W10 P7

MULTIPROCESSOR SPIN LOCK :

void mp spinlock (volatile lock t *l) {
cli(); // prevent local contention
while (test and set(l)) ; // lock

}

void mp unlock (volatile lock t *l) {
*l = 0;
sti();

}

➜ only good for short critical sections

cse/UNSW COMP9242 2002/S2 W10 P8

MULTIREADER LOCKS :
void rw rdlock (volatile lock *l);
void rw wrlock (volatile lock *l);

➜ Allow mutliple readers into the critical section concurrently.

➜ Write access is exclusive.

➜ Too much overhead for really short critical sections.

➜ Used in UNIX SysVR4.

cse/UNSW COMP9242 2002/S2 W10 P9

Dangers of Locking: Priority Inversion

• Assume prio(P1) < prio(P2) < prio(P3), all running on same CPU.

P1

P2

P3

lock preempt preempt lock

• P2 prevents higher-priority process P3 from executing.

cse/UNSW COMP9242 2002/S2 W10 P10

Dangers of Locking: Priority Inversion

• Assume prio(P1) < prio(P2) < prio(P3), all running on same CPU.

P1

P2

P3

lock preempt preempt lock

• P2 prevents higher-priority process P3 from executing.

• Solution: Avoid preempting processes holding a kernel lock.
➜ How?

cse/UNSW COMP9242 2002/S2 W10 P10

SOLUTION : PRIORITY INHERITANCE

• Blocked high-prio process helps locker by donating time slices.

1

P2

P3

P

lock
lock preempt preempt lock unlock

helping

• Also called wait-free locking [CSL+87].

cse/UNSW COMP9242 2002/S2 W10 P11

SOLUTION : PRIORITY INHERITANCE

• Blocked high-prio process helps locker by donating time slices.

1

P2

P3

P

lock
lock preempt preempt lock unlock

helping

• Also called wait-free locking [CSL+87].
➜ Everything needs to be prioritised.
➜ Need to record holder of lock.
➜ No good if P1 holds lock too long.

cse/UNSW COMP9242 2002/S2 W10 P11

WAIT-FREE SYNCH. OF LONG CRITICAL SECTIONS :

• Multiprocessor priority-inheritance protocol [HH01]
? cross-CPU helping: B holds lock, A helps B

? remote helping: A migrates to B’s CPU
➜ only works if A becomes highest-prio on B’s CPU
➜ need global “end-to-end” prio scheme
➜ otherwise not wait-free
➜ race condition: A migrates to B, B migrates away...

? local helping: A execute’s B’s code on own CPU
➜ B’s state must migrate to A’s CPU
➜ totally wait-free: highest-prio always makes progress

cse/UNSW COMP9242 2002/S2 W10 P12

ALTERNATIVE : L OCK-FREE SYNCHRONISATION :

• Ensure all data is always consistent

• Perform changes on shadow copies

• When completed, perform atomic swap
➜ eg swap pointers with atomic compare-and-swap instruction
➜ use mp spinlock if no such instruction

• practically limited to simple data structures (linked lists)

Best to avoid long critical sections in kernel!

cse/UNSW COMP9242 2002/S2 W10 P13

WHAT TO LOCK ?

Giant lock: lock whole kernel.

cse/UNSW COMP9242 2002/S2 W10 P14

WHAT TO LOCK ?

Giant lock: lock whole kernel.

➜ Only one process can execute in kernel.
➜ Similar to dedicated OS processor.

cse/UNSW COMP9242 2002/S2 W10 P14

WHAT TO LOCK ?

Giant lock: lock whole kernel.

➜ Only one process can execute in kernel.
➜ Similar to dedicated OS processor.

Coarse-grain locks: lock whole subsystems.

➜ E.g., all TCBs, file system.

cse/UNSW COMP9242 2002/S2 W10 P14

WHAT TO LOCK ?

Giant lock: lock whole kernel.

➜ Only one process can execute in kernel.
➜ Similar to dedicated OS processor.

Coarse-grain locks: lock whole subsystems.

➜ E.g., all TCBs, file system.
➜ Marginal improvement over giant lock, not scalable .

cse/UNSW COMP9242 2002/S2 W10 P14

WHAT TO LOCK ?

Giant lock: lock whole kernel.

➜ Only one process can execute in kernel.
➜ Similar to dedicated OS processor.

Coarse-grain locks: lock whole subsystems.

➜ E.g., all TCBs, file system.
➜ Marginal improvement over giant lock, not scalable .

Fine-grain locks: lock as little as possible at a time.

cse/UNSW COMP9242 2002/S2 W10 P14

WHAT TO LOCK ?

Giant lock: lock whole kernel.

➜ Only one process can execute in kernel.
➜ Similar to dedicated OS processor.

Coarse-grain locks: lock whole subsystems.

➜ E.g., all TCBs, file system.
➜ Marginal improvement over giant lock, not scalable .

Fine-grain locks: lock as little as possible at a time.

➜ Potential for large amount of parallelism.
➜ Only suitable approach for large numbers of CPUs.

cse/UNSW COMP9242 2002/S2 W10 P14

WHAT TO LOCK ?

Giant lock: lock whole kernel.

➜ Only one process can execute in kernel.
➜ Similar to dedicated OS processor.

Coarse-grain locks: lock whole subsystems.

➜ E.g., all TCBs, file system.
➜ Marginal improvement over giant lock, not scalable .

Fine-grain locks: lock as little as possible at a time.

➜ Potential for large amount of parallelism.
➜ Only suitable approach for large numbers of CPUs.

cse/UNSW COMP9242 2002/S2 W10 P14

ALL BUT GIANT LOCKS CAN LEAD TO DEADLOCKS !

➜ Usual deadlock-avoidance schemes apply (numbering locks).

➜ May not always know in advance which locks are needed.

cse/UNSW COMP9242 2002/S2 W10 P15

ALL BUT GIANT LOCKS CAN LEAD TO DEADLOCKS !

➜ Usual deadlock-avoidance schemes apply (numbering locks).

➜ May not always know in advance which locks are needed.
• Release lock temporarily to obtain lower-numbered one.
• Must leave DS consistent when releasing.
• Must recheck state after reacquiring.

cse/UNSW COMP9242 2002/S2 W10 P15

Locking: Performance Considerations

• Small lock granularity
➜ decreases lock contention,
➜ increases potential parallelism.
➜ Also increased scope for stuffing up.

• Even with careful design hard to avoid bottlenecks (“convoys”).
➜ Important to measure lock contention.
➜ Instrument lock ops to keep stats.

cse/UNSW COMP9242 2002/S2 W10 P16

ILLUSTRATIVE EXAMPLE

Windows-NT Kernel dispatcher lock [PS96].

• DEC people investigated performance problems of Microsoft’s
SQL server running on Alphas under NT.

• No access to source code.

• Used tool to patch executable code (OS and apps).

• Instrumented code logged change of control flow to memory buffer.

• Reconstructed instruction trace from log.

• Visualised results.

cse/UNSW COMP9242 2002/S2 W10 P17

RESULT FOR 4-CPU SYSTEM

 0.000s

 0.010s

 0.020s

 0.030s

 0.040s

 0.050s

KiDispatcherLock 45.03%
=Spinning= 16.76%
-other-

– Typeset by FoilTEX – P1

cse/UNSW COMP9242 2002/S2 W10 P18

SUMMARY OF RESULTS :

• Second box shows convoy effect on KiDispatcherLock.
➜ Lock held for 200–900 cycles.

➜ Partially due to interrupts being enabled during critical
section.

➜ Disk interrupt serviced while holding lock.
➜ Lock held for about 45 % of total time.
➜ 16 % of time spent spinning.

cse/UNSW COMP9242 2002/S2 W10 P19

SUMMARY OF RESULTS :

• Second box shows convoy effect on KiDispatcherLock.
➜ Lock held for 200–900 cycles.

➜ Partially due to interrupts being enabled during critical
section.

➜ Disk interrupt serviced while holding lock.
➜ Lock held for about 45 % of total time.
➜ 16 % of time spent spinning.

• This one lock limits OS scalability to about 6 CPUs!

• Shows the necessity of keeping critical sections short .

cse/UNSW COMP9242 2002/S2 W10 P19

Effects of Memory Architecture

EXAMPLE : END OF A CRITICAL SECTION

/* counter ++; */
load r1, counter
add r1, r1, 1
store r1, counter
/* unlock(mutex); */
store zero, mutex

Relies on all CPUs seeing update of counter before update of

mutex .

➜ Depends on proper ordering of stores to memory.

cse/UNSW COMP9242 2002/S2 W10 P20

Memory Models: Strong Ordering

• Loads and stores executed in program order.

• Memory accesses of different CPUs are sequentialised.

• Traditionally used by many architectures.

CPU 0

store r1, adr1
load r2, adr2

CPU 1

store r1, adr2
load r2, adr1

cse/UNSW COMP9242 2002/S2 W10 P21

Memory Models: Strong Ordering

• Loads and stores executed in program order.

• Memory accesses of different CPUs are sequentialised.

• Traditionally used by many architectures.

CPU 0

store r1, adr1
load r2, adr2

CPU 1

store r1, adr2
load r2, adr1

• At least one CPU must load the other’s new value.

cse/UNSW COMP9242 2002/S2 W10 P21

Other Memory Models

Modern hardware features can interfere with store order:

• write buffer (or store buffer or write-behind buffer),

• instruction reordering,

• superscalar execution,

• pipelining.

Each CPU keeps its own data consistent, but how about others?

cse/UNSW COMP9242 2002/S2 W10 P22

Other Memory Models

Modern hardware features can interfere with store order:

• write buffer (or store buffer or write-behind buffer),

• instruction reordering,

• superscalar execution,

• pipelining.

Each CPU keeps its own data consistent, but how about others?

➜ SMP?

➜ DMA?

cse/UNSW COMP9242 2002/S2 W10 P22

Total Store Ordering

• Stores to write buffer hide memory latency.

• Loads read from write buffer if possible.

• Stores are guaranteed to occur in FIFO order.

cse/UNSW COMP9242 2002/S2 W10 P23

Total Store Ordering

• Stores to write buffer hide memory latency.

• Loads read from write buffer if possible.

• Stores are guaranteed to occur in FIFO order.

CPU 0

store r1, adr1
load r2, adr2

CPU 1

store r1, adr2
load r2, adr1

cse/UNSW COMP9242 2002/S2 W10 P23

Total Store Ordering

• Stores to write buffer hide memory latency.

• Loads read from write buffer if possible.

• Stores are guaranteed to occur in FIFO order.

CPU 0

store r1, adr1
load r2, adr2

CPU 1

store r1, adr2
load r2, adr1

➜ Both CPUs may read old values!

store A

...

store B
...

store A
...

...

CPU

Cache

cse/UNSW COMP9242 2002/S2 W10 P23

TOTAL STORE ORDERING BREAKS DECKER :
void lock (volatile lock t *l) {

l->status[MYSELF] = LOCKED;
while (l->status[OTHER] == LOCKED) {

if (l->turn != MYSELF) {
l->status[MYSELF] = !LOCKED;
while (l->turn == OTHER) ;
l->status[MYSELF] = LOCKED;

} } }

cse/UNSW COMP9242 2002/S2 W10 P24

TOTAL STORE ORDERING BREAKS DECKER :
void lock (volatile lock t *l) {

l->status[MYSELF] = LOCKED;
while (l->status[OTHER] == LOCKED) {

if (l->turn != MYSELF) {
l->status[MYSELF] = !LOCKED;
while (l->turn == OTHER) ;
l->status[MYSELF] = LOCKED;

} } }

• Need hardware support for synchronisation, e.g.:
➜ atomic swap,
➜ test&set,
➜ load-linked & store-conditional (LL&SC),
➜ memory barriers.

• Stall pipeline and drain (& bypass) write buffer.

cse/UNSW COMP9242 2002/S2 W10 P24

Partial store ordering
• All stores go through write buffer.

• Loads read from write buffer if possible.

• Redundant stores are cancelled.
➜ Breaks FIFO-order of stores!

cse/UNSW COMP9242 2002/S2 W10 P25

Partial store ordering
• All stores go through write buffer.

• Loads read from write buffer if possible.

• Redundant stores are cancelled.
➜ Breaks FIFO-order of stores!

load r1, counter // counter ++;
add r1, r2, 1
store r2, counter

cse/UNSW COMP9242 2002/S2 W10 P25

Partial store ordering
• All stores go through write buffer.

• Loads read from write buffer if possible.

• Redundant stores are cancelled.
➜ Breaks FIFO-order of stores!

load r1, counter // counter ++;
add r1, r2, 1
store r2, counter
barrier
store zero, mutex // unlock(mutex);

• Store to mutex can overtake store to counter .

cse/UNSW COMP9242 2002/S2 W10 P25

Partial store ordering
• All stores go through write buffer.

• Loads read from write buffer if possible.

• Redundant stores are cancelled.
➜ Breaks FIFO-order of stores!

load r1, counter // counter ++;
add r1, r2, 1
store r2, counter
barrier
store zero, mutex // unlock(mutex);

• Store to mutex can overtake store to counter .

• Need to use memory barrier.

cse/UNSW COMP9242 2002/S2 W10 P25

Partial store ordering
• All stores go through write buffer.

• Loads read from write buffer if possible.

• Redundant stores are cancelled.
➜ Breaks FIFO-order of stores!

load r1, counter // counter ++;
add r1, r2, 1
store r2, counter
barrier
store zero, mutex // unlock(mutex);

• Store to mutex can overtake store to counter .

• Need to use memory barrier.

• Failure to do so will introduce subtle bugs:
➜ Changing process state after saving context.
➜ Initiating I/O after setting up parameter buffer.

store A

...

store B
...

store A
...

...

CPU

Cache

cse/UNSW COMP9242 2002/S2 W10 P25

Cache Consistency

• Caching can lead to a processor in an SMP system reading stale
data.

• Can even happen when reading different data:
➜ Different data may lie in same cache line!

• Need to ensure caches are coherent:
➜ by software, or
➜ by hardware (standard these days).

⇒ Need cache coherency protocols.

cse/UNSW COMP9242 2002/S2 W10 P26

Hardware cache coherency

• Ensure consistency of all caches and RAM.

Write-invalidate protocols:

Write-update protocols:

cse/UNSW COMP9242 2002/S2 W10 P27

Hardware cache coherency

• Ensure consistency of all caches and RAM.

Write-invalidate protocols: Ensure that:

➜ only a single cached copy of the data exist at the time of a store,
➜ dirty lines will propagate to memory prior to being read into any

other cache.

Write-update protocols: Update all cached copies at the time of a
store.

cse/UNSW COMP9242 2002/S2 W10 P27

Hardware cache coherency

• Ensure consistency of all caches and RAM.

Write-invalidate protocols: Ensure that:

➜ only a single cached copy of the data exist at the time of a store,
➜ dirty lines will propagate to memory prior to being read into any

other cache.

Write-update protocols: Update all cached copies at the time of a
store.

• Note: Similar (software) protocols are used in distributed systems.

cse/UNSW COMP9242 2002/S2 W10 P27

WRITE-THROUGH INVALIDATE PROTOCOL

Two versions:

➀ All stores write through the cache.

➜ RAM is always consistent with cache.
➜ No dirty cache lines ever.

➁ Cache snoops bus for write cycles and invalidates any copies.

Normal bus arbitration resolves race conditions.

cse/UNSW COMP9242 2002/S2 W10 P28

WRITE-THROUGH INVALIDATE PROTOCOL

Two versions:

➀ All stores write through the cache.

➜ RAM is always consistent with cache.
➜ No dirty cache lines ever.

➁ Cache snoops bus for write cycles and invalidates any copies.

Normal bus arbitration resolves race conditions.

➜ Can cache spin locks, Decker works...

➜ Cannot use write-back caching.

➜ Need bus cycle for each store ⇒ limited scalability.

cse/UNSW COMP9242 2002/S2 W10 P28

WRITE-ONCE PROTOCOL

Works with write-back caches:

• First store to clean line writes through cache.

• Store to uncached line allocates in cache.

• Further stores to same line only write to cache.

• Cache snoops bus for write cycles and invalidates any copies.

Normal bus arbitration resolves race conditions.

cse/UNSW COMP9242 2002/S2 W10 P29

WRITE-ONCE PROTOCOL

Works with write-back caches:

• First store to clean line writes through cache.

• Store to uncached line allocates in cache.

• Further stores to same line only write to cache.

• Cache snoops bus for write cycles and invalidates any copies.

Normal bus arbitration resolves race conditions.

➜ Introduces new state for a cache line: reserved.

cse/UNSW COMP9242 2002/S2 W10 P29

WRITE-ONCE STATE DIAGRAM :

Invalid
Valid

(Shared)

Dirty
(Modified)

Reserved
(Exclusive)

CPU store hit
CPU load hit

CPU load
miss

CPU
load hit

CPU
store miss

Snoop
store hit

Snoop
load hit
Write back
& invalidate

CPU store hit

CPU store hit

CPU load hit

Invalidate

➜ Note: Store miss can occur from any state, not only invalid:

➜ The line may have held different valid or dirty data.

cse/UNSW COMP9242 2002/S2 W10 P30

MESI PROTOCOL

Named after initials of states: Modified-Exclusive-Shared-Invalid.

• Like write-once, except that a load miss on a line which is
not in any cache goes directly to the exclusive state.

• Snoop load hits require cache to assert it has the line.

Used in many modern SMP architectures.

cse/UNSW COMP9242 2002/S2 W10 P31

WRITE-INVALIDATE PROTOCOLS :

• Based on the assumption that shared data is likely to remain
shared.

• Basic protocol similar to MESI, but:
➜ stores to shared data update all copies,
➜ updating cache assert share status,
➜ move to exclusive state if no other CPU holds copy.

• MIPS R4000 update protocol includes additional modified-shared
state, which updates other caches but not RAM.

Wastes bus cycles if lines cease to be shared.

cse/UNSW COMP9242 2002/S2 W10 P32

H/W CACHE COHERENCY ISSUES

• On miss may read data from other cache (faster).

• Some architectures (MIPS R4000) offer choice of protocols.
➜ Must chose most appropriate one for application.

• Cache coherency is based on cache lines.
➜ Potential of false sharing.

• H/W coherency generally restricted to physical caches.
➜ No problem with L2 cache.
➜ Use inclusion property for L1 cache: L1 ⊂ L2.

cse/UNSW COMP9242 2002/S2 W10 P33

Non-Uniform Memory Architecture (NUMA)

CACHE-COHERENT NUMA (CC-NUMA):

Cache

CPU

Cache

CPU

RAM

Cache

CPU

Cache

CPU

RAM

• Distributed system with hardware memory coherency.

• Performance depends critically on high hit rates in local RAM.

cse/UNSW COMP9242 2002/S2 W10 P34

SMP Scheduling

HOW SCHEDULE A MULTIPROCESSOR ?

Issues:

Scalability: How many CPUs to support?

Application mix: SMP for

• time-shared multi-tasking environment,
• web server,
• highly parallel applications?

Architecture: caching, memory bandwidth...

cse/UNSW COMP9242 2002/S2 W10 P35

SCHEDULER ORGANISATION

Single scheduler for all CPUs

• Not really SMP.
• Not scalable.

Global ready queue: CPU schedules itself from global queue.

• Course-grain locking of ready queue.
• Limited scalability.

Per-CPU ready queues

• Scalable.
• Load balancing?
• Process migration?

cse/UNSW COMP9242 2002/S2 W10 P36

ISSUES: A DDRESS-SPACE DISTRIBUTION

Restrict address spaces (tasks) to a single CPU.

+ Most sharing is within task.
➜ Good cache performance (maybe?)

+ Unmapping pages only affects single CPU.
➜ Only requires invalidating local TLB entries.

– No performance gain for multithreaded tasks.
➜ Multiple CPUs only enhance throughput.
➜ Not a general solution.

cse/UNSW COMP9242 2002/S2 W10 P37

GANG SCHEDULING (CO-SCHEDULING):

Always schedule all threads of a task at once on different CPUs.

+ Maximum concurrency for parallel applications.

+ Minimises intra-task communication latency.

– High bus contention.

+ Appropriate. for parallel number-crunching

– May have some CPUs idle.

⇒ Used mostly on supercomputers.

cse/UNSW COMP9242 2002/S2 W10 P38

FIXED PROCESSOR ASSIGNMENT

A thread has a processor affinity and will only run on that CPU:

+ Minimal contention for kernel data structures.

+ Minimal kernel communication overhead.

+ Cache friendly.

+ Highly scalable.

– No strict global priorities.

– No load balancing.

cse/UNSW COMP9242 2002/S2 W10 P39

FIXED PROCESSOR ASSIGNMENT

A thread has a processor affinity and will only run on that CPU:

+ Minimal contention for kernel data structures.

+ Minimal kernel communication overhead.

+ Cache friendly.

+ Highly scalable.

– No strict global priorities.

– No load balancing.

Ok for: ➜ non-real-time systems,

➜ mostly short processes,

➜ NUMA machines,

➜ with additional load balancing & process migration.

cse/UNSW COMP9242 2002/S2 W10 P39

Real-Time OS Issues

• Real-time processes characterised by a deadline.

• OS must be able to guarantee completion by deadline.

cse/UNSW COMP9242 2002/S2 W10 P40

Real-Time OS Issues

• Real-time processes characterised by a deadline.

• OS must be able to guarantee completion by deadline.

• Requires:
➜ predictable execution,
➜ predictable and limited system overheads,
➜ preemtability of long system calls,

➜ kernel locking, reentrancy...
➜ similar requirements as for SMP

➜ analysis of schedulability prior to process admission,
➜ careful scheduling.

cse/UNSW COMP9242 2002/S2 W10 P40

Simplified Real-Time Process Model

• Fixed set of processes,

• all processes periodic with known periods Ti,

• processes independent (note: no IPC!),

• ignore system overheads,

• deadline, Di, equal to period,

• fixed (and known) worst-time execution time Ci,

• Ti, Di, Ci are multiples of minor cycle time t0.

cse/UNSW COMP9242 2002/S2 W10 P41

Simplified Real-Time Process Model

• Fixed set of processes,

• all processes periodic with known periods Ti,

• processes independent (note: no IPC!),

• ignore system overheads,

• deadline, Di, equal to period,

• fixed (and known) worst-time execution time Ci,

• Ti, Di, Ci are multiples of minor cycle time t0.

Allows static analysis and a static schedule.

cse/UNSW COMP9242 2002/S2 W10 P41

EXAMPLE Process A B C D E
T 25 25 50 50 100
C 10 8 5 4 2

• Worst case if all come at once: critical instant.

• Fixed schedule covers one major cycle time t1 = lcm{Di}.
• Schedule is just a list of executions (t0 = 25, t1 = 100):

A, B, C, A, B, D, E, A, B, C, A, B, D.

cse/UNSW COMP9242 2002/S2 W10 P42

EXAMPLE Process A B C D E
T 25 25 50 50 100
C 10 8 5 4 2

• Worst case if all come at once: critical instant.

• Fixed schedule covers one major cycle time t1 = lcm{Di}.
• Schedule is just a list of executions (t0 = 25, t1 = 100):

A, B, C, A, B, D, E, A, B, C, A, B, D.

1007550250

A

B

C

D

E

cse/UNSW COMP9242 2002/S2 W10 P42

EXAMPLE Process A B C D E
T 25 25 50 50 100
C 10 8 5 4 2

• Worst case if all come at once: critical instant.

• Fixed schedule covers one major cycle time t1 = lcm{Di}.
• Schedule is just a list of executions (t0 = 25, t1 = 100):

A, B, C, A, B, D, E, A, B, C, A, B, D.

1007550250

A

B

C

D

E

Note: No preemption ⇒ no concurrency control necessary!

cse/UNSW COMP9242 2002/S2 W10 P42

MORE FLEXIBLE ALTERNATIVE : USE PRIORITIES

• Priorities based on timeliness requirements, not “importance”.

• Higher-priority processes preempt lower-priority ones.

cse/UNSW COMP9242 2002/S2 W10 P43

MORE FLEXIBLE ALTERNATIVE : USE PRIORITIES

• Priorities based on timeliness requirements, not “importance”.

• Higher-priority processes preempt lower-priority ones.

Frequently used scheme is rate-monotonic priority assignment
(RMPA):

• Priority is based on period: Ti < Tj ⇒ Pi > Pj.

cse/UNSW COMP9242 2002/S2 W10 P43

MORE FLEXIBLE ALTERNATIVE : USE PRIORITIES

• Priorities based on timeliness requirements, not “importance”.

• Higher-priority processes preempt lower-priority ones.

Frequently used scheme is rate-monotonic priority assignment
(RMPA):

• Priority is based on period: Ti < Tj ⇒ Pi > Pj.

• Is optimal in a sense:
➜ Everything that can be scheduled can be scheduled statically

by RMPA.

cse/UNSW COMP9242 2002/S2 W10 P43

Schedulability

• Real-time OS must decide at process admission time whether all
deadlines can be met.

cse/UNSW COMP9242 2002/S2 W10 P44

Schedulability

• Real-time OS must decide at process admission time whether all
deadlines can be met.

• General result for RMPA [LL73]: Can do if

N∑
i=1

Ci

Ti
< N

(
21/N − 1

)
.

• This is a sufficient (but not necessary) condition.

cse/UNSW COMP9242 2002/S2 W10 P44

Schedulability

• Real-time OS must decide at process admission time whether all
deadlines can be met.

• General result for RMPA [LL73]: Can do if

N∑
i=1

Ci

Ti
< N

(
21/N − 1

)
.

• This is a sufficient (but not necessary) condition.

Limit (%):
N 1 2 3 4 5 10 ∞

Ci/Ti 100.0 82.8 78.0 75.7 74.3 71.8 69.3

cse/UNSW COMP9242 2002/S2 W10 P44

Sporadic (Non-Periodic) Processes

Use minimum (or average) inter-arrival interval for Ti.

• Generally Di � Ti for these.

• Ti may be irrelevant.

• Use Di rather than Ti for priority assignment:
➜ Deadline-monotonic priority ordering (DMPO).

cse/UNSW COMP9242 2002/S2 W10 P45

Sporadic (Non-Periodic) Processes

Use minimum (or average) inter-arrival interval for Ti.

• Generally Di � Ti for these.

• Ti may be irrelevant.

• Use Di rather than Ti for priority assignment:
➜ Deadline-monotonic priority ordering (DMPO).

Note:
soft
hard

real-time guarantees
average
minimal

inter-arrival times.

See e.g., [BW96] for more.

cse/UNSW COMP9242 2002/S2 W10 P45

Issues

• Hybrid systems:
➜ real-time plus best-effort tasks

• Stochastic real-time systems
➜ guarantee deadline is met with probability p

➜ more flexibility for OS
➜ hard to analyse

cse/UNSW COMP9242 2002/S2 W10 P46

[BW96] Alan Burns and Andy Wellings. Real-Time Systems and
Programming Languages. Addison-Wesley, 2nd edition,
1996.

[CSL+87] D. Cornhill, L. Sha, J. Lehoczky, R. Rajkumar, and
H. Tokuda. Limitations of Ada for real-time scheduling.
Ada Lett., pages 33–39, 1987. Wait-free locking.

[HH01] Michael Hohmuth and Hermann Härtig. Pragmatic
nonblocking synchronization for real-time systems. In
Proc. 2001 Techn. Conf., Boston, MA, USA, 2001.

[LL73] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment.
Journal of the ACM, 20:46–61, 1973.

[PS96] Sharon Perl and Richard L. Sites. Studies of Windows-NT

cse/UNSW COMP9242 2002/S2 W10 P47

performance using dynamic execution traces. In Proc. 2nd
OSDI, pages 169–183, Oct 1996.

[Sch94] Curt Schimmel. UNIX Systems for Modern Architectures.
Addison Wesley, 1994.

cse/UNSW COMP9242 2002/S2 W10 P48

