
Bounded Arithmetic and Polynomial-time

Hierarchy

Chung Tong Lee

October 31, 2007

1 Introduction

An input for a Turing Machine (TM) can be considered as a sequence of numeric
values in a n -adic number system where n is the size of alphabet. A TM
computation for decision problem can then be transformed as a evaluation of
a numeric function whose range is {0, 1} . With some basic functions, Buss
[1] built a hierarchy of bounded arithmetic theories Si

2 which characterizes the
polynomial hierarchy (PH) [1]. We will discuss Si

2 briefly (up to chapter 3 of
[1]), with focus on S1

2 , and complete the discussion with Herbrand analyse of
Si

2 [3] as an simpler alternative to witness theorem (chapter 5 in [1]).

2 Limited Iteration and Polynomial Hierarchy

Definition 1.

• A function f(~x) is defined by limited recursion from g(~x) and h(~x, y, z)
with time bound p and space bound q iff the followings hold

τ(~x, 0) = g(~x, 0)
τ(~x, y′) = h(~x, y, τ(~x, y))
f(~x) = τ(~x, p(|~x|))

and
(∀n ≤ p(|~x|)) [|τ(~x, n)| ≤ q(|~x|)]

where p and q are polynomials with non-negative integer coefficients.

• The collection B of numeric functions contains the following functions:

0 The constant zero function
2 · x The left-shift function
bx

2 c The right-shift function

leq(x, y) =

{
1 if x ≤ y
0 otherwise

Choice(x, y, z) =

{
y if x > 0
z otherwise

1

• For a collection of functions F , Cl(F) is closure of F under composition
and limited iteration.

• P
df
= Cl(B) .

• p
1 is the collection of functions which are computable by a polynomial-

time TM.

Theorem 1. P = p
1

Proof. This is the Theorem 2 in [1]. We will only give a brief sketch of the
proof.

Case 1: P ⊆ p
1

By induction on complexity of definition of f ∈ P . All functions in B
are p–time computable. If an oracle function is p–time computable by
a TM, adding the oracle to the TM will not change its ability for p-
time computation. Composition is just an oracle consultation. It is not
difficult to see that limited iteration captures the idea of polynomial-time
computation of a TM with oracles for previously-defined functions. Hence
we have this side of inclusion.

Case 2: p
1 ⊆ P

By encoding the instant description (ID) of a TM. This is very similar
to the class proof of SAT being a NP-complete problem [2]. The cod-
ing scheme used in this section of [1] is different from the one about S1

2

in the later chapter of the same book. Nonetheless, all functions neces-
sary for encoding/decoding the ID’s of a TM are definable from B using
composition and limited iteration.

3 Bounded Arithmetic

Definition 2.

• The language of bounded arithmetic, LBA , is given as

LBA = {0, x′,+, ·, |x|, bx
2 c,#,=,≤}

Symbols Meanings
0 the zero constant (function)
x′ successor function
x+ y addition
x · y multiplication
|x| length of x in binary representation, i.e. dlog2(x+ 1)e
bx

2 c largest integer smaller than or equal to x/2
x#y x#y = 2|x|·|y|

• B
df
= {0, x′,+, ·|x|, bx

2 c,#} , i.e. the collection of all functions in LBA .

2

• BASIC is the set of open formulas that defines the functions in B . De-
tails can be found in chapter 2 of [1].

• Φ–PIND axioms are of the form (ϕ(0) ∧ ∀x[ϕ(bx
2 c)→ ϕ(x)])→ ∀xϕ(x)

where ϕ ∈ Φ .

Φ–PIND can be incorporated into a Tait-style calculus as an inference rule as
follows:

(Φ–PIND)
Γ, ϕ(0) Γ,¬ϕ(bx

2 c), ϕ(x)

Γ, ϕ(t)

where x does not occur free in Γ and t is any term in the language.

Definition 3.

• Sharply bounded quantifiers are of the form ∃x ≤ |t| or ∀x ≤ |t| where t
is a term in the language.

• QF (L) is the set of all open formulas in the language L . They are
quantifier-free.

• Σb
0(L) is the closure of QF (L) under connectives and sharply bounded

quantifications.

• ∆b
0(L)

df
= Σb

0(L)
df
= Πb

0(L)

• Σb
i+1(L) is the closure of Πb

i (L) under ∧ , ∨ , sharply bounded quantifica-
tions and bounded existential quantification, i.e. ∃x ≤ t .

• Πb
i+1(L) is the closure of Σb

i (L) under ∧ , ∨ , sharply bounded quantifica-
tions and bounded universal quantification, i.e. ∀x ≤ t .

• With respect to a theory T in L , a formula δ ∈ ∆b
i (L) iff T ` (δ ↔

ϕ) ∧ (δ ↔ ψ) where ϕ ∈ Σb
i (L) and ψ ∈ Πb

i (L) .

• The theory S1
2

df
= BASIC + Σb

1–PIND in [1]. Using notation in [3],

S1
2

df
= Σb

1(B)–PIND .

4 Definable Functions and Conservative Exten-
sion

Definition 4. For a theory T and a class of formula Φ ,

• A function f(~x) is Φ–definable in T iff

T ` ∀~x∃yϕ(~x, y)
T ` ∀~xyz [(ϕ(~x, y) ∧ ϕ(~x, z))→ (y = z)]
N |= ∀~xϕ(~x, f(~x))

where ϕ ∈ Φ .

3

• The collection of all Φ–definable functions in T is denoted by Φ–DF (T) .

Definition 5. Let T1 be a theory in a language L1 and T2 in L2 where
L1 ⊆ L2 . If T2 ` ϕ implies T1 ` ϕ for every formula ϕ in L1 , we say T2 is
a conservative extension of T1 .

Theorem 2. For a theory T with Σb
i+1–PIND , extending T with symbols

for Σb
i+1 –definable functions and ∆b

i –definable predicates yields a conservative
extension.

Proof. Let the original language be L and ϕf ∈ Σb
i+1(L) be the defining formula

of a function f in the extended language . We have T `d ∃!yϕf (y). For a
derivation of Γ in the extended theory where Γ is in L , we can replace ψ(f)
with ψ(y) ∧ ϕf (y) and combine a suitable subderivation of d to get a valid
derivation of Γ in T . Note that if ψ(f) is used in Σb

i+1–PIND in the extended
system, ψ(y)∧ϕf (y) ∈ Σb

i+1(L) and Σb
i+1–PIND is applicable to the formula.

Similar arguments apply for predicates, by replacing the predicates with the
defining formulas. To ensure sure Σb

i+1–PIND is applicable to the replaced
formula, predicate should be ∆b

i –definable, since the predicates may be within
the scope of negation.

By theorem (2), we can use symbols for functions and predicates which are
Σb

1 –definable functions and ∆b
0 –definable respectively in S1

2 to simplify our
discussion. In [1], it is called “bootstrapping”. The objective is to define func-
tions which are similar to Gödel’s coding/decoding functions for a sequence of
numbers in S1

2 . We won’t go into details about all these definitions. Instead,
we illustrate the meanings of these functions by example.

To encode a number, we turn it into binary representation, insert a “1” be-
fore every binary digit, e.g. the number 10 is 1010b in binary and is coded as
11101110b , i.e. 238. Similarly, the number 3 is coded as 1111b , i.e. 15. The
number 0 is coded as 10b , i.e 2. To code the sequence of numbers, we first code
the individual numbers and add “00’ as the comma. Thus the code representing
the sequence < 0, 10, 3 > is 100011101110001111b , i.e. 146319. The functions
used for decoding are also definable in S1

2 . Using the sequence < 0, 10, 3 > as
an example, we have

len(146319) = 3
β(146319, 1) = 0
β(146319, 2) = 10
β(146319, 3) = 3

Not every number is a valid sequence but every (finite) sequence can be coded
into a unique number. Suppose the largest number in a sequence is a and there
are total b numbers in it. The code w for the sequence is bound by

SqBd(a, b) = (2 · b+ 1)#(4 · (2 · a+ 1)2)

Theorem 3. P ⊆ Σb
1–DF (S1

2)

4

Proof. By induction on complexity of definition of f ∈ P . It is clear that
the functions in B is Σb

1 –definable in S1
2 . Induction step for the composition

case relies on the existence of the code w which encodes the sequence of all
component functions in the arguments. It is left to the reader to work out the
details.

For limited iteration, it is enough to find a number w that encodes the sequence
of results of each iteration. The SqBd function gives us the bound of w so
we can express the defining formula with a Σb

1 –formula. Suppose f ∈ P is
defined from g and h by limited iteration, the following formula is equivalent
to f(~x) = y and is provable in S1

2

∃!y
(
∃w ≤ SqBd(2q(|~x|), 2p(|~x|))

) β(1, w) = g(~x)
∧ (∀i < len(w)− 1)

[
β(i′′, w) = h(~x, i, β(i′, w))

]
∧ y = β(len(w), w)


and we can use subformula of the above as the defining formula for f(~x). Strictly
speaking, the defining formula in this form is not a Σb

1 –formula. Looking up
the definition of len , we can replace (∀i < len(w) − 1) with its equivalence in
term of |w| , and get a equivalent sharply bounded quantification. Hence there
is a defining Σb

1 –formula for f(~x) .

Note: The proofs about definable functions are really sketchy. They are pre-
sented in such a way in order to illustrate the idea without going too deep into
details. Readers are strongly encouraged to refer to [1].

5 Herbrand Analysis for S1
2

We will show the other way of inclusion of theorem (3) by technique used in [3],
as an simpler alternative to chapter 5 of [1].

Theorem 4. (Herbrand Theorem) For a theory T which is specified by open
formulas as axioms, if T ` ∃yϕ(y) , we have a finite number of term t1, . . . , tk
s.t.

T ` ϕ(t1), . . . , ϕ(tk)

Proof. By induction on the length of a derivation of Γ,∃yϕ(y) where Γ contains
only open formula.

Definition 6.

• LP is the language obtained from LBA by adding symbol for each function
in P .

• Φ(P)–PIND is the theory obtained from theory which defines all func-
tions in P with (Φ–PIND) inference rule.1

1It should be noticed that all axioms of Φ(P)–PIND are open formulas.

5

Theorem 5. P is closed under definition by (finite) cases where the conditions
are open formulas.

Proof. Firstly, we show that the following functions for each atomic formula and
connectives are in P

f=(x, y) choice(leq(x, y), leq(y, x), 0)
f≤(x, y) leq(x, y)
f¬(x) choice(x, 0, 1)
f∧(x, y) choice(x, leq(1, y), 0)
f∨(x, y) choice(x, 1, leq(1, y))

Then,we have the characteristic function fϕ ∈ P for every open formula ϕ in
LP by induction on the complexity of ϕ .

If a function f is defined by case s.t.

f(~x) =


t1 if ϕ1(~x)
t2 else if ϕ2(~x)
...

...

,

it is easy to give the same definition by choice function:

choice(fϕ1(~x), t1, choice(fϕ2(~x), t2, choice(. . .)))

Corollary 6. QF–DF (QF (P)–PIND) ⊆ P

Proof. Immediate consequence of theorems (4) and (5).

Theorem 7. (Term Extraction) If QF (P)–PIND `d Γ,∃yϕ(~x, y) where Γ
contain no universal quantification2, ϕ is open and ~x is the list of all parameters
of the derivation d , then we have QF (P)–PIND ` Γ, ϕ(~x, f(~x)) where f ∈ P .

Proof. By modifying the proof for theorem (4) for purely existential formulas
and using Corollary (6). It should be noted that the argument does not work
if Γ contains universal quantified formulas since ∀–inversions introduce extra
variables not in ~x .

Theorem 8. For an open formula ϕ and a term t in LP , there is a function
fϕ in P s.t.

Σb
1(P)–PIND ` (∃y ≤ |t|)ϕ(~x, y)↔ ϕ(~x, fϕ(~x))

Proof. By construction of a thorough search function, begin with 0 up to |t| .
If no such witness is found, the search function returns |t|+ 1. Such function is
Σb

1 –definable in Σb
1(P)–PIND , using the sequence coding technique.

2In [3], it is called purely existential.

6

Corollary 9. For any formula ϕ ∈ Σb
0(LP) there is a formula ϕ∗ ∈ QF (LP)

s.t.
Σb

1(P)–PIND ` ϕ↔ ϕ∗.

Theorem 10. (Σb
1 –replacement)

For a Σb
1 –formula ϕ and a term s1 in LBA , there is a Σb

1 –formula ψ and a
term s2 s.t. S1

2 proves

(∀x ≤ |t|)(∃y ≤ s1)ϕ(x, y)↔ (∃y ≤ s2)(∀x ≤ |t|)ψ(x, y)

Proof. This is Theorem 14 in [1]. The basic idea is to code the sequence of y ’s
for each x into w .

Si
2 ` (∀x ≤ |t|)(∃y ≤ s1)ϕ(x, y)↔

(∃w ≤ SqBd(s1, t))(∀x ≤ |t|)[ϕ(x, β(x′, w)) ∧ β(x′, w) ≤ s1]

The above theorem enables us to “push” the sharply bounded quantification
into the scope of bounded quantifier.

Definition 7. The collection of strict Σb
1 -formulas in a language L , denoted

by s-Σb
1(L) , is the smallest set of formulas which begin with exactly one bounded

existential quantifier, i.e. ∃x ≤ t , followed by an open formula.

Corollary 11. For any formula ϕ ∈ Σb
1(LP) , there is a formula ϕ∗ ∈ s-Σb

1(LP)
s.t.

Σb
1(P)–PIND ` ϕ↔ ϕ∗.

Proof. Pushing any sharply bounded quantifier inside the scope of a bounded
quantifier by Σb

1 –replacement (theorem (10)), combing any two bounded exis-
tential quantifiers into one by pairing function (definable in S1

2) and replacing
the sharply-bounded formula with its equivalence by corollary (9) gives the de-
sired s-Σb

1 formula.

Theorem 12. Σb
1–DF (Σb

1(P)–PIND) = QF–DF (QF (P)–PIND)

Proof. The ∀–inversion holds as none of the axioms is specified using ∀ . To-
gether with corollary (11), it is suffice to show that s-Σb

1(P)–PIND is conser-
vative over QF (P)–PIND for s-Σb

1 –formula. We examine a normal deriva-
tion of Γ which contains no universal quantification. Obvious lines in the fol-
lowing derivations are skipped and we may optionally illustrate the skipped

part/inference by
... and double lines.

Consider the first application of (s-Σb
1–PIND) with p.f. ∃y[y ≤ t(s) ∧ ϕ(s, y)]

where ϕ is an open formula. Let ψ(x, y)
df
= y ≤ t(x) ∧ ϕ(x, y). The instance is

as follows:

∆,∃y[ψ(0, y)] ∆,¬∃y[ψ(b b
2c, y)],∃y[ψ(b, y)]

∆,∃y[ψ(s, y)]

7

Because Γ is purely existential and the derivation is normal, ∆ must also be
purely existential. Inverting the ∀–quantifier in ¬∃y[ψ(b b

2c, y)] , we obtain an
eigenvariable c which does not occur in ∆. By Theorem (7), there are f0, f1 ∈ P
s.t.

QF (P)–PIND ` ∆, ψ(0, f0(0))

QF (P)–PIND ` ∆,¬ψ(b b
2c, c)), ψ(b, f1(b, c))

Now we define

f(0) = f0(0)

f(x′) = f1(x′, f(bx′

2 c))

Function defined in this manner belongs to P and will be shown later in the
proof. We choose this form to facilitate our argument for conservativeness.

A formal way to perform substitution in derivation is by using equality axioms
and cuts. Substituting f(b b

2c) for c , f for f1 when b 6= 0 (i.e. b = x′), we
have the following derivation in QF (P)–PIND :

...
¬ψ(0, f(0)), ψ(0, f(0))

b 6= 0,¬ψ(b b
2c, f(b b

2c)), ψ(b, f(b))

...
∆,¬ψ(b b

2c, c)), ψ(b, f1(b, c)

b = 0,¬ψ(b b
2c, f(b b

2c)), ψ(b, f(b))
(C)

¬ψ(b b
2c, f(b b

2c)), ψ(b, f(b))

With this, we can derive the same conclusion of s-Σb
1–PIND as follows:

...
∆, ψ(0, f(0))

...
∆,¬ψ(b b

2c, f(b b
2c)), ψ(b, f(b))

(QF–PIND)
∆, ψ(s, f(s))

(∃)
∆,∃y[y ≤ t(s) ∧ ϕ(s, y)]

We need to show f ∈ P to complete the proof. Let’s consider the function
frontbits(x, y) which gives the number with binary representation identical to
the leading y bits of x . We skip the limited iteration definition but it is not
difficult to see frontbits(x, y) ∈ P . Then f2(b, c, d)

df
= f1(frontbits(b, c), d)

belongs to P as P is closed under composition. The function f can be defined
by limited iteration from f0 and f2 as follows:

τ(b, 0) = f0(0)
τ(b, c′) = f2(b, c, τ(b, c))
f(b) = τ(b, |b|)

where p(|b|) = |b| and q(|b|) = t(b). Thus, f ∈ P .

Hence, we can reduce the number of s-Σb
1–PIND application by one. By

induction, the conservative property is shown.

8

6 Generalization: Si
2 and ΣP

i

Definition 8.

• A function f is a predicate if its range is {0, 1} .

• For a collection of functions F , PRED(F) is the collection of predicates
in F .

• For two functions f and g , we define

(∃y ≤ f(~x))g(~x, y)
df
=

{
1 if (∃y ≤ f(~x)) [g(~x, y) > 0]
0 otherwise

(∀y ≤ f(~x))g(~x, y)
df
=

{
1 if (∀y ≤ f(~x)) [g(~x, y) > 0]
0 otherwise

• For a collection of functions F which is closed under composition:

PB∃(F) = {(∃y ≤ 2p(|~x|))R(~x, y) |R ∈ PRED(F)}
PB∀(F) = {(∀y ≤ 2p(|~x|))R(~x, y) |R ∈ PRED(F)}

where p is a suitable polynomial.

Definition 9. With these, we can define the hierarchy of predicates which cor-
responds to polynomial hierarchy:

∆p
1

df
= PRED(p

1).

Σp
i

df
= PB∃(∆p

i).

Πp
i

df
= PB∀(∆p

i).
p
i+1

df
= Cl(Σp

i).

PH
df
=
⋃

k∈N

Σp
k.

∆p
1 , Σp

1 and Πp
1 are essentially the computational complexity classes P , NP

and co–NP respectively.

Theorem 13. p
i ⊆ Σb

i–DF (Si
2)

Proof. The base case is Theorem (3). Here we will show the case for i + 1.
Modify the proof for theorem (3), we only need to include the case when a
function f ∈ p

i+1 is defined from g ∈ Σb
i–DF (Si

2) by PB∃ s.t.

f(~x) =

{
1 if (∃y ≤ 2p(|~x|))[g(~x, y) > 0]
0 otherwise

9

and the defining formula for g is ϕg(~x, y, z) ∈ Σb
i s.t. (g(~x, y) = z) ↔

ϕg(~x, y, z). Consider the following formula ϕf
df
=(

(u = 1) ∧ (∃y ≤ 2p(|~x|)) [(z > 0) ∧ ϕg(~x, y, z)]
)

∨
(

(u = 0) ∧ (∀y ≤ 2p(|~x|)) [(z 6= 0) ∨ ¬ϕg(~x, y, z)]
)

It is obvious that (f(~x) = u)↔ ϕf (~x, u) and ϕf ∈ Σb
i+1 .

Theorem 14. Σb
i–DF (Si

2) ⊆ p
i

Proof. By extending the language LBA with symbols for functions in p
i . It

can be shown that for every formula in Σb
i (LBA), there is an equivalence in

s-Σb
1 –formula in the extended language, provable in the extended theory as a

form of Skolemization or operator theory in [3]. The form of defining formulas
for functions in p

i is carefully stated to preserve ∧–, ∨–, and ∀–inversions
as well as Theorem (7), i.e. we will avoid any use of quantification or logical
connectives. For example, to define a Σb

1 –Skolem function f for an open formula
ϕ s.t.

(∃y ≤ t(~x))ϕ(~x, y)↔ ϕ(~x, f(~x)),

the axioms are given as two sets of formula

{¬y ≤ t(~x),¬ϕ(~x, y), ϕ(~x, f(~x))}, {f(~x) ≤ t(~x)}.

Σb
i+1 -Skolem functions are defined with open formulas which consist of p

i

function symbols, instead of using Σb
i –formulas directly. With these measures,

the argument follows the proof of Theorem (12).

References

[1] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986.

[2] David S. Johnson Miacheal R. Gary. Computers and Intractability, A guid
to the theoryof NP-completeness. W. H. Freeman, 1979.

[3] Wilfried Sieg. Herbrand analyses. Archive for Mathatical Logic, 30:409–441,
1991.

10

