Bounded Arithmetic and Polynomial-time Hierarchy

Chung Tong Lee

October 31, 2007

1 Introduction

An input for a Turing Machine (TM) can be considered as a sequence of numeric values in a *n*-adic number system where *n* is the size of alphabet. A TM computation for decision problem can then be transformed as a evaluation of a numeric function whose range is $\{0,1\}$. With some basic functions, Buss [1] built a hierarchy of bounded arithmetic theories S_2^i which characterizes the polynomial hierarchy (PH) [1]. We will discuss S_2^i briefly (up to chapter 3 of [1]), with focus on S_2^1 , and complete the discussion with Herbrand analyse of S_2^i [3] as an simpler alternative to witness theorem (chapter 5 in [1]).

2 Limited Iteration and Polynomial Hierarchy

Definition 1.

• A function $f(\vec{x})$ is defined by limited recursion from $g(\vec{x})$ and $h(\vec{x}, y, z)$ with time bound p and space bound q iff the followings hold

$$\begin{aligned} \tau(\vec{x}, 0) &= g(\vec{x}, 0) \\ \tau(\vec{x}, y') &= h(\vec{x}, y, \tau(\vec{x}, y)) \\ f(\vec{x}) &= \tau(\vec{x}, p(|\vec{x}|)) \end{aligned}$$

and

$$(\forall n \le p(|\vec{x}|)) [|\tau(\vec{x}, n)| \le q(|\vec{x}|)]$$

where p and q are polynomials with non-negative integer coefficients.

• The collection **B** of numeric functions contains the following functions:

0	The constant zero function
$2 \cdot x$	The left-shift function
$\lfloor \frac{x}{2} \rfloor$	The right-shift function
leq(x,y)	$= \begin{cases} 1 & \text{if } x \le y \\ 0 & \text{otherwise} \end{cases}$
Choice(x, y, z)	$= \begin{cases} y & \text{if } x > 0\\ z & \text{otherwise} \end{cases}$

- For a collection of functions \mathfrak{F} , $Cl(\mathfrak{F})$ is closure of \mathfrak{F} under composition and limited iteration.
- $\mathfrak{P} \stackrel{df}{=} Cl(\mathbf{B})$.
- \Box_1^p is the collection of functions which are computable by a polynomialtime TM.

Theorem 1. $\mathfrak{P} = \square_1^p$

Proof. This is the Theorem 2 in [1]. We will only give a brief sketch of the proof.

Case 1: $\mathfrak{P} \subseteq \square_1^p$

By induction on complexity of definition of $f \in \mathfrak{P}$. All functions in **B** are *p*-time computable. If an oracle function is *p*-time computable by a TM, adding the oracle to the TM will not change its ability for p-time computation. Composition is just an oracle consultation. It is not difficult to see that *limited iteration* captures the idea of polynomial-time computation of a TM with oracles for previously-defined functions. Hence we have this side of inclusion.

Case 2: $\square_1^p \subseteq \mathfrak{P}$

By encoding the instant description (ID) of a TM. This is very similar to the class proof of SAT being a NP-complete problem [2]. The coding scheme used in this section of [1] is different from the one about S_2^1 in the later chapter of the same book. Nonetheless, all functions necessary for encoding/decoding the ID's of a TM are definable from **B** using composition and limited iteration.

3 Bounded Arithmetic

Definition 2.

• The language of bounded arithmetic, \mathcal{L}_{BA} , is given as

$$\mathcal{L}_{BA} = \{0, x', +, \cdot, |x|, \lfloor \frac{x}{2} \rfloor, \#, =, \leq\}$$

Symbols	Meanings
0	the zero constant (function)
x'	successor function
x+y	addition
$x \cdot y$	multiplication
x	length of x in binary representation, i.e. $\lceil \log_2(x+1) \rceil$
$\left\lfloor \frac{x}{2} \right\rfloor$	largest integer smaller than or equal to $x/2$
$x = \frac{1}{2} $	$x \# y = 2^{ x \cdot y }$

• $\mathfrak{B} \stackrel{df}{=} \{0, x', +, \cdot |x|, \lfloor \frac{x}{2} \rfloor, \#\}, \text{ i.e. the collection of all functions in } \mathfrak{L}_{BA}.$

- BASIC is the set of open formulas that defines the functions in \mathfrak{B} . Details can be found in chapter 2 of [1].
- Φ -PIND axioms are of the form $(\varphi(0) \land \forall x [\varphi(\lfloor \frac{x}{2} \rfloor) \to \varphi(x)]) \to \forall x \varphi(x)$ where $\varphi \in \Phi$.

 $\Phi-PIND\,$ can be incorporated into a Tait-style calculus as an inference rule as follows:

$$(\Phi - PIND) \quad \frac{\Gamma, \varphi(0) \qquad \Gamma, \neg \varphi(\lfloor \frac{x}{2} \rfloor), \varphi(x)}{\Gamma, \varphi(t)}$$

where x does not occur free in Γ and t is any term in the language.

Definition 3.

- Sharply bounded quantifiers are of the form $\exists x \leq |t|$ or $\forall x \leq |t|$ where t is a term in the language.
- $QF(\mathfrak{L})$ is the set of all open formulas in the language \mathfrak{L} . They are quantifier-free.
- $\Sigma_0^b(\mathfrak{L})$ is the closure of $QF(\mathfrak{L})$ under connectives and sharply bounded quantifications.
- $\Delta_0^b(\mathfrak{L}) \stackrel{df}{=} \Sigma_0^b(\mathfrak{L}) \stackrel{df}{=} \Pi_0^b(\mathfrak{L})$
- Σ^b_{i+1}(𝔅) is the closure of Π^b_i(𝔅) under ∧, ∨, sharply bounded quantifications and bounded existential quantification, i.e. ∃x ≤ t.
- Π^b_{i+1}(𝔅) is the closure of Σ^b_i(𝔅) under ∧, ∨, sharply bounded quantifications and bounded universal quantification, i.e. ∀x ≤ t.
- With respect to a theory **T** in \mathfrak{L} , a formula $\delta \in \Delta_i^b(\mathfrak{L})$ iff $\mathbf{T} \vdash (\delta \leftrightarrow \varphi) \land (\delta \leftrightarrow \psi)$ where $\varphi \in \Sigma_i^b(\mathfrak{L})$ and $\psi \in \Pi_i^b(\mathfrak{L})$.
- The theory $S_2^1 \stackrel{\text{df}}{=} BASIC + \Sigma_1^b PIND$ in [1]. Using notation in [3], $S_2^1 \stackrel{\text{df}}{=} \Sigma_1^b(\mathfrak{B}) - PIND$.

4 Definable Functions and Conservative Extension

Definition 4. For a theory \mathbf{T} and a class of formula Φ ,

• A function $f(\vec{x})$ is Φ -definable in \mathbf{T} iff

$$\begin{split} \mathbf{T} &\vdash \forall \vec{x} \exists y \varphi(\vec{x}, y) \\ \mathbf{T} &\vdash \forall \vec{x} y z \left[(\varphi(\vec{x}, y) \land \varphi(\vec{x}, z)) \rightarrow (y = z) \right] \\ \mathbf{N} &\models \forall \vec{x} \varphi(\vec{x}, f(\vec{x})) \end{split}$$

where $\varphi \in \Phi$.

• The collection of all Φ -definable functions in **T** is denoted by Φ -DF(**T**).

Definition 5. Let \mathbf{T}_1 be a theory in a language \mathfrak{L}_1 and \mathbf{T}_2 in \mathfrak{L}_2 where $\mathfrak{L}_1 \subseteq \mathfrak{L}_2$. If $\mathbf{T}_2 \vdash \varphi$ implies $\mathbf{T}_1 \vdash \varphi$ for every formula φ in \mathfrak{L}_1 , we say \mathbf{T}_2 is a conservative extension of \mathbf{T}_1 .

Theorem 2. For a theory **T** with Σ_{i+1}^b -PIND, extending **T** with symbols for Σ_{i+1}^b -definable functions and Δ_i^b -definable predicates yields a conservative extension.

Proof. Let the original language be \mathfrak{L} and $\varphi_f \in \Sigma_{i+1}^b(\mathfrak{L})$ be the defining formula of a function f in the extended language . We have $\mathbf{T} \vdash_d \exists ! y \varphi_f(y)$. For a derivation of Γ in the extended theory where Γ is in \mathfrak{L} , we can replace $\psi(f)$ with $\psi(y) \land \varphi_f(y)$ and combine a suitable subderivation of d to get a valid derivation of Γ in \mathbf{T} . Note that if $\psi(f)$ is used in $\Sigma_{i+1}^b - PIND$ in the extended system, $\psi(y) \land \varphi_f(y) \in \Sigma_{i+1}^b(\mathfrak{L})$ and $\Sigma_{i+1}^b - PIND$ is applicable to the formula. Similar arguments apply for predicates, by replacing the predicates with the defining formulas. To ensure sure $\Sigma_{i+1}^b - PIND$ is applicable to the replaced formula, predicate should be Δ_i^b -definable, since the predicates may be within the scope of negation.

By theorem (2), we can use symbols for functions and predicates which are Σ_1^b -definable functions and Δ_0^b -definable respectively in S_2^1 to simplify our discussion. In [1], it is called "bootstrapping". The objective is to define functions which are similar to Gödel's coding/decoding functions for a sequence of numbers in S_2^1 . We won't go into details about all these definitions. Instead, we illustrate the meanings of these functions by example.

To encode a number, we turn it into binary representation, insert a "1" before every binary digit, e.g. the number 10 is 1010_b in binary and is coded as 11101110_b , i.e. 238. Similarly, the number 3 is coded as 1111_b , i.e. 15. The number 0 is coded as 10_b , i.e 2. To code the sequence of numbers, we first code the individual numbers and add "00' as the comma. Thus the code representing the sequence < 0, 10, 3 > is 100011101110001111_b , i.e. 146319. The functions used for decoding are also definable in S_2^1 . Using the sequence < 0, 10, 3 > as an example, we have

$$len(146319) = 3$$

 $\beta(146319, 1) = 0$
 $\beta(146319, 2) = 10$
 $\beta(146319, 3) = 3$

Not every number is a valid sequence but every (finite) sequence can be coded into a unique number. Suppose the largest number in a sequence is a and there are total b numbers in it. The code w for the sequence is bound by

$$SqBd(a,b) = (2 \cdot b + 1) \# (4 \cdot (2 \cdot a + 1)^2)$$

Theorem 3. $\mathfrak{P} \subseteq \Sigma_1^b - DF(S_2^1)$

Proof. By induction on complexity of definition of $f \in \mathfrak{P}$. It is clear that the functions in **B** is Σ_1^b -definable in S_2^1 . Induction step for the composition case relies on the existence of the code w which encodes the sequence of all component functions in the arguments. It is left to the reader to work out the details.

For limited iteration, it is enough to find a number w that encodes the sequence of results of each iteration. The SqBd function gives us the bound of w so we can express the defining formula with a Σ_1^b -formula. Suppose $f \in \mathfrak{P}$ is defined from g and h by limited iteration, the following formula is equivalent to $f(\vec{x}) = y$ and is provable in S_2^1

$$\exists ! y \big(\exists w \le SqBd(2^{q(|\vec{x}|)}, 2^{p(|\vec{x}|)}) \big) \\ \begin{bmatrix} \beta(1, w) = g(\vec{x}) \\ \land \quad (\forall i < len(w) - 1) \big[\beta(i'', w) = h(\vec{x}, i, \beta(i', w)) \big] \\ \land \quad y = \beta(len(w), w) \end{bmatrix} \end{bmatrix}$$

and we can use subformula of the above as the defining formula for $f(\vec{x})$. Strictly speaking, the defining formula in this form is not a Σ_1^b -formula. Looking up the definition of len, we can replace $(\forall i < len(w) - 1)$ with its equivalence in term of |w|, and get a equivalent sharply bounded quantification. Hence there is a defining Σ_1^b -formula for $f(\vec{x})$.

Note: The proofs about definable functions are really sketchy. They are presented in such a way in order to illustrate the idea without going too deep into details. Readers are strongly encouraged to refer to [1].

5 Herbrand Analysis for S_2^1

We will show the other way of inclusion of theorem (3) by technique used in [3], as an simpler alternative to chapter 5 of [1].

Theorem 4. (Herbrand Theorem) For a theory \mathbf{T} which is specified by open formulas as axioms, if $\mathbf{T} \vdash \exists y \varphi(y)$, we have a finite number of term t_1, \ldots, t_k s.t.

$$\mathbf{\Gamma} \vdash \varphi(t_1), \ldots, \varphi(t_k)$$

Proof. By induction on the length of a derivation of Γ , $\exists y \varphi(y)$ where Γ contains only open formula.

Definition 6.

- $\mathfrak{L}_{\mathfrak{P}}$ is the language obtained from \mathfrak{L}_{BA} by adding symbol for each function in \mathfrak{P} .
- Φ(𝔅)-PIND is the theory obtained from theory which defines all functions in 𝔅 with (Φ-PIND) inference rule.¹

¹It should be noticed that all axioms of $\Phi(\mathfrak{P})$ –*PIND* are open formulas.

Theorem 5. \mathfrak{P} is closed under definition by (finite) cases where the conditions are open formulas.

Proof. Firstly, we show that the following functions for each atomic formula and connectives are in $\mathfrak P$

Then, we have the characteristic function $f_{\varphi} \in \mathfrak{P}$ for every open formula φ in $\mathfrak{L}_{\mathfrak{P}}$ by induction on the complexity of φ .

If a function f is defined by case s.t.

$$f(\vec{x}) = \begin{cases} t_1 & \text{if } \varphi_1(\vec{x}) \\ t_2 & \text{else if } \varphi_2(\vec{x}) \\ \vdots & \vdots \end{cases}$$

it is easy to give the same definition by choice function:

$$choice(f_{\varphi_1}(\vec{x}), t_1, choice(f_{\varphi_2}(\vec{x}), t_2, choice(\ldots))))$$

Corollary 6. $QF - DF(QF(\mathfrak{P}) - PIND) \subseteq \mathfrak{P}$

Proof. Immediate consequence of theorems (4) and (5).

Theorem 7. (Term Extraction) If $QF(\mathfrak{P})-PIND \vdash_d \Gamma, \exists y\varphi(\vec{x}, y)$ where Γ contain no universal quantification², φ is open and \vec{x} is the list of all parameters of the derivation d, then we have $QF(\mathfrak{P})-PIND \vdash \Gamma, \varphi(\vec{x}, f(\vec{x}))$ where $f \in \mathfrak{P}$.

Proof. By modifying the proof for theorem (4) for purely existential formulas and using Corollary (6). It should be noted that the argument does not work if Γ contains universal quantified formulas since \forall -inversions introduce extra variables not in \vec{x} .

Theorem 8. For an open formula φ and a term t in $\mathfrak{L}_{\mathfrak{P}}$, there is a function f_{φ} in \mathfrak{P} s.t.

$$\Sigma_1^o(\mathfrak{P}) - PIND \vdash (\exists y \le |t|)\varphi(\vec{x}, y) \leftrightarrow \varphi(\vec{x}, f_{\varphi}(\vec{x}))$$

Proof. By construction of a thorough search function, begin with 0 up to |t|. If no such witness is found, the search function returns |t| + 1. Such function is Σ_1^b -definable in $\Sigma_1^b(\mathfrak{P})$ -PIND, using the sequence coding technique.

 $^{^{2}}$ In [3], it is called purely existential.

Corollary 9. For any formula $\varphi \in \Sigma_0^b(\mathfrak{L}_p)$ there is a formula $\varphi^* \in QF(\mathfrak{L}_p)$ s.t.

$$\Sigma_1^b(\mathfrak{P}) - PIND \vdash \varphi \leftrightarrow \varphi^*.$$

Theorem 10. $(\Sigma_1^b - replacement)$

For a Σ_1^b -formula φ and a term s_1 in \mathfrak{L}_{BA} , there is a Σ_1^b -formula ψ and a term s_2 s.t. S_2^1 proves

$$(\forall x \le |t|) (\exists y \le s_1) \varphi(x, y) \leftrightarrow (\exists y \le s_2) (\forall x \le |t|) \psi(x, y)$$

Proof. This is Theorem 14 in [1]. The basic idea is to code the sequence of y's for each x into w.

$$S_{2}^{i} \vdash (\forall x \leq |t|) (\exists y \leq s_{1})\varphi(x, y) \leftrightarrow (\exists w \leq SqBd(s_{1}, t)) (\forall x \leq |t|) [\varphi(x, \beta(x', w)) \land \beta(x', w) \leq s_{1}]$$

The above theorem enables us to "push" the sharply bounded quantification into the scope of bounded quantifier.

Definition 7. The collection of strict Σ_1^b -formulas in a language \mathfrak{L} , denoted by $s \cdot \Sigma_1^b(\mathfrak{L})$, is the smallest set of formulas which begin with exactly one bounded existential quantifier, i.e. $\exists x \leq t$, followed by an open formula.

Corollary 11. For any formula $\varphi \in \Sigma_1^b(\mathfrak{L}_p)$, there is a formula $\varphi^* \in s \cdot \Sigma_1^b(\mathfrak{L}_p)$ s.t.

$$\Sigma_1^b(\mathfrak{P}) - PIND \vdash \varphi \leftrightarrow \varphi^*.$$

Proof. Pushing any sharply bounded quantifier inside the scope of a bounded quantifier by Σ_1^b -replacement (theorem (10)), combing any two bounded existential quantifiers into one by pairing function (definable in S_2^1) and replacing the sharply-bounded formula with its equivalence by corollary (9) gives the desired $s \cdot \Sigma_1^b$ formula.

Theorem 12. $\Sigma_1^b - DF(\Sigma_1^b(\mathfrak{P}) - PIND) = QF - DF(QF(\mathfrak{P}) - PIND)$

Proof. The \forall -inversion holds as none of the axioms is specified using \forall . Together with corollary (11), it is suffice to show that $s \cdot \Sigma_1^b(\mathfrak{P}) - PIND$ is conservative over $QF(\mathfrak{P}) - PIND$ for $s \cdot \Sigma_1^b$ -formula. We examine a normal derivation of Γ which contains no universal quantification. Obvious lines in the following derivations are skipped and we may optionally illustrate the skipped

part/inference by \vdots and double lines.

Consider the first application of $(s \cdot \Sigma_1^b - PIND)$ with p.f. $\exists y [y \leq t(s) \land \varphi(s, y)]$ where φ is an open formula. Let $\psi(x, y) \stackrel{df}{=} y \leq t(x) \land \varphi(x, y)$. The instance is as follows:

$$\begin{array}{c} \Delta, \exists y [\psi(0,y)] & \Delta, \neg \exists y [\psi(\lfloor \frac{b}{2} \rfloor, y)], \exists y [\psi(b,y)] \\ \\ \hline \Delta, \exists y [\psi(s,y)] \end{array}$$

Because Γ is purely existential and the derivation is normal, Δ must also be purely existential. Inverting the \forall -quantifier in $\neg \exists y[\psi(\lfloor \frac{b}{2} \rfloor, y)]$, we obtain an eigenvariable c which does not occur in Δ . By Theorem (7), there are $f_0, f_1 \in \mathfrak{P}$ s.t.

$$\begin{aligned} QF(\mathfrak{P}) - PIND \vdash \Delta, \psi(0, f_0(0)) \\ QF(\mathfrak{P}) - PIND \vdash \Delta, \neg \psi(\lfloor \frac{b}{2} \rfloor, c)), \psi(b, f_1(b, c)) \end{aligned}$$

Now we define

$$f(0) = f_0(0)$$

$$f(x') = f_1(x', f(\lfloor \frac{x'}{2} \rfloor))$$

Function defined in this manner belongs to \mathfrak{P} and will be shown later in the proof. We choose this form to facilitate our argument for conservativeness.

A formal way to perform substitution in derivation is by using equality axioms and cuts. Substituting $f(\lfloor \frac{b}{2} \rfloor)$ for c, f for f_1 when $b \neq 0$ (i.e. b = x'), we have the following derivation in $QF(\mathfrak{P})-PIND$:

$$\frac{\vdots}{\neg\psi(0,f(0)),\psi(0,f(0))} = \frac{\vdots}{\Delta,\neg\psi(\lfloor\frac{b}{2}\rfloor,c)),\psi(b,f_{1}(b,c)} = \frac{\vdots}{\Delta,\neg\psi(\lfloor\frac{b}{2}\rfloor,c)),\psi(b,f_{1}(b,c)} = \frac{\phi(\lfloor\frac{b}{2}\rfloor,c))}{\phi(\lfloor\frac{b}{2}\rfloor,f(\lfloor\frac{b}{2}\rfloor)),\psi(b,f(b))} = \frac{\phi(\lfloor\frac{b}{2}\rfloor,c)}{\phi(\lfloor\frac{b}{2}\rfloor,f(\lfloor\frac{b}{2}\rfloor)),\psi(b,f(b))} = \frac{\phi(\lfloor\frac{b}{2}\rfloor,c)}{\phi(\lfloor\frac{b}{2}\rfloor,f(\lfloor\frac{b}{2}\rfloor)),\psi(b,f(b))} = \frac{\phi(\lfloor\frac{b}{2}\rfloor,c)}{\phi(\lfloor\frac{b}{2}\rfloor,f(\lfloor\frac{b}{2}\rfloor)),\psi(b,f(b))} = \frac{\phi(\lfloor\frac{b}{2}\rfloor,c)}{\phi(\lfloor\frac{b}{2}\rfloor,f(\lfloor\frac{b}{2}\rfloor)),\psi(b,f(b))} = \frac{\phi(\lfloor\frac{b}{2}\rfloor,c)}{\phi(\lfloor\frac{b}{2}\rfloor,c)} = \frac{\phi(\lfloor\frac{b}{2}\rfloor,c)}{\phi(\lfloor\frac{b$$

With this, we can derive the same conclusion of $s \cdot \Sigma_1^b - PIND$ as follows:

$$\begin{array}{c|c} \vdots \\ \hline \hline \Delta, \psi(0, f(0)) \\ \hline \hline \Delta, \neg \psi(\lfloor \frac{b}{2} \rfloor, f(\lfloor \frac{b}{2} \rfloor)), \psi(b, f(b)) \\ \hline \hline \Delta, \psi(s, f(s)) \\ \hline \hline \Delta, \exists y [y \le t(s) \land \varphi(s, y)] \end{array} (\exists) \end{array}$$

We need to show $f \in \mathfrak{P}$ to complete the proof. Let's consider the function frontbits(x, y) which gives the number with binary representation identical to the leading y bits of x. We skip the limited iteration definition but it is not difficult to see $frontbits(x, y) \in \mathfrak{P}$. Then $f_2(b, c, d) \stackrel{df}{=} f_1(frontbits(b, c), d)$ belongs to \mathfrak{P} as \mathfrak{P} is closed under composition. The function f can be defined by limited iteration from f_0 and f_2 as follows:

$$\begin{aligned} \tau(b,0) &= f_0(0) \\ \tau(b,c') &= f_2(b,c,\tau(b,c)) \\ f(b) &= \tau(b,|b|) \end{aligned}$$

where p(|b|) = |b| and q(|b|) = t(b). Thus, $f \in \mathfrak{P}$.

Hence, we can reduce the number of $s - \Sigma_1^b - PIND$ application by one. By induction, the conservative property is shown.

6 Generalization: S_2^i and Σ_i^P

Definition 8.

- A function f is a predicate if its range is $\{0,1\}$.
- For a collection of functions \mathfrak{F} , $PRED(\mathfrak{F})$ is the collection of predicates in \mathfrak{F} .
- For two functions f and g, we define

$$(\exists y \le f(\vec{x}))g(\vec{x}, y) \stackrel{df}{=} \begin{cases} 1 & \text{if } (\exists y \le f(\vec{x})) [g(\vec{x}, y) > 0] \\ 0 & \text{otherwise} \end{cases}$$
$$(\forall y \le f(\vec{x}))g(\vec{x}, y) \stackrel{df}{=} \begin{cases} 1 & \text{if } (\forall y \le f(\vec{x})) [g(\vec{x}, y) > 0] \\ 0 & \text{otherwise} \end{cases}$$

• For a collection of functions \mathfrak{F} which is closed under composition:

$$PB\exists(\mathfrak{F}) = \{ (\exists y \le 2^{p(|\vec{x}|)}) R(\vec{x}, y) \mid R \in PRED(\mathfrak{F}) \}$$
$$PB\forall(\mathfrak{F}) = \{ (\forall y \le 2^{p(|\vec{x}|)}) R(\vec{x}, y) \mid R \in PRED(\mathfrak{F}) \}$$

where p is a suitable polynomial.

Definition 9. With these, we can define the hierarchy of predicates which corresponds to polynomial hierarchy:

$$\begin{split} \Delta_1^p &\stackrel{df}{=} PRED(\ \Box_1^p).\\ \Sigma_i^p &\stackrel{df}{=} PB \exists (\Delta_i^p).\\ \Pi_i^p &\stackrel{df}{=} PB \forall (\Delta_i^p).\\ \Box_{i+1}^p &\stackrel{df}{=} Cl(\Sigma_i^p).\\ PH &\stackrel{df}{=} \bigcup_{k \in \mathbb{N}} \Sigma_k^p. \end{split}$$

 Δ_1^p , Σ_1^p and Π_1^p are essentially the computational complexity classes P, NP and co-NP respectively.

Theorem 13. $\Box_i^p \subseteq \Sigma_i^b - DF(S_2^i)$

Proof. The base case is Theorem (3). Here we will show the case for i + 1. Modify the proof for theorem (3), we only need to include the case when a function $f \in \Box_{i+1}^p$ is defined from $g \in \Sigma_i^b - DF(S_2^i)$ by $PB\exists$ s.t.

$$f(\vec{x}) = \begin{cases} 1 & \text{if } (\exists y \le 2^{p(|\vec{x}|)})[g(\vec{x}, y) > 0] \\ 0 & \text{otherwise} \end{cases}$$

and the defining formula for g is $\varphi_g(\vec{x}, y, z) \in \Sigma_i^b$ s.t. $(g(\vec{x}, y) = z) \leftrightarrow \varphi_g(\vec{x}, y, z)$. Consider the following formula $\varphi_f \stackrel{df}{=}$

$$\left((u=1) \land (\exists y \le 2^{p(|\vec{x}|)}) \left[(z>0) \land \varphi_g(\vec{x}, y, z) \right] \right)$$
$$\land \left((u=0) \land (\forall y \le 2^{p(|\vec{x}|)}) \left[(z \ne 0) \lor \neg \varphi_g(\vec{x}, y, z) \right] \right)$$

It is obvious that $(f(\vec{x}) = u) \leftrightarrow \varphi_f(\vec{x}, u)$ and $\varphi_f \in \Sigma_{i+1}^b$.

Theorem 14.
$$\Sigma_i^b - DF(S_2^i) \subseteq \square_i^p$$

Proof. By extending the language \mathfrak{L}_{BA} with symbols for functions in \Box_i^p . It can be shown that for every formula in $\Sigma_i^b(\mathfrak{L}_{BA})$, there is an equivalence in $s \cdot \Sigma_1^b$ -formula in the extended language, provable in the extended theory as a form of Skolemization or operator theory in [3]. The form of defining formulas for functions in \Box_i^p is carefully stated to preserve $\wedge -$, $\vee -$, and \forall -inversions as well as Theorem (7), i.e. we will avoid any use of quantification or logical connectives. For example, to define a Σ_1^b -Skolem function f for an open formula φ s.t.

$$(\exists y \le t(\vec{x}))\varphi(\vec{x}, y) \leftrightarrow \varphi(\vec{x}, f(\vec{x})),$$

the axioms are given as two sets of formula

$$\{\neg y \le t(\vec{x}), \neg \varphi(\vec{x}, y), \varphi(\vec{x}, f(\vec{x}))\}, \{f(\vec{x}) \le t(\vec{x})\}.$$

 Σ_{i+1}^{b} -Skolem functions are defined with open formulas which consist of \Box_{i}^{p} function symbols, instead of using Σ_{i}^{b} -formulas directly. With these measures, the argument follows the proof of Theorem (12).

References

- [1] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986.
- [2] David S. Johnson Miacheal R. Gary. Computers and Intractability, A guid to the theory of NP-completeness. W. H. Freeman, 1979.
- [3] Wilfried Sieg. Herbrand analyses. Archive for Mathatical Logic, 30:409–441, 1991.