Bounded Arithmetic and Polynomial-time
Hierarchy

Chung Tong Lee

October 31, 2007

1 Introduction

An input for a Turing Machine (TM) can be considered as a sequence of numeric
values in a m-adic number system where n is the size of alphabet. A TM
computation for decision problem can then be transformed as a evaluation of
a numeric function whose range is {0,1}. With some basic functions, Buss
[1] built a hierarchy of bounded arithmetic theories S§ which characterizes the
polynomial hierarchy (PH) [1]. We will discuss S§ briefly (up to chapter 3 of
[1]), with focus on S3, and complete the discussion with Herbrand analyse of
S% [3] as an simpler alternative to witness theorem (chapter 5 in [1]).

2 Limited Iteration and Polynomial Hierarchy

Definition 1.
e A function f(Z) is defined by limited recursion from g(Z) and h(Z,y, z)

with time bound p and space bound q iff the followings hold

7(Z,0) = g(&,0)

7(Z,y") = h(@,y,7(Z,y))

f(@) ==&, p(17]))
and
(vn < p(12))) [I7(Z,n)] < q(|2])]

where p and q are polynomials with non-negative integer coefficients.

e The collection B of numeric functions contains the following functions:

0 The constant zero function
2-x The left-shift function
15] The right-shift function
1 ifz<y
leq(x,y) =

0 otherwise
y ifx>0

Choice(z,y,z) = i
z otherwise

e For a collection of functions §, CIU(F) is closure of § under composition
and limited iteration.

e 3L ci(B).

e 07 is the collection of functions which are computable by a polynomial-
time TM.

Theorem 1. P = [}

Proof. This is the Theorem 2 in [1]. We will only give a brief sketch of the
proof.

Case 1: P C [}

By induction on complexity of definition of f € B. All functions in B
are p—time computable. If an oracle function is p—time computable by
a TM, adding the oracle to the TM will not change its ability for p-
time computation. Composition is just an oracle consultation. It is not
difficult to see that limited iteration captures the idea of polynomial-time
computation of a TM with oracles for previously-defined functions. Hence
we have this side of inclusion.

Case 2: 07 C P
By encoding the instant description (ID) of a TM. This is very similar
to the class proof of SAT being a NP-complete problem [2]. The cod-
ing scheme used in this section of [1] is different from the one about S3
in the later chapter of the same book. Nonetheless, all functions neces-
sary for encoding/decoding the ID’s of a TM are definable from B using
composition and limited iteration.

O

3 Bounded Arithmetic

Definition 2.

e The language of bounded arithmetic, Lpa, is given as

EBA = {Oa Z‘/, +, |$|a I_%J7 #7 = S}

Symbols | Meanings

0 the zero constant (function)

x’ successor function

r+y addition

-y multiplication

|z] length of © in binary representation, i.e. [logy(z + 1)]
5] largest integer smaller than or equal to /2

xFy zty = 2=yl

o8 {0, 4, x|, [§],#}, i.e. the collection of all functions in £p4 .

e BASIC is the set of open formulas that defines the functions in %B. De-
tails can be found in chapter 2 of [1].

o & PIND azioms are of the form (p(0) AVz[p(|5]) — ¢(x)]) — Vre(z)
where ¢ € O.

®—-PIND can be incorporated into a Tait-style calculus as an inference rule as
follows:

F?QO(O) Fv—'QD(L%J)vQP(x)

(&-PIND) T

where z does not occur free in I' and ¢ is any term in the language.

Definition 3.

e Sharply bounded quantifiers are of the form Jx < |t| or Va < |t| where t
is a term in the language.

o QF(L) is the set of all open formulas in the language £. They are
quantifier-free.

o 20(L) is the closure of QF(L) under connectives and sharply bounded
quantifications.

o Ab(e) Lxb(e) Ly(e)

o X0, (L) is the closure of TIY(£) under A, V, sharply bounded quantifica-
tions and bounded existential quantification, i.e. Jx < t.

o I12,,(L) is the closure of $Y(L) under A, V, sharply bounded quantifica-
tions and bounded universal quantification, i.e. Vo < t.

e With respect to a theory T in £, a formula 6 € AXEL) iff T F (§ «
©) A (8 < 1) where ¢ € XY(L) and ¢ € TI2(L).

o The theory Si Y BASIC + Y6-PIND in [1]. Using notation in [3],
st sb(B)-PIND.

4 Definable Functions and Conservative Exten-
sion

Definition 4. For a theory T and a class of formula ®,

o A function f(Z) is ®—definable in T iff

T+ VZ3yp(Z, y)
T = VZyz [(p(Z,y) A (T, 2)) — (y = 2)]
N = Vip(Z, f())

where ¢ € O.

e The collection of all ® —definable functions in T is denoted by -DF(T).

Definition 5. Let T be a theory in a language £1 and Ty in £9 where
£1 C L. If To k¢ implies T1 - ¢ for every formula ¢ in £1, we say To is
a conservative extension of T .

Theorem 2. For a theory T with X%, ,~PIND, extending T with symbols
for Eerl ~definable functions and Al -definable predicates yields a conservative
extension.

Proof. Let the original language be £ and ¢y € Ez+1(£) be the defining formula
of a function f in the extended language . We have T k4 Jlyps(y). For a
derivation of T' in the extended theory where T' is in £, we can replace ¥(f)
with ¥ (y) A ¢s(y) and combine a suitable subderivation of d to get a valid
derivation of ' in T. Note that if ¢(f) is used in £, ,~PIND in the extended
system, ¥(y) Aps(y) € B2, (£) and X2 ,—~PIND is applicable to the formula.
Similar arguments apply for predicates, by replacing the predicates with the
defining formulas. To ensure sure Z? 1—PIND is applicable to the replaced
formula, predicate should be A?-definable, since the predicates may be within
the scope of negation. O

By theorem (2), we can use symbols for functions and predicates which are
¥ —definable functions and A}-definable respectively in S} to simplify our
discussion. In [1], it is called “bootstrapping”. The objective is to define func-
tions which are similar to Goédel’s coding/decoding functions for a sequence of
numbers in S}. We won’t go into details about all these definitions. Instead,
we illustrate the meanings of these functions by example.

To encode a number, we turn it into binary representation, insert a “1” be-
fore every binary digit, e.g. the number 10 is 1010, in binary and is coded as
11101110y, i.e. 238. Similarly, the number 3 is coded as 1111;, i.e. 15. The
number 0 is coded as 104, i.e 2. To code the sequence of numbers, we first code
the individual numbers and add “00’ as the comma. Thus the code representing
the sequence < 0,10,3 > is 100011101110001111,, i.e. 146319. The functions
used for decoding are also definable in Si. Using the sequence < 0,10,3 > as
an example, we have

len(146319) =
3(146319,1) =
3(146319,2) = 10
5(146319,3) =

Not every number is a valid sequence but every (finite) sequence can be coded
into a unique number. Suppose the largest number in a sequence is a and there
are total b numbers in it. The code w for the sequence is bound by

SqBd(a,b) = (2-b+ 1)#(4- (2-a+1)?)

Theorem 3. P C X-DF(S3)

Proof. By induction on complexity of definition of f € B. It is clear that
the functions in B is X% -definable in Si. Induction step for the composition
case relies on the existence of the code w which encodes the sequence of all
component functions in the arguments. It is left to the reader to work out the
details.

For limited iteration, it is enough to find a number w that encodes the sequence
of results of each iteration. The SqBd function gives us the bound of w so
we can express the defining formula with a Y% -formula. Suppose f € P is
defined from g and h by limited iteration, the following formula is equivalent
to f(#) =y and is provable in S}

Hly(Elw < Squ(Qq(\fl)’Qp(lfl)))
B, w) = g(Z)
A (Vi< len(w) — 1)[ﬁ(z’”,w) = h(f,i,ﬁ(i’,w))]
Ay = B(len(w), w)

and we can use subformula of the above as the defining formula for f(&). Strictly
speaking, the defining formula in this form is not a X%-formula. Looking up
the definition of len, we can replace (Vi < len(w) — 1) with its equivalence in
term of |w|, and get a equivalent sharply bounded quantification. Hence there
is a defining ¥4 —formula for f(¥) . O

Note: The proofs about definable functions are really sketchy. They are pre-
sented in such a way in order to illustrate the idea without going too deep into
details. Readers are strongly encouraged to refer to [1].

5 Herbrand Analysis for S}

We will show the other way of inclusion of theorem (3) by technique used in [3],
as an simpler alternative to chapter 5 of [1].

Theorem 4. (Herbrand Theorem) For a theory T which is specified by open
formulas as axioms, if T F Jyp(y), we have a finite number of term ti, ..., tx
ERA

TEo(t),...,e(tk)

Proof. By induction on the length of a derivation of I', Jy¢(y) where I' contains
only open formula. O

Definition 6.
o L£q is the language obtained from £pa by adding symbol for each function
mn P

o O(P)-PIND is the theory obtained from theory which defines all func-
tions in P with (®-PIND) inference rule.*

Tt should be noticed that all axioms of ®(8)~PIND are open formulas.

Theorem 5. P is closed under definition by (finite) cases where the conditions
are open formulas.

Proof. Firstly, we show that the following functions for each atomic formula and
connectives are in P

f=(x,y) choice(leq(z,y),leq(y,x),0)
fS(xvy) leq(m,y)

f-(z) choice(x,0,1)

falz,y) choice(x,leq(1,y),0)
fulz,y) choice(z,1,leq(1,y))

Then,we have the characteristic function f, € ‘B for every open formula ¢ in
Lq by induction on the complexity of ¢.

If a function f is defined by case s.t.

ty if 1 (Z)
f(@) =Lt else if o () 7

it is easy to give the same definition by choice function:

choice(fy, (Z),t1, choice(f,, (L), t2, choice(. . .)))

Corollary 6. QF-DF(QF(B)-PIND) C

Proof. Immediate consequence of theorems (4) and (5). O

Theorem 7. (Term FEuxtraction) If QF(B)-PIND b4 T',3yp(Z,y) where T
contain no universal quantification?, ¢ is open and & is the list of all parameters
of the derivation d, then we have QF(R)-PIND b T, o(Z, f(Z)) where f € B.

Proof. By modifying the proof for theorem (4) for purely existential formulas
and using Corollary (6). It should be noted that the argument does not work
if I' contains universal quantified formulas since V-inversions introduce extra
variables not in Z. O

Theorem 8. For an open formula ¢ and a term t in Ly, there is a function

fo in P s.t.
S1(B)-PIND F By < [t)p(Z,y) < ¢(Z, fo(T))

Proof. By construction of a thorough search function, begin with 0 up to [¢|.
If no such witness is found, the search function returns |¢t| + 1. Such function is
%% —definable in ¥4 (P)-PIND, using the sequence coding technique. O

2In [3], it is called purely existential.

Corollary 9. For any formula ¢ € X8(Lq) there is a formula ¢* € QF(Ly)
s.t.
YY(B)-PIND I ¢ < o*.

Theorem 10. (X% -replacement)
For a X% —formula ¢ and a term sy in £pa, there is a X8 —formula 1 and a
term sy s.t. S3 proves

(Vo < [t)(Fy < s1)p(x,y) < By < s2) (Vo < [t)y(x, y)

Proof. This is Theorem 14 in [1]. The basic idea is to code the sequence of y’s
for each = into w.

Syt (Vo < t)(Ty < s1)e(z,y) <
(3w < SqBd(s1,t)) (Vo < [t])[p(z, B(x',w)) A Bz, w) < s1]

O

The above theorem enables us to “push” the sharply bounded quantification
into the scope of bounded quantifier.

Definition 7. The collection of strict ¥4 -formulas in a language £, denoted
by 5-X8(L), is the smallest set of formulas which begin with exactly one bounded
existential quantifier, i.e. Ix < t, followed by an open formula.

Corollary 11. For any formula ¢ € X%(Ly), there is a formula ¢* € s-X%(Lq)
s.t.
YY(R)-PIND I ¢ < o*.

Proof. Pushing any sharply bounded quantifier inside the scope of a bounded
quantifier by % -replacement (theorem (10)), combing any two bounded exis-
tential quantifiers into one by pairing function (definable in S3) and replacing
the sharply-bounded formula with its equivalence by corollary (9) gives the de-
sired s-X¢ formula. O

Theorem 12. X-DF(Xt(P)-PIND) = QF-DF(QF()-PIND)

Proof. The V—inversion holds as none of the axioms is specified using V. To-
gether with corollary (11), it is suffice to show that s-X%(B)-PIND is conser-
vative over QF(B)-PIND for s-X%-formula. We examine a normal deriva-
tion of I' which contains no universal quantification. Obvious lines in the fol-
lowing derivations are skipped and we may optionally illustrate the skipped
part/inference by . and double lines.

Consider the first application of (s-X¢~PIND) with p.f. Jy[y < t(s) A ¢(s,y)]

where ¢ is an open formula. Let ¢(z,y) & y < t(x) A p(z,y). The instance is
as follows:

A, Jy[(s, y)]

Because I' is purely existential and the derivation is normal, A must also be
purely existential. Inverting the V—quantifier in ﬁﬂy[w(LgLy)], we obtain an
eigenvariable ¢ which does not occur in A. By Theorem (7), there are fy, f1 € P
s.t.

QF(P)-PIND F A, (0, fo(0))
QF(B)-PIND = A, ~([5],¢)), 4 (b, f1(b,c))

Now we define

Function defined in this manner belongs to 8 and will be shown later in the
proof. We choose this form to facilitate our argument for conservativeness.

A formal way to perform substitution in derivation is by using equality axioms
and cuts. Substituting f(|%]) for ¢, f for f; when b # 0 (ie. b = '), we
have the following derivation in QF(PB)-PIND:

Jac))7w(bv fl(b7 C)
L F(L51) (b, £())

~0(0.7(0). 00, 7(0)) A, 0]
b#0,~([2], F([2]).0(b, f(B) b=0,-%(|
~o(L8), 7(L51). (0. £ 8))

With this, we can derive the same conclusion of s-X¢~PIND as follows:

()

A0, £(0) A =w(L5], F(L5), v(b, f(1))
A, P(s, f(s))
A, Tyly < t(s) A(s,y)]
We need to show f € B to complete the proof. Let’s consider the function

frontbits(xz,y) which gives the number with binary representation identical to
the leading y bits of x. We skip the limited iteration definition but it is not

difficult to see fromtbits(x,y) € P . Then fa(b,c,d) g fi(frontbits(b, c),d)
belongs to B as P is closed under composition. The function f can be defined
by limited iteration from fy and fy as follows:

7(b,0) = £5(0)
T(b, C/) f2(b7 C,T(b, C))
f(b) =7(b,[b])

where p(|b]) = |b| and ¢(|b]) = ¢(b). Thus, f € P.

Hence, we can reduce the number of s-X4-PIND application by one. By
induction, the conservative property is shown. O]

(QF-PIND)

6 Generalization: S; and X7

Definition 8.

o A function f is a predicate if its range is {0,1}.

e For a collection of functions §, PRED(F) is the collection of predicates
n §.

e For two functions f and g, we define

1 if (Jy < f(@)) [9(7,y) > 0]
0 otherwise

(Fy < f(@)g(@,y) L {

= ooz oy
Yy < YY) =
(Vy < f(@))9(Z,y) 0 otherwise

{1 it (Vy < f(2))[9(Z,y) > 0]

e For a collection of functions § which is closed under composition:

PB3(F) = {3y < 2?1 R(#,y) | R € PRED(F)}
PBY(3) = {(vy < 2?")R(Z,y)| R € PRED(3)}
where p is a suitable polynomaial.

Definition 9. With these, we can define the hierarchy of predicates which cor-
responds to polynomial hierarchy:

A? L pRED(I?).

s & pp3(ar).

1? L pBv(AD).
07, L ousn).
pHY | =,

kelN

AV ¥ and I} are essentially the computational complexity classes P, NP
and co—N P respectively.

Theorem 13. [} C X2-DF(S3)
Proof. The base case is Theorem (3). Here we will show the case for i + 1.

Modify the proof for theorem (3), we only need to include the case when a
function f € 07, is defined from g € L'-DF(S4) by PB3 s.t.

. 1 if (y < 2°UED)[g(Z,y) > 0
£(7) = (By <)Ng(@,y) > 0]
0 otherwise

and the defining formula for g is ¢g(7,y,2) € X! st. (g(Z,y) = 2) <
©q(Z,y, z). Consider the following formula ¢ A

((w=1) A @y < 20D) [z > 0) A oy (7, . 2)])

v (= 0) A (vy < 20D) [(z £ 0) v~y (7,3, 2)])

It is obvious that (f(Z) =u) < ¢s(Z,u) and ¢y € X¢, ;. O
Theorem 14. X-DF(S§) C 07

Proof. By extending the language £p4 with symbols for functions in 07. It
can be shown that for every formula in Zf(SB A), there is an equivalence in
s-2% —formula in the extended language, provable in the extended theory as a
form of Skolemization or operator theory in [3]. The form of defining formulas
for functions in 07 is carefully stated to preserve A—, V-, and V-inversions
as well as Theorem (7), i.e. we will avoid any use of quantification or logical
connectives. For example, to define a ¥4 —Skolem function f for an open formula
© s.t.
(Fy < 1(@))e(Z,y) < o(Z, f(Z)),

the axioms are given as two sets of formula
{my < (@), (T, y), o(Z, f(2))}, {f () < t(D)}.

b +1-Skolem functions are defined with open formulas which consist of [%
function symbols, instead of using Ei?fformulas directly. With these measures,
the argument follows the proof of Theorem (12). O

References

[1] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986.

[2] David S. Johnson Miacheal R. Gary. Computers and Intractability, A guid
to the theoryof NP-completeness. W. H. Freeman, 1979.

[3] Wilfried Sieg. Herbrand analyses. Archive for Mathatical Logic, 30:409-441,
1991.

10

