Since we have proved that for every primitive recursive function $f(\vec{x})$ there exists $\varphi \in I\Sigma_1$ such that

$$\mathrm{I}\Sigma_1 \vdash \forall \vec{x} \exists ! y \varphi(\vec{x}, y) \qquad (*)$$

we can extend the language of $I\Sigma_1$ with symbols for every primitive recursive function $f(\vec{x})$, thus obtaining a <u>conservative</u> extension of $I\Sigma_1$, which we denote by $I\Sigma_1^*$. Since (*) implies that $f(x) \neq y \leftrightarrow \exists z (z \neq y \land \varphi(\vec{x}, z))$, it is easy to see that every Σ_1 formula on the expanded language is equivalent to a Σ_1 formula on the original language of $I\Sigma_1$; simply push all negations inside to atomic formulas and replace both f(x) = y and $\neg(f(x) = y)$ by a Σ_1 formula. Thus we also have induction for $I\Sigma_1$ formulas of the expanded language that involves extra functional symbols for all primitive recursive functions.

We now prove that if $I\Sigma_1 \vdash \forall \vec{x} \exists y \ \varphi(\vec{x}, y)$ then there exits $f \in PR$ such that $\mathbb{N} \models \forall \vec{x} \ \varphi(\vec{x}, f(\vec{x}))$; in fact, we show that $I\Sigma_1^* \vdash \forall \vec{x} \ \varphi(\vec{x}, f(\vec{x}))$. We first present a model theoretic proof based on the

Lemma 7. If $I\Sigma_1 \vdash \forall \vec{x} \exists y \ \varphi(\vec{x}, y)$ for $\varphi \in \Sigma_1$, then for some $f \in PR$,

$$I\Sigma_1^* \vdash \forall \vec{x} \; \exists y < f(\vec{x}) \; \varphi(\vec{x}, f(\vec{x}))$$

Proof. Let F(x, y) be the Ackermann function. Then $F(n, m) = k \leftrightarrow \exists \mathbb{C}$ ("C is a computation of F(n, m) = k"), as we showed before. Let us denote the formula

 $\exists \mathcal{C}("\mathcal{C} \text{ is a computation of } F(x, y) = z")$

by $F(x, y) \simeq z$, [because as we will see, $I\Sigma_1 \nvDash \forall x \forall y \exists z (F(x, y) \cong z)$, i.e. F(x, y)is not a total function in $I\Sigma_1$.] Thus, F(x, y) is <u>not</u> a functional symbol but just an abbreviation for $\exists \mathbb{C}^{\circ}\mathbb{C}$ is a computation of ...". Since for each fixed n, $F(n, \vec{y})$ is primitive recursive,

$$\mathrm{I}\Sigma_1 \vdash \forall y \; \exists z F(\underline{n}, y) \cong z$$

Also the proof that for every primitive recursive function f there exist n such that for all x

$$f(x) < F(n, x)$$

can be formalized in $I\Sigma_1$ because it uses only basic properties of f and induction on complexity of f. Similarly the proof that F(x, y) is monotonic in both arguments can be formalized to show that

$$I\Sigma_1 \vdash \forall x \; \forall y \; \forall \vec{x} \; \forall \vec{y} (x \leqslant \vec{x} \land y \leqslant \vec{y} \land \exists \vec{z} \; F(\vec{x}, \vec{y}) = \vec{z} \to \exists z \; F(x, y) = z)$$

Lemma 8. Let $m \models I\Sigma_1, a, b \in m$ and assume that for all primitive recursive function f with no parameters we have $f(a) <^m b$. We denote this by $a \ll b$. Then there exists $c \in m$ such that th(c) = a and such that $(c)_0 = a \ (c)_a \leq b$ and $\forall i < a((c)_i \ll (c)_{i+1})$

Proof. Since $a \ll b$, then for all n

$$m \models \forall y < \underline{n} \; \exists z < b \; F(y, 2a) \lesssim z$$

 Σ_1 formula

Hence $F(y, 2a) \lesssim z$ means: there exists w s.t. $F(y, 2a) \simeq w < z$. Thus, by overspill we have for some nonstandard d,

$$m \vDash \forall y \leqslant d \; \exists z < b \; (F(y, 2a) \cong z)$$

Since F(x, y) is provably monotonic (in $I\Sigma_1$) we also have

$$m \vDash \forall i < a \ \forall y \leqslant d \ \exists z < b \ (F(y, a + i) \cong z)$$

We let $(c)_i = F(d, a + i)$. Then

$$\begin{array}{rcl} (c)_{i+1} &=& F(d,a+i+1) \\ &=& F(d-1,F(d,a+i)) \\ &=& F(d-1,(c)_i) \\ &>& F(n,(c)_i) \end{array}$$

for all n, and thus $c_i \ll c_{i+1}$, and $(c)_a = F(d, a + a) < b$.

$$\begin{matrix} \overset{(c)_i(c)_{i+1}}{\longrightarrow} & & \\ 0 & & a \text{ many points } b \\ & & \text{s.t. } (c)_i \ll (c)_{i+1} \end{matrix}$$

<u>Proof of the main lemma:</u> we now show that $I\Sigma_1 \vdash \forall x \exists y \ \varphi(x,y) \Rightarrow I\Sigma_1^* \vdash$ $\forall \vec{x} \exists y < f(x) \varphi(x, f(x)) \text{ for some PR function } f.$

Let $f_1 \ldots f_n(x) \ldots$ be an enumeration of all PR functions of x, and assume opposite: for all n, $I\Sigma \nvDash \forall x \exists y < f_n(x) \varphi(x, f_n(x))$

<u>Claim</u>: Let c be a new constant. Then the above assumption implies that the theory $\mathbf{T}^* = \mathrm{I}\Sigma_1 + \{\neg \exists z < f_n(c) \ \varphi(c, f(c)); n \in \mathbb{N}\}$ is consistent.

Proof. If $I\Sigma_1 \vdash \exists z((z < f_n(c) \lor \cdots \lor z < f_n(c)) \land \varphi(c, f(c))$ then

$$\begin{split} \mathrm{I}\Sigma_1 &\vdash \exists z < \max_{i < n} f_i(c) \; \varphi(c, f(c)) \quad \mathrm{i.e} \\ \mathrm{I}\Sigma_1 &\vdash \forall x \exists z < \max_{i < n} f_i(x) \; \varphi(x, f(x)) \end{split}$$

because c is a new symbol. But $\max_{i < n} f_i(x)$ is a PR function $\rightarrow \leftarrow$. Let $m \models \mathbf{T}^*$; then $m \models \forall x \exists y \ \varphi(x, y)$; thus $m \models \exists y \ \varphi(a, y)$. Let b be s.t. $m \models$ $\varphi(a, b)$. Then $a \ll b$. By our lemma, there exists a sequence $(c)_0 = a, (c)_a < b$. We now build a submodel n of m s.t. $n \subset_e m$ (i.e. n is an initial segment of m, i.e. $a \in n, b < a \land b \in m \Rightarrow b \in n$).

n will satisfy IS_1. Since m is assumed countable, we can enumerate its elements. $\hfill\square$

Our construction will also produce a cut in m i.e. if $x \in m$ is s.t. for all $i x > a_i$ then $x \ge b_j$ for some j. Thus " $sup(a_s) = inf(b_s)$ ". We will ensure:

(1)
$$N = \{x | x < a_s \text{ for some } s \in w\}$$

(2) $(N, +, \cdot, 0, <) = n \models I\Sigma_1$

We make mod s construction picking in stages elements to ensure various parts of our requirements; let x_s be a listing of all elements of m. Let $a_0 = a, b_0 = b$. $\underline{n = 3s}$: Consider x_s if $x_s \leq a_{3s-1}$ or $x \geq b_{3s-1}$ then let $a_{3s} = a_{3s-1}$, $b_{3s} = b_{3s-1}$. If not then if $a_{3s-1} \ll x_s$ put $b_{3s} = x_s$, $a_{3s} = a_{3s-1}$ if not, then let $a_{3s+1} = x_s$, $b_{3s} = b_{3s-1}$.

<u>Claim</u>: If it is not $a_{3s-1} \ll x_s$, then $x_s \ll b_{3s}$, providing $a_{3s-1} \ll b_{3s-1}$.

Proof. If $a_{3s-1} \not\ll x_s$, then for some primitive recursive f, $f(a_{3s-1}) > x_s$. Similarly if $x_s \not\ll b_{3s-1}$, then $g(x_s) < b_{3s-1}$ for some primitive recursive g. Consider $G(x) = \max_{\substack{y < f(x) \\ y < f(x)}} g(y)$, then obviously G(x) is primitive recursive and $G(a_{3s-1}) > b_{3s-1} \rightarrow \leftarrow$.

 $\frac{n=3s+1:}{f(a_{3s}^2)>b_{3s}} \xrightarrow{} \leftarrow \text{ with } a_{3s} \ll b_{3s+1} = b_{3s}; \text{ obviously } a_{3s+1} \ll b_{3s+1} \text{ since } b_{3s} \xrightarrow{} \leftarrow \text{ with } a_{3s} \ll b_{3s} \text{ with } F(x) = f(x^2).$

 $\begin{array}{l} \underline{n=3s+2:} \text{ We assume that during the whole construction we have a listing of all finite sequences of the form } h_s=(\psi,e_i,\ldots,e_n,d) \text{ s.t. } \psi \text{ is a } \Sigma_1 \text{ formula of } L,e_i,\ldots,e_n,d\in m, \text{ and listing is with infinitely many repetitions. Now, at stages } 3s+2 \text{ we look at } h_s=(\psi,e_i,\ldots,e_n,\overline{d}) \text{ and if for all } i \leq n e_i < a_{3s+1} \text{ and } d < a_{3s+1}, \text{ using our lemma and putting } \tilde{a}=a_{3s+1}, \tilde{b}=b_{3s+1} \text{ we can divide } (\tilde{a},\tilde{b}) \text{ in } \tilde{a} \text{ many parts s.t. } \tilde{a}=\alpha_0 \ll \alpha_1 \ll \ldots \ll \alpha_{\tilde{a}} < b, \text{ let } \psi(\vec{x},y) \equiv \exists t \ \psi^*(t,\vec{x},y). \\ \hline \text{Claim: There is an } i < \tilde{a} \text{ s.t. for any } \vec{y} < d \ \exists t < c_{i+1} \ \psi^*(t,e_1\ldots,e_n,\vec{y}) \rightarrow \exists t < c_i \ \psi^*(t,e_1\ldots,e_n,\vec{y}) \text{ i.e. for no } \vec{y} < d \ interval \ [c_i,c_{i+1}) \text{ contains the least witness for } \exists t \ \psi^*(t,\vec{x},\vec{y})[e_1,\ldots,e_n,\vec{y}] \end{array}$

Proof. Assume opposite, define a mapping $\phi : d \to \tilde{a}$ s.t. $\phi(\vec{y}) = i \leftrightarrow \exists t < c_{i+1} \psi^*(t, e_1 \dots, e_n, \vec{y}) \land \neg \exists t < c_i \psi^*$. Obviously ϕ is Σ_1 and is an <u>onto</u> mapping

of $d \to \tilde{a}$ for $d < \tilde{a}$ which is $\to \leftarrow$ by simple Σ_1 induction. Let i be as in the claim, let $a_{3s+2} = c_i b_{3s+2} = c_{i+1}$.

<u>Claim</u>: $N = \{x | x < a_i \text{ for some } i \in w\}$ with $+, \cdot, s, 0$ is a model of \mathbf{T}^* containing a and not containing b.

Proof. $a \in N, b \notin N$. Steps 3s+1 make sure that N is closed for $+, \cdot, T_{\sigma}$ see that $N \models I\Sigma_1$, let $\psi \in \Sigma_1, \psi \equiv \exists z \ \psi^*(z, \vec{x}, y)$, and let $\vec{a} \in N, d \in N$. Then, since our list $\{h_s\}_{s \in W}$ has infinitely many repetitions of each member, if s is s.t. $\vec{a}, d < d$ a_{3s+1} there is a $\hat{s} > s$ s.t. $h_{\hat{s}} \equiv (\psi, \vec{a}, d)$. By our construction, let c_i, c_{i+1} be s.t. $m \vDash \forall t < d \ (\exists z < c_{i+1} \ \psi^*(\vec{a}, z, t) \rightarrow \exists z < c_i \ \psi^*(\vec{a}, z, t)).$ Since $c_i \in N, c_{i+1} \notin N$ we have: for all t < d $n \models \exists z \ \psi^*(\vec{a}, z, t) \Rightarrow m \models \exists z < c_{i+1} \ \psi^*(\vec{a}, z, t)$. If $m \models \exists z < c_{i+1} \psi^*(\vec{a}, z, t) \to m \models \exists z < c_i \psi^*(\vec{a}, z, t) \Rightarrow n \models \exists z \psi^*(\vec{a}, z, t).$ Thus for all $\underline{t < d} \ m \vDash \exists z < c_{i+1} \ \psi^*(\vec{a}, z, t) \leftrightarrow n \vDash \exists z \ \psi^*(\vec{a}, z, t)$.

Now assume $n \models \exists z \ \psi^*(\vec{a}, z, \vec{0}) \land \forall x (\exists z \ \psi^*(\vec{a}, z, t) \rightarrow \exists z \ \psi^*(\vec{a}, z, s(x)))$. We want to show $n \models \forall x (\exists z \ \psi^*(\vec{a}, z, x))$. Let b be arbitrary and let d be such that $a_i, b < d$. Then by the above

$$m \vDash \exists z < c_{i+1} \ \psi^*(\vec{a}, z, \vec{0}) \land \forall x < d(\exists z < c_{i+1} \ \psi^*(\vec{a}, z, x)) \to \exists z < c_{i+1} \ \psi^*(\vec{a}, z, s(x))$$

Namely, if for some t < d-1 $m \vDash \exists z < c_{i+1} \psi^*(a, z, t)$ then $n \vDash \exists z \psi^*(a, z, t) \rightarrow d$ $n \models \exists z \ \psi^*(a, z, s(t)) \rightarrow m \models \exists z < c_{i+1} \ \psi^*(a, z, s(t))$. Now we use induction in m applied on $x < d \rightarrow \exists z < c_{i+1} \psi^*(\vec{a}, z, x).$

Thus at this step we use only Δ_0 induction, but $I\Sigma_1$ was needed to get the division of $\tilde{a} \ll \tilde{b}$.

Thus $m \models \forall x \ (x < d \rightarrow \exists z < c_{i+1} \ \psi^*(\vec{a}, z, x))$ and so $m \models \exists z < c_{i+1} \psi^*(\vec{a}, z, b) \Rightarrow n \models \exists z \psi^*(\vec{a}, z, b).$

Thus we have shown $n \models$ but then $n \models \forall x \exists y \varphi(x, y)$ and so $n \models \exists y \varphi(a, y)$ i.e for some $b \in |n|$ $n \models \varphi(a, b) \Rightarrow m \models \varphi(a, b)$ because Σ_1 -formulas are preserved upwards. But then $\rightarrow \leftarrow$ with $\tilde{b} < b$ and b was chosen least s.t. $m \vDash \varphi(a, b)$. \Box

Corollary. If $I\Sigma_1 \vdash \forall x \exists ! y \varphi(x, y), \varphi \in \Sigma_1$ then there is a primitive recursive functions g s.t. $I\Sigma_1 \vdash \forall x \varphi(x, g(x))$.

Proof. Assume $I\Sigma_1 \vdash \forall x \exists ! y \varphi(x, y)$, let $\varphi(x, y) = \exists z \varphi^*(x, y, z)$. Then φ^* is $w \varphi^*(x, y, z)$). By the previous theorem, for some primitive recursive f, $I\Sigma_1 \vdash \forall x \; \exists w < f(x)(\exists y < w \; \exists z < w \; \varphi^*(x, y, z)) \text{ and so}$ $\mathrm{I}\Sigma_1 \vdash \forall x \; \exists y < f(x) \; \exists z < f(x) \; \varphi^*(x, y, z).$ Define (

$$g(x) = y(\exists z < f(x)\varphi^*(x, y, z))$$

g is obviously primitive recursive and also $I\Sigma_1 \vdash \forall x \varphi(x, g(x))$. Since $\mathbf{T} \vdash$ $\forall x \exists ! y \varphi(x, y) g$ is uniquely determined.

Corollary. Ackermann's function is not provably total in \mathbf{T}_0