Since we have proved that for every primitive recursive function f () there exists
o € I¥; such that
I3 EVZ Ay o(Z,y) (*)

we can extend the language of I¥; with symbols for every primitive recursive
function f(&), thus obtaining a conservative extension of I3, which we denote
by IX;. Since (x) implies that f(x) # y < Jz(z # y A p(&, 2)), it is easy to see
that every Y7 formula on the expanded language is equivalent to a ¥; formula on
the original language of I3¥;; simply push all negations inside to atomic formulas
and replace both f(z) = y and —(f(z) = y) by a X; formula. Thus we also
have induction for I¥; formulas of the expanded language that involves extra
functional symbols for all primitive recursive functions.

We now prove that if I3 = V& Jy o(&F, y) then there exits f € PR such that
N E VZ p(Z, f(Z)); in fact, we show that IXT - V& o(Z, f(Z)). We first present
a model theoretic proof based on the

Lemma 7. If1¥, b VZ 3y o(Z,y) for ¢ € X1, then for some f € PR,
IX] EVZ 3y < () (7, f(2))

Proof. Let F(z,y) be the Ackermann function. Then F(n,m) = k < 3C (“C
is a computation of F(n,m) = k”), as we showed before. Let us denote the
formula

3C(“C is a computation of F(x,y) = 2”)

by F(x,y) =~ z, [because as we will see, I¥; ¥ VaVyIz(F(z,y) = 2), i.e. F(x,y)
is not a total function in I13;.] Thus, F(z,y) is not a functional symbol but
just an abbreviation for 3C“C is a computation of ...”. Since for each fixed n,
F(n,¥) is primitive recursive,

I¥, FVy 32F(n,y) = 2

Also the proof that for every primitive recursive function f there exist n such
that for all
f(z) < F(n,z)

can be formalized in I3 because it uses only basic properties of f and induction
on complexity of f. Similarly the proof that F(z,y) is monotonic in both
arguments can be formalized to show that

I, FVeVy VZEVY(x <K ZANy < GAIZF(Z,§) =2 — Fz F(z,y) = 2)
O

Lemma 8. Let m F 1¥1,a,b € m and assume that for all primitive recursive
function [ with no parameters we have f(a) <™ b. We denote this by a < b.
Then there exists ¢ € m such that th(c) = a and such that (c)o = a (¢)q < b and
Vi < a((c); < (¢)i+1)



Proof. Since a < b, then for all n

mEVYy <n3dz<bF(y,2a) <z

31 formula
Hence F(y,2a) < z means: there exists w s.t. F(y,2a) ~w < z.
Thus, by overspill we have for some nonstandard d,

mEVy <d3z <b(F(y,2a) = 2)
Since F'(z,y) is provably monotonic (in I¥;) we also have
mEVi<aVy<dIz<b(Fly,a+1i)=z)
We let (¢); = F(d,a+ 7). Then

(€)it1 i+ 1)
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a many points b
s.t. ()i < (€)ix1

Proof of the main lemma: we now show that I¥; + Vo Jy ¢(z,y) = IE] F
VZ Jy < f(z) ¢(z, f(x)) for some PR function f.

Let f1... fo(x)... be an enumeration of all PR functions of z, and assume op-
posite: for all n, IX ¥ Vo Ty < fn(x) o(z, fu(x))

Claim: Let ¢ be a new constant. Then the above assumption implies that the
theory T* = 1% + {-3z < fn(c) ¢(c, f(c)); n € N} is consistent.

Proof. HIX; F 3z((z < fu(c) V.-V z < folc)) ANp(e, f(c)) then

¥ -3z < max file) o(c, fe)) ie

X FVedz < max fi(x) p(z, f(z))

because ¢ is a new symbol. But max f;(z) is a PR function —«.
<n

Let m E T*; then m E Va 3y p(z,y); thus m E 3y p(a,y). Let b be s.t. m F
©(a,b). Then a < b. By our lemma, there exists a sequence (c)o = a, (¢), < b.
We now build a submodel n of m s.t. n C. m (i.e n is an initial segment of m,
ie.aen,b<aAbem=ben).
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n will satisfy I3;. Since m is assumed countable, we can enumerate its elements.
O

Our construction will also produce a cut in m i.e. if x € miss.t. foralli x > a;
then = > b; for some j. Thus “sup(as) = inf(bs)”. We will ensure:

(1) N ={z|z < as for some s € w}
(2) (N, +,,0,<)=nFI¥

We make mod s construction picking in stages elements to ensure various parts
of our requirements; let x; be a listing of all elements of m. Let ag = a,bg = b.
n = 3s: Consider x, if z, < azs_1 or © > b3s_1 then let azs = azs_1, b3s =
b3s_1. If not then if azs_1 < x5 put bzs = xs, ags = azs_1 if not, then let
a3s+1 = Ts, b3s = b3s—1.

Claim: If it is not ags_1 < xs, then x4 < bsg, providing ass_1 < bgs_1.

Proof. If azs—1 & x5, then for some primitive recursive f, f(ass—1) > xs.

Similarly if x5 £ bss—1, then g(xs) < bss—1 for some primitive recursive g.

Consider G(z) = m;?u(x) 9(y), then obviously G(z) is primitive recursive and
y<flz

G(ags—1) > bgs—1 —. O

n=3s+1: Let azgsy1 = aj; bzsy1 = bas; obviously azey1 < bzeqr since
F(a2,) > bsy —— with ags < bz, with F(z) = f(22).
n = 3s+ 2 : We assume that during the whole construction we have a listing

of all finite sequences of the form hy = (¢, ¢;,...,e,,d) s.t. 1 is a Xy formula
of L,e;,...,en,d € m, and listing is with infinitely many repetitions. Now, at
stages 3s+2 we look at hs = (¥, ¢;,...,e,,d) and if for all i <n e; < agsy1 and

d < ass41, using our lemma and putting @ = agsy1, b = bzs41 we can divide (a, b)
in @ many parts s.t. a =g K a1 € ... < ag < b, let (&, y) = It Y*(t, Z,y).
Claim: There is an ¢ < a s.t. for any ¥ < d 3t < ¢;41 V*(t,e1...,en,7) — I <
ci Y*(t,e1...,en,¥) ie. for no § < d interval [¢;, ¢;+1) contains the least witness
for 3t Y* (¢, Z,9)[e1, .., en, ]

Proof. Assume opposite, define a mapping ¢ : d — a s.t. ¢(y) =i < It <
Civ1 W (t,e1 ..., en, §) ATt < ¢; *. Obviously ¢ is ¥ and is an onto mapping




of d — a for d < @ which is —« by simple 3; induction.
Let ¢ be as in the claim, let ags1o = ¢; bgsra = Ciy1- O

Claim: N = {z|x < a; for some i € w} with +, -, s,0 is a model of T* containing
a and not containing b.

Proof. a € N,b ¢ N. Steps 3s+1 make sure that IV is closed for +, -, T, see that
N EIXq, let ¢ € 3q,9 = 3z ©*(2,2Z,y), and let @ € N,d € N. Then, since our
list {hs}sew has infinitely many repetitions of each member, if s is s.t. @,d <
ass+1 thereis a § > s s.t. hy = (v, d, d). By our construction, let ¢;, c; 1 be s.t.
mEVt<d(3z < c¢iy1 (A, 2,t) = Iz < ¢; Y*(a, 2,t)). Since ¢; € N,¢;11 € N
we have: for all t < d n F 3z ¢*(d,2,t) = m F Iz < ¢11 (@, 2,t). If
mE Jz < ¢ (@, 2,t) — mE 3z < ¢; ¥*(d, 2, t) = n E Iz Y*(d, z,t). Thus
for all t <d m ¥ Iz < ¢41 ¥*(@, 2,t) & n E Iz Y*(d, 2, 1).

Now assume n E 3z *(@, z,0) A V(32 ¢*(@,2,t) — 3z ¥*(a@,z,5(x))). We
want to show n E Vz(3z ¢*(d, z,2)). Let b be arbitrary and let d be such that
a;,b < d. Then by the above

-,

mE 3z < ¢iy1 ¥¥(@, 2,00A\Ve < d(3z < ¢iy1 ¥™(d, z,2)) — 3z < ¢i41 Y™ (d, 2, s(2))

Namely, if for some t < d—1mFE 3z < ¢;41 ¥*(a, 2,t) then n E Iz ¥*(a, 2,t) —
nF 3z ¢Y*(a,z,s(t)) = mE Iz < ¢i41 ¥*(a,2,5(t)). Now we use induction in
m applied on x < d — 3z < ¢;41 ¥*(@, 2, x).

Thus at this step we use only Ag induction, but I3¥; was needed to get the
division of a < b.

Thus m E Ve (x < d — 3z < ¢;41 ¥*(d, z,z)) and

somFE 3z < ¢i41 Y*(d, 2,b) = n E Iz *(d, z,b).

Thus we have shown n E but then n F Vo 3y ¢(z,y) and so n F Jy ¢(a,y) i.e
for some b € |n| n E ¢(a,b) = m F ¢(a, b) because ¥;-formulas are preserved
upwards. But then —+« with b < b and b was chosen least s.t. m E ¢(a,b). O

Corollary. If IX; F Vz 3y o(x,y), ¢ € X1 then there is a primitive recursive
functions g s.t. 131 F Va ¢(x, g(x)).

Proof. Assume 1X; F Vo ly o(z,y), let p(z,y) = Jzp*(x,y,2). Then ¢* is
Ag. Then I¥ F Vaz Jy Iz ¢*(x,y,2) and so IX; F Vo Jw(Ty < w Iz <
w @*(x,y,2)). By the previous theorem, for some primitive recursive f,
I¥) F Ve Jw < f(2)3Fy < w3z < w ¢*(z,y, 2)) and so
1Y) F Ve Jy < f(z) 32 < f(2) ©*(z,y, 2).
Define

g9(z) =y( 3z < f(z)¢"(z,y,2))

g is obviously primitive recursive and also I¥; + Vzo(z,g(z)). Since T F
Vo lyp(z,y) g is uniquely determined. O

Corollary. Ackermann’s function is not provably total in Ty



