
Since we have proved that for every primitive recursive function f(~x) there exists
ϕ ∈ IΣ1 such that

IΣ1 ` ∀~x ∃!y ϕ(~x, y) (∗)

we can extend the language of IΣ1 with symbols for every primitive recursive
function f(~x), thus obtaining a conservative extension of IΣ1, which we denote
by IΣ∗

1. Since (∗) implies that f(x) 6= y ↔ ∃z(z 6= y ∧ ϕ(~x, z)), it is easy to see
that every Σ1 formula on the expanded language is equivalent to a Σ1 formula on
the original language of IΣ1; simply push all negations inside to atomic formulas
and replace both f(x) = y and ¬(f(x) = y) by a Σ1 formula. Thus we also
have induction for IΣ1 formulas of the expanded language that involves extra
functional symbols for all primitive recursive functions.

We now prove that if IΣ1 ` ∀~x ∃y ϕ(~x, y) then there exits f ∈ PR such that
N � ∀~x ϕ(~x, f(~x)); in fact, we show that IΣ∗

1 ` ∀~x ϕ(~x, f(~x)). We first present
a model theoretic proof based on the

Lemma 7. If IΣ1 ` ∀~x ∃y ϕ(~x, y) for ϕ ∈ Σ1, then for some f ∈ PR,

IΣ∗
1 ` ∀~x ∃y < f(~x) ϕ(~x, f(~x))

Proof. Let F (x, y) be the Ackermann function. Then F (n,m) = k ↔ ∃C (“C

is a computation of F (n,m) = k”), as we showed before. Let us denote the
formula

∃C(“C is a computation of F (x, y) = z”)

by F (x, y) ' z, [because as we will see, IΣ1 0 ∀x∀y∃z(F (x, y) ∼= z), i.e. F (x, y)
is not a total function in IΣ1.] Thus, F (x, y) is not a functional symbol but
just an abbreviation for ∃C“C is a computation of . . . ”. Since for each fixed n,
F (n, ~y) is primitive recursive,

IΣ1 ` ∀y ∃zF (n, y) ∼= z

Also the proof that for every primitive recursive function f there exist n such
that for all x

f(x) < F (n, x)

can be formalized in IΣ1 because it uses only basic properties of f and induction
on complexity of f . Similarly the proof that F (x, y) is monotonic in both
arguments can be formalized to show that

IΣ1 ` ∀x ∀y ∀~x ∀~y(x 6 ~x ∧ y 6 ~y ∧ ∃~z F (~x, ~y) = ~z → ∃z F (x, y) = z)

Lemma 8. Let m � IΣ1, a, b ∈ m and assume that for all primitive recursive
function f with no parameters we have f(a) <m b. We denote this by a � b.
Then there exists c ∈ m such that th(c) = a and such that (c)0 = a (c)a 6 b and
∀i < a((c)i � (c)i+1)
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Proof. Since a� b, then for all n

m � ∀y < n ∃z < b F (y, 2a) . z︸ ︷︷ ︸
Σ1 formula

Hence F (y, 2a) . z means: there exists w s.t. F (y, 2a) ' w < z.
Thus, by overspill we have for some nonstandard d,

m � ∀y 6 d ∃z < b (F (y, 2a) ∼= z)

Since F (x, y) is provably monotonic (in IΣ1) we also have

m � ∀i < a ∀y 6 d ∃z < b (F (y, a+ i) ∼= z)

We let (c)i = F (d, a+ i). Then

(c)i+1 = F (d, a+ i+ 1)
= F (d− 1, F (d, a+ i))
= F (d− 1, (c)i)
> F (n, (c)i)

for all n, and thus ci � ci+1, and (c)a = F (d, a+ a) < b.

r r
0 a b

(c)i(c)i+1 . . .

a many points
s.t. (c)i � (c)i+1

Proof of the main lemma: we now show that IΣ1 ` ∀x ∃y ϕ(x, y) ⇒ IΣ∗
1 `

∀~x ∃y < f(x) ϕ(x, f(x)) for some PR function f .
Let f1 . . . fn(x) . . . be an enumeration of all PR functions of x, and assume op-
posite: for all n, IΣ 0 ∀x ∃y < fn(x) ϕ(x, fn(x))
Claim: Let c be a new constant. Then the above assumption implies that the
theory T∗ = IΣ1 + {¬∃z < fn(c) ϕ(c, f(c)); n ∈ N} is consistent.

Proof. If IΣ1 ` ∃z((z < fn(c) ∨ · · · ∨ z < fn(c)) ∧ ϕ(c, f(c)) then

IΣ1 ` ∃z < max
i<n

fi(c) ϕ(c, f(c)) i.e

IΣ1 ` ∀x∃z < max
i<n

fi(x) ϕ(x, f(x))

because c is a new symbol. But max
i<n

fi(x) is a PR function →←.

Let m � T∗; then m � ∀x ∃y ϕ(x, y); thus m � ∃y ϕ(a, y). Let b be s.t. m �
ϕ(a, b). Then a � b. By our lemma, there exists a sequence (c)0 = a, (c)a < b.
We now build a submodel n of m s.t. n ⊂e m (i.e n is an initial segment of m,
i.e. a ∈ n, b < a ∧ b ∈ m⇒ b ∈ n).
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n will satisfy IΣ1. Since m is assumed countable, we can enumerate its elements.

Our construction will also produce a cut in m i.e. if x ∈ m is s.t. for all i x > ai

then x > bj for some j. Thus “sup(as) = inf(bs)”. We will ensure:

(1) N = {x|x < as for some s ∈ w}
(2) (N,+, ·, 0, <) = n � IΣ1

We make mod s construction picking in stages elements to ensure various parts
of our requirements; let xs be a listing of all elements of m. Let a0 = a, b0 = b.
n = 3s : Consider xs if xs 6 a3s−1 or x > b3s−1 then let a3s = a3s−1, b3s =
b3s−1. If not then if a3s−1 � xs put b3s = xs, a3s = a3s−1 if not, then let
a3s+1 = xs, b3s = b3s−1.
Claim: If it is not a3s−1 � xs, then xs � b3s, providing a3s−1 � b3s−1.

Proof. If a3s−1 6� xs, then for some primitive recursive f , f(a3s−1) > xs.
Similarly if xs 6� b3s−1, then g(xs) < b3s−1 for some primitive recursive g.
Consider G(x) = max

y<f(x)
g(y), then obviously G(x) is primitive recursive and

G(a3s−1) > b3s−1 →←.

n = 3s+ 1 : Let a3s+1 = a2
3s b3s+1 = b3s; obviously a3s+1 � b3s+1 since

f(a2
3s) > b3s →← with a3s � b3s with F (x) = f(x2).

n = 3s+ 2 : We assume that during the whole construction we have a listing
of all finite sequences of the form hs = (ψ, ei, . . . , en, d) s.t. ψ is a Σ1 formula
of L, ei, . . . , en, d ∈ m, and listing is with infinitely many repetitions. Now, at
stages 3s+2 we look at hs = (ψ, ei, . . . , en, d) and if for all i 6 n ei < a3s+1 and
d < a3s+1, using our lemma and putting ã = a3s+1, b̃ = b3s+1 we can divide (ã, b̃)
in ã many parts s.t. ã = α0 � α1 � . . .� αã < b, let ψ(~x, y) ≡ ∃t ψ∗(t, ~x, y).
Claim: There is an i < ã s.t. for any ~y < d ∃t < ci+1 ψ

∗(t, e1 . . . , en, ~y)→ ∃t <
ci ψ

∗(t, e1 . . . , en, ~y) i.e. for no ~y < d interval [ci, ci+1) contains the least witness
for ∃t ψ∗(t, ~x, ~y)[e1, . . . , en, ~y]

Proof. Assume opposite, define a mapping φ : d → ã s.t. φ(~y) = i ↔ ∃t <
ci+1 ψ

∗(t, e1 . . . , en, ~y)∧¬∃t < ci ψ
∗. Obviously φ is Σ1 and is an onto mapping
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of d→ ã for d < ã which is →← by simple Σ1 induction.
Let i be as in the claim, let a3s+2 = ci b3s+2 = ci+1.

Claim: N = {x|x < ai for some i ∈ w} with +, ·, s, 0 is a model of T∗ containing
a and not containing b.

Proof. a ∈ N, b 6∈ N . Steps 3s+1 make sure that N is closed for +, ·, Tσ see that
N � IΣ1, let ψ ∈ Σ1, ψ ≡ ∃z ψ∗(z, ~x, y), and let ~a ∈ N, d ∈ N . Then, since our
list {hs}s∈W has infinitely many repetitions of each member, if s is s.t. ~a, d <
a3s+1 there is a ŝ > s s.t. hŝ ≡ (ψ,~a, d). By our construction, let ci, ci+1 be s.t.
m � ∀t < d (∃z < ci+1 ψ

∗(~a, z, t)→ ∃z < ci ψ
∗(~a, z, t)). Since ci ∈ N, ci+1 6∈ N

we have: for all t < d n � ∃z ψ∗(~a, z, t) ⇒ m � ∃z < ci+1 ψ∗(~a, z, t). If
m � ∃z < ci+1 ψ

∗(~a, z, t) → m � ∃z < ci ψ
∗(~a, z, t) ⇒ n � ∃z ψ∗(~a, z, t). Thus

for all t < d m � ∃z < ci+1 ψ
∗(~a, z, t)↔ n � ∃z ψ∗(~a, z, t).

Now assume n � ∃z ψ∗(~a, z,~0) ∧ ∀x(∃z ψ∗(~a, z, t) → ∃z ψ∗(~a, z, s(x))). We
want to show n � ∀x(∃z ψ∗(~a, z, x)). Let b be arbitrary and let d be such that
ai, b < d. Then by the above

m � ∃z < ci+1 ψ
∗(~a, z,~0)∧∀x < d(∃z < ci+1 ψ

∗(~a, z, x))→ ∃z < ci+1 ψ
∗(~a, z, s(x))

Namely, if for some t < d−1 m � ∃z < ci+1 ψ
∗(a, z, t) then n � ∃z ψ∗(a, z, t)→

n � ∃z ψ∗(a, z, s(t)) → m � ∃z < ci+1 ψ
∗(a, z, s(t)). Now we use induction in

m applied on x < d→ ∃z < ci+1 ψ
∗(~a, z, x).

Thus at this step we use only M0 induction, but IΣ1 was needed to get the
division of ã� b̃.
Thus m � ∀x (x < d→ ∃z < ci+1 ψ

∗(~a, z, x)) and
so m � ∃z < ci+1 ψ

∗(~a, z, b)⇒ n � ∃z ψ∗(~a, z, b).
Thus we have shown n � but then n � ∀x ∃y ϕ(x, y) and so n � ∃y ϕ(a, y) i.e
for some b̃ ∈ |n| n � ϕ(a, b̃) ⇒ m � ϕ(a, b̃) because Σ1-formulas are preserved
upwards. But then →← with b̃ < b and b was chosen least s.t. m � ϕ(a, b).

Corollary. If IΣ1 ` ∀x ∃!y ϕ(x, y), ϕ ∈ Σ1 then there is a primitive recursive
functions g s.t. IΣ1 ` ∀x ϕ(x, g(x)).

Proof. Assume IΣ1 ` ∀x ∃!y ϕ(x, y), let ϕ(x, y) = ∃zϕ∗(x, y, z). Then ϕ∗ is
M0. Then IΣ1 ` ∀x ∃y ∃z ϕ∗(x, y, z) and so IΣ1 ` ∀x ∃w(∃y < w ∃z <
w ϕ∗(x, y, z)). By the previous theorem, for some primitive recursive f ,
IΣ1 ` ∀x ∃w < f(x)(∃y < w ∃z < w ϕ∗(x, y, z)) and so
IΣ1 ` ∀x ∃y < f(x) ∃z < f(x) ϕ∗(x, y, z).
Define

g(x) = y( ∃z < f(x)ϕ∗(x, y, z))

g is obviously primitive recursive and also IΣ1 ` ∀xϕ(x, g(x)). Since T `
∀x ∃!yϕ(x, y) g is uniquely determined.

Corollary. Ackermann’s function is not provably total in T0
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