
Remark. If T ` ∀~x ∃!y φ(~x, y) with φ ∈ Σ1, then we can expand the language
of T with a new functional symbol f(~x) and add the axiom φ(~x, f(~x)).

Since f(x) = y ↔ φ(~x, y) and
f(x) 6= y ↔ ∃z(z 6= y ∧ φ(~x, z))

we see that f(x) = y is equivalent to both a Σ1 formula φ(~x, y) and a Π1 formula
∀z (z 6= y → ¬φ(~x, z)).

This is easily seen to imply that if φ∗ is a Σ1 formula on the language that
includes f , then φ∗ is also equivalent to a Σ1 formula without f .

Definition 5. If φ(x, ~y) is a formula then LNPφ (Least Number Principle) is
the formula ∀~y (∃x φ(x, ~y) → ∃x (φ(x, ~y) ∧ ∀z < x ¬φ(z, ~y)).

That is, the Least Number Principle for φ is a formula that states that: for any
~y for which φ(x, ~y) can be satisfied, there is a least such x satisfying φ(x, ~y).

Theorem 8. IΣ1 ` LNP¬φ for every φ ∈ Σ1.

Proof. Consider the formula Ψ(x, ~y) ≡ ∀z < x φ(z, ~y). Clearly Ψ(0, ~y). Assume
LNP¬φ fails. Then

Ψ(x, ~y) → Ψ(x + 1, ~y)

since otherwise x + 1 would be the least element such that ¬φ(x + 1, ~y) holds.
Thus, by Σ1 induction ∀x Ψ(x, ~y) i.e. ¬∃x ¬φ(x, ~y), which is a contradiction.

Theorem 9. IΣ1 ` LNPφ for all φ ∈ Σ1.

Proof. Assume ∃x φ(x, ~y). Pick an arbitrary x̂ such that φ(x̂, y). Consider

Ψ(x, ~y) ≡ ¬∃(z < x̂
¦− x) φ(z, ~y) where

x
¦− y =

{
z such that y + z = x if y ≤ x

0 if y > x

Then this is a ¬ -Σ1 formula and thus it satisfies the LNP .

Clearly Ψ(x̂, ~y) holds and thus there exists the least element x0 that satisfies
Ψ(x0, ~y); i.e. ¬∃(z < x̂− x0) φ(z, ~y); i.e.

∀(z < x̂− x0) ¬φ(z, ~y) and φ(x̂− x0)

i.e. x̂− x0 is the least number satisfying φ.

1



Gödel’s β function

Theorem 10. There exists a primitive recursive function β(x, i) such that for
some φ ∈ Σ1

IΣ1 ` ∀x, i ∃z φ(x, i, z)
N ² ∀x, i φ(x, i, β(x, i)) and

IΣ1 ` ∀x, y ∃x̂ ∀i < β(x, 0) (β(x̂, i) = β(x, i) ∧
β(x̂, β(x, 0)) = y ∧
β(x̂, 0) = β(x, 0) + 1)

The idea is that x encodes a sequence of elements of length β(x, 0), and given
any y, x can be extended to a code x̂ of a sequence that has one extra element
y.

β(x, 0) = length(x) = `

β(x, i + 1) = (x)i for all 0 ≤ i < `

x = 〈(x)0, . . . , (x)`−1〉
Gödel’s original definition of β was based on the Chinese remainder theorem:
Given an arbitrary sequence a0, . . . , an and a sequence of relatively prime num-
bers b0, . . . , bn there exists a such that a ≡ ai (mod bi) for all i.

However, such a coding function, while primitive recursive, is not suitable for
us because it is not P-time computable.

For that reason we will simply assume the existence of Gödel’s β function, and
later we will define a more efficient, polynomial time computable encoding of
sequences.

Theorem 11 (Main theorem for β function). Let φ ∈ Σ1. Then

IΣ1 ` (∀x < a) ∃!y φ(x, y) → ∃w (`(w) = a ∧ ∀(x < a) φ(x, β(w, x + 1))

Thus, any Σ1-definable sequence, finite from “model’s point of view” (i.e. bounded
in the model) can be encoded using the β function.

Proof. From the previous theorem, using Σ1 induction on a.

Remark. The above theorem works for arbitrary (also non-standard) element
a ∈ M ² IΣ1. For “honest-to-god” finite sequences a much simpler encoding
can be defined by iterating the following pairing function:

Theorem 12. Let p(x, y) = 1
2 (x + y)(x + y + 1) + x. Then IΣ1 ` “p(x, y) is a

bijection between M×M and M”. i.e.

IΣ1 ` ∀z∃x∃y (z = p(x, y)) ∧ ∀x, y, x̄, ȳ

(p(x, y) = p(x̄, ȳ) → x = x̄ ∧ y = ȳ)

Proof. p(x, y) is the “Cantor snake”

2



Our Goal

Theorem 13. All primitive recursive functions are provably total in IΣ1. i.e.,
for every f ∈ PR there exists a Σ1 formula φf such that

IΣ1 ` ∀~x ∃!y φ(~x, y) and N ² ∀~x φ(~x, f(~x))

Proof. The proof proceeds by induction on the complexity of f . Assume that

f(0, ~y) = g(~y)
f(x + 1, ~y) = h(x, ~y, f(x, ~y))

and assume that we have shown

IΣ1 ` ∀~y ∃!z φg(~y, x)
IΣ1 ` ∀~y, x, z ∃w φh(x, ~y, z, w), and
N ² ∀~y φg(~y, g(~y))
N ² ∀~y, x, z φh(x, ~y, z, h(x, ~y, z))

Let Ψ(x, ~y, w) ≡ ∃c (`(c) = x + 1 ∧ φg(~y, (c)0) ∧
∀i < x φh(i + 1, ~y, (c)i, (c)i+1) ∧
(c)x = w)

Then, using the main property of β (i.e., extendibility of sequences) we can
show by induction on x that IΣ1 ` ∀~y ∀x ∃!w Ψ(x, ~y, w) and by induction on N
that N ² ∀y, x Ψ(x, ~y, f(x, ~y)).

We now turn to the more difficult part:

Theorem 14. If IΣ1 ` ∀~x ∃!y φ(~x, y) then N ² ∀~x φ(~x, f(~x)) for a primitive
recursive function f(~x).

We first present a model theoretic proof.
We can extend the language of IΣ1 with symbols for all primitive recursive

functions and denote this theory by IΣ∗1.

Lemma 6. If IΣ1 ` ∀x ∃!y φ(x, y) then IΣ∗1 ` ∀x ∃y < f(x) φ(x, y) for some
primitive recursive function f(x).

Proof. First we note that every recursive function is representable in IΣ1 but
might not be provably convergent. By this we mean that there exists a Σ1

formula φ(~x, y) such that IΣ1 ` φ(~h, f(~h)) whenever and only if f(~h) converges.
(This is called “numeral-wise representable”.) However, even if f(~h) is a total
function (defined for all inputs ~n, still it might happen that

IΣ1 0 ∀~x ∃y! φ(~x, y)

3



To see this, we note that using coding of sequences we can encode a run of a
Turing Machine as f(n) = m ↔ ∃c (“(c)0 is the description of tape of length
±`(c)” and ∀i < `(c) “(c)i+1 has been obtained through a correct transition
from (c)i” and “the content of the tape at (c)`(c)−1 is m”).
Denoting the last formula by

∃c Calc(c, x, y)(↔ “f(x) = y via computation c”)

it is easy to see that if f(n) = m then ∃k such that N ` Calc(k, n, m) where k
codes “the real computation” on input n with final value m.
However, there is no reason why

IΣ1 ` ∀x∃y∃c Calc(c, x, y)

For example we will see that IΣ1 0 “Ackermann function is total”.
However, by encoding either the general TM or a derivation in equational cal-
culus, we can come up with a Σ1-formula CalcA such that:

IΣ1 ` ∀y∃y∃c CalcA(c, 0, y, z) (in fact, z = y + 1)
IΣ1 ` ∀x[∃z∃c CalcA(c, x + 1, 0, z) ↔ ∃z∃c CalcA(c, x, 1, z)]
IΣ1 ` ∀x[∃z∃c CalcA(c, x + 1, y + 1, z) ↔ ∃z1, z2, c1, c2 [CalcA(c1, x + 1, y, z1) ∧ CalcA(c2, x, z1, z2)]∧

∀x, y, z, c, c1, c2, z1, z2 [CalcA(c, x + 1, y + 1, z) ∧ CalcA(c1, x, z1, z2) ∧ CalcA(c2, x + 1, y, z1) → z = z2)

However, we cannot prove in IΣ1, ∀x∀y∃c∃z CalcA(c, x, y, z), even though for
all naturals m,n there exists c, k such that

N ² CalcA(c, n,m, k)

and thus
IΣ1 ` ∃z CalcA(c, n,m, z)

4


