Remark. If T+ VZ Jly ¢(Z, y) with ¢ € Xy, then we can expand the language
of T with a new functional symbol f(Z) and add the axiom ¢(Z, f(Z)).

Since f(z) =y < ¢(Z,y) and
f@) #y = 320z #y N o(7, 2))

we see that f(x) = y is equivalent to both a ¥ formula ¢ (&, y) and a II; formula
Vz (2 #y — ~o(T, 2)).
This is easily seen to imply that if ¢* is a ¥; formula on the language that

includes f, then ¢* is also equivalent to a 3; formula without f.

Definition 5. If ¢(x, ) is a formula then LN Py (Least Number Principle) is
the formula Vy (Fz ¢(x,§) — Tz (@(x,§) AVz < 2 —d(2,7)).

That is, the Least Number Principle for ¢ is a formula that states that: for any
¢ for which ¢(z,¥) can be satisfied, there is a least such x satisfying ¢(z, 7).
Theorem 8. I¥; - LN P-4 for every ¢ € ¥;.

Proof. Consider the formula ¥(z,y) = Vz < x ¢(z, ). Clearly ¥(0, 7). Assume
LNP- fails. Then
V(z,y) — ¥(z+1,7)

since otherwise 2 4+ 1 would be the least element such that —¢(z + 1, %) holds.
Thus, by ¥ induction Vz ¥(x, %) i.e. =3z —=¢(x, ), which is a contradiction. O

Theorem 9. I¥X; = LNP, for all ¢ € 3.

Proof. Assume 3z ¢(x,y). Pick an arbitrary & such that ¢(&,y). Consider
U(z,g) =-3(z< & = x) ¢(z,7) where

. z suchthat y+z=zify <z
xr — =
Y 0 ify>=x

Then this is a —-X; formula and thus it satisfies the LN P.

Clearly ¥(z,¥) holds and thus there exists the least element xo that satisfies
U(xo,y); ie. 73z < & — z0) ¢(2,7); Le.

V(z < & —x0) ¢(2,9) and ¢(Z — xp)

i.e. £ — x¢ is the least number satisfying ¢. O



Godel’s ( function

Theorem 10. There exists a primitive recursive function 8(x,i) such that for
some ¢ € X
1Y) F Ve, 3z ¢(x, i, 2)
NEVz,i ¢(x,1,8(x,i)) and

I¥; b Va,y 32 Vi < B(x,0) (8(z,4) = B(x,i) A
B(&,8(x,0)) =y A
B(2,0) = B(z,0) + 1)

The idea is that « encodes a sequence of elements of length §(z,0), and given
any y, x can be extended to a code & of a sequence that has one extra element

Y.
B(x,0) = length(z) = ¢
Blzi+1)=(z); forall0<i</
=)o, (T)e—1)

Godel’s original definition of 8 was based on the Chinese remainder theorem:
Given an arbitrary sequence ag, . .., a, and a sequence of relatively prime num-
bers by, ..., by, there exists a such that a = a; (mod b;) for all i.

However, such a coding function, while primitive recursive, is not suitable for
us because it is not P-time computable.

For that reason we will simply assume the existence of Goédel’s 8 function, and
later we will define a more efficient, polynomial time computable encoding of
sequences.

Theorem 11 (Main theorem for § function). Let ¢ € 1. Then
I F (Vo < a) Ay ¢(z,y) — Fw (l(w) =aAV(z < a) ¢(z, f(w,z + 1))

Thus, any X;-definable sequence, finite from “model’s point of view” (i.e. bounded
in the model) can be encoded using the § function.

Proof. From the previous theorem, using 3; induction on a. O

Remark. The above theorem works for arbitrary (also non-standard) element
a € M E I¥;. For “honest-to-god” finite sequences a much simpler encoding
can be defined by iterating the following pairing function:

Theorem 12. Let p(z,y) = 2(z+y)(z +y+1) + 2. Then IS = “p(z,y) is a
bijection between M x M and M7. i.e.

¥y = V2323y (2 = p(2,y)) AV2,y,7,9
(p(z,y) =p(@,9) mx =T Ny =7)
Proof. p(z,y) is the “Cantor snake” O



Our Goal

Theorem 13. All primitive recursive functions are provably total in I¥;. i.e.,
for every f € PR there exists a X1 formula ¢¢ such that

IX, FVZ Ay ¢(Z,y) and N EVE ¢(Z, f(Z))
Proof. The proof proceeds by induction on the complexity of f. Assume that

f(0,9) = 9(®)
f(l‘ + Lg) = h(m,gj’,f(x,@'))

and assume that we have shown

I, F V5 31z 6, (7, 7)

¥ F VY, x, 2z 3w ép(x, ¥, 2, w), and
NF VY ¢4(7, 9(¥))

N F v?jv €,z d)h(xa 277 Z, h(fE, g? Z))

Let ¥(z,y,w) = 3c (U(c) =z + 1 A ¢g(7, (c)o) A
Vi <z ¢n(i+ 1,4, (c)i; (€)it1) A
(€)a = w)

Then, using the main property of 3 (i.e., extendibility of sequences) we can
show by induction on z that I3, F vy Vz Jlw ¥(x, 7, w) and by induction on N
that N E Vy, x U(z, v, f(z,7)). O

We now turn to the more difficult part:

Theorem 14. IfI1¥; F VZ Ty ¢(Z,y) then N E VZ ¢(Z, (X)) for a primitive
recursive function f(Z).

We first present a model theoretic proof.
We can extend the language of 13; with symbols for all primitive recursive
functions and denote this theory by IX7.

Lemma 6. IfIX; b Vz 3y ¢(x,y) then IS - Vo Jy < f(z) é(x,y) for some
primitive recursive function f(x).

Proof. First we note that every recursive function is representable in I¥; but
might not be provably convergent. By this we mean that there exists a X
formula ¢(Z, y) such that IX; F ¢(h, f(h)) whenever and only if f(h) converges.
(This is called “numeral-wise representable”.) However, even if f(h) is a total
function (defined for all inputs 7, still it might happen that

I¥, ¥ V2 Jy! ¢(Z,y)



To see this, we note that using coding of sequences we can encode a run of a
Turing Machine as f(n) = m < e (“(¢)o is the description of tape of length
+4(c)” and Vi < £(c) “(¢)i+1 has been obtained through a correct transition
from (c);” and “the content of the tape at (c)g()—1 is m”).

Denoting the last formula by

Je Cale(e, z,y)(« “f(x) =y via computation ¢”)

it is easy to see that if f(n) = m then 3k such that N+ Calc(k,n,m) where k
codes “the real computation” on input n with final value m.
However, there is no reason why

¥, F Va3y3e Cale(e, x,y)

For example we will see that I¥X; ¥ “Ackermann function is total”.
However, by encoding either the general TM or a derivation in equational cal-
culus, we can come up with a ¥{-formula Calc4 such that:

I3, F Vy3y3e Calea(c,0,y, 2) (in fact, z =y + 1)

I3 F Vz[323¢ Caleg(e,xz + 1,0, 2) « Fz3¢ Calea(, z,1,Z))

I¥) FVa[3z3c Calea(e,x + 1,y + 1, 2) « 321, 29, ¢1, ¢ [Calea(er, x + 1,y,21) A Calea(ca, x, 21, 22)|A
Yz, y,z, ¢, c1,C2, 21,22 [Calea(c,x + 1,y + 1,2) A Calca(cr, z, z1,22) A Calea(ca,x + 1,y,21) — 2 = 22)

However, we cannot prove in 1%, VaVy3e3z Calca(c, x,y, 2), even though for
all naturals m, n there exists ¢, k such that

NE Calca(c,n,m, k)

and thus
¥ F 3z Calea(e,n,m, 2)



