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1. Introduction

We consider the problem of finding a minimum spanning tree in a connected

graph with real-valued edge weights. This problem has a long and rich history;

the first fully realized algorithm was devised by Boriivka in the 1920’s [Borfwka

1926]. An informative survey paper by Graham and Hell [1985] describes the

history of the problem up to 1985. In the last two decades, faster and faster

algorithms were found, the fastest being an algorithm of Gabow et al. [1984]

(see also Gabow et al. [19861), with a running time of O(zn log (?(m, n)) on a

graph of n vertices and m edges. Here, /3(nz, n) = min{illog(’)n s nz/n}.

This and earlier algorithms used as a computational model the sequential

unit-cost random-access machine with the restriction that the only operations

allowed on the edge weights are binary comparisons. Fredman and Willard

[1992] considered a more powerful model that allows bit manipulation of the

binary representations of the edge weights. In this model, they were able to

devise a linear-time algorithm, Still, the question of whether a linear-time

algorithm exists for the restricted random-access model remained open.

A problem related to finding minimum spanning trees is that of verifying

that a given spanning tree is minimum. Tarjan [1979] gave a verification

algorithm running in 0( m a(rn, n)) time, where a is a functional inverse of

Ackerman’s function. Later, Kom16s [1985] showed that a minimum spanning

tree can be verified in O(nz) binary comparisons of edge weights, but with

nonlinear overhead to decide which comparisons to make. Dixon et al. [1992]

combined these algorithms with a table lookup technique to obtain an 0(m)-

time verification algorithm. King [1993] recently obtained a simpler O(rn )-time

verification algorithm that combines ideas of Bor&ka, Kom16s, Dixon, Rauch,

and Tarjan.

In this paper, we describe a randomized algorithm for finding a minimum

spanning tree. It runs in O(m) time with high probability in the restricted

random-access model. The algorithm is a modification of one proposed by

Karger [1992; 1993b], who obtained a time bound of O(n log n + m). The

O(m) time bound is due to Klein and Tarjan [1994]. The present paper is

a revision of [1994] that includes a tightened high-probability complexity analy-

sis. Section 2 presents the random-sampling result that is the key to the
O(m) bound. Section 3 presents our algorithm, and Section 4 contains its

analysis. Section 5 includes some final remarks. This section ends with some

preliminaries.

1.1. PRELIMINARIES. Our algorithm actually solves the slightly more general

problem of finding a minimum spanning forest in a possibly disconnected

graph. Wc assume that the input graph has no iaolatcd vcrticcs (wmticcs

without incident edges).

If edge weights are not distinct, we can make them distinct by numbering the

edges and breaking weight-ties according to the numbers. We therefore assume

for simplicity that all edge weights are distinct. This assumption ensures that

the minimum spanning tree is unique. The following properties are also well

known and correspond respectively to the red rule and the blue rule in Tarjan

[1983].

Cycle Property. For any cycle C in a graph, the heaviest edge in C does not

appear in the minimum spanning forest.
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Cut Prope@. For any proper nonempty subset X of the vertices, the lightest

edge with exactly one endpoint in X belongs to the minimum spanning

forest.

Unlike most algorithms for finding a minimum spanning forest, our algo-

rithm makes use of each property in a fundamental way.

2. A Sampling Lemma

Our algorithm relies on a random-sampling step to discard edges that cannot

be in the minimum spanning tree. The effectiveness of this step is shown by a

lemma that we present below. We need a little terminology. Let G be a graph

with weighted edges. We denote by W(X, y) the weight of edge {x, y}. If F is a

forest in G, we denote by F(x3 y) the path (if any) connecting x and y in F,

and by w~(x, y) the maximum weight of an edge on F(x, y), with the conven-

tion that WJX, y) = ~ if x and y are not connected in F. We say an edge

{x, y} is F-heauy if W(X, y) > w~(x, y), and F-light otherwise. Note that the
edges of F are all F-light. For any forest F, no F-heavy edge can be in the

minimum spanning forest of G. This is a consequence of the cycle property.

Given a forest F in G, the F-heavy edges of G can be computed in time linear

in the number of edges of G, using an adaptation of the verification algorithm

of Dixon et al. [1992] (page 1188 in that paper describes the changes needed in

the algorithm), or of that of King [1993].

LEMMA 2.1. Let H be a subgraph obtained ji-om G by including each edge

independently with probability p, and let F be the minimum spanning forest of H.

The expected number of F-light edges in G is at most n/p where n is the number of

vertices of G.

PROOF. We describe a way to construct the sample graph H and its

minimum spanning tree F simultaneously. The computation is a variant of

Kruskal’s minimum spanning tree algorithm [Kruskal 1956]. Begin with H and

F empty. Process the edges in increasing order by weight. To process an edge

e, first test whether both endpoints of e are in the same connected component

of F. If so, e is F-heavy, because every edge currently in F is lighter than e.

Next, flip a coin that has probability p of coming up heads. Include the edge e

in H if and only if the coin comes up heads. Finally, if e is in H and is F-light,

add e to the forest F.

The forest F produced by this computation is the forest that would be

produced by Kruskal’s algorithm applied to the edges in H, and is therefore

exactly the minimum spanning forest of H. An edge e that is F-heavy when it

is processed remains F-heavy until the end of the computation, since F never

loses edges. Similarly, an edge e that is F-light when processed remains

F-light, since only edges heavier than e are added to F after e is processed.

Our goal is to show that the number of F-light edges is probably small.

When processing an edge e, we know whether e is F-heavy before flipping a

coin for e. Suppose for purposes of exposition we flip a penny for e if e is

F-heavy and a nickel if it is not. The penny-flips are irrelevant to our analysis;

the corresponding edges are F-heavy regardless of whether or not they are
included in H. We therefore consider only the nickel-flips and the correspond-

ing edges. For each such edge, if the nickel comes up heads, the edge is placed

in F. The size of F is at most n – 1. Thus, at most, n – 1 nickel-tosses have

come up heads by the end of the computation.
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Now imagine that we continue flipping nickels until n heads have occurred,

and let Y be the total number of nickels flipped. Then, Y is an upper bound on

the number of F-light edges. The distribution of Y is exactly the negative

binomial distribution with parameters n and p [Feller 1968]. The expectation

of a random variable that has a negative binomial distribution is n/p [Feller

1968]. It follows that the expected number of F-light edges is at most n\p. ❑

Remark 2.2. The above proof actually shows that the number of F-light

edges is stochastically dominated by a variable with a negative binomial

distribution.

Remark 2.3. Lemma 2.1 directly generalizes to matroids. See Karger [1993 b].

3. The Algorithm

The minimum spanning forest algorithm intermeshes steps of Borilvka’s algo-

rithm, called Bon~l’ka steps, with random-sampling steps. Each Boriivka step

reduces the number of vertices by at least a factor of two; each random-sam-

pling step discards enough edges to reduce the density (ratio of edges to

vertices) to fixed constant with high probability.

The algorithm is recursive. It generates two subproblems, but, with high

probability, the total size of these subproblems is at most a constant fraction

less than one of the size of the original problem. This fact is the basis for the

probabilistic linear bound on the running time of the algorithm.

We begin by describing a Bori3vka step.

Borzlvka Step. For each vertex, select the minimum-weight edge incident to

the vertex. Contract all the selected edges, replacing by a single vertex each

connected component defined by the selected edges and deleting all resulting

isolated vertices, loops (edges both of whose endpoints are the same), and all

but the lowest-weight edge among each set of multiple edges.

A Bor&ka step reduces the number of vertices by at least a factor of two.

Now we describe the minimum spanning forest algorithm. If the graph is

empty, return an empty forest. Otherwise, proceed as follows:

Step (l). Apply two successive Borfivka steps to the graph, thereby reducing

the number of vertices by at least a factor of four.

Step (2). In the contracted graph, choose a subgraph H by selecting each

edge independently with probability 1/2. Apply the algorithm recursively to H,

producing a minimum spanning forest F of H. Find all the F-heavy edges

(both those in H and those not in H) and delete them from the contracted
graph.

Step (3). Apply the algorithm recursively to the remaining graph to com-

pute a spanning forest F‘. Return those edges contracted in Step (1) together

with the edges of F‘.

We prove the correctness of the algorithm by induction. By the cut property,

every edge contracted during Step (1) is in the minimum spanning forest.

Hence, the remaining edges of the minimum spanning forest of the original

graph form a minimum spanning forest of the contracted graph. It remains to

show that the recursive call in Step (3) finds the minimum spanning forest of

the contracted graph.
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By the cycle property, the edges deleted in Step (2) do not belong to the

minimum spanning forest. By the inductive hypothesis, the minimum spanning

forest of the remaining graph is correctly determined in the recursive call of

Step (3).

Remark 3.1. Our algorithm can be viewed as an instance of the generalized

greedy algorithm presented in Tarjan [1983] from which its correctness follows

immediately.

4. Analysis of the Algorithm

We begin our analysis by making some observations about the worst-case

behavior of the algorithm. Then we show that the expected running time of the

algorithm is linear, by applying Lemma 2.1 and the linearity of expectations.

Finally, we show that the algorithm runs in linear time with all but exponen-

tially small probability, by developing a global version of the analysis in the

proof of Lemma 2.1 and using a Chernoff bound [Alon and Spencer 1992;

Chernoff 1952; Raghavan 1990].

Consider a single invocation of the algorithm. The total time spent in Steps

(l)-(3), excluding the time spent on recursive subproblems, is linear in the
number of edges: Step (1) is just two steps of Bori3vka’s algorithm, which takes

linear time using straightforward graph-algorithmic techniques, and Step (2)

takes linear time using the modified Dixon-Rauch-Tarjan verification algo-

rithm, as noted in Section 2. The total running time is thus bounded by a

constant factor times the total number of edges in the original problem and in

all recursive subproblems. Thus, our objective is to estimate this total number

of edges.

Suppose the algorithm is initially applied to a graph with n vertices and m

edges. Since the graph contains no isolated vertices, m > n/2. Each invocation

of the algorithm generates at most two recursive subproblems. Consider the

entire binary tree of recursive subproblems. The root is the initial problem. For

a particular problem, we call the first recursive subproblem, occurring in Step

(2), the left child of the parent problem, and the second recursive subproblem,
occurring in Step (3), the right child. At depth d, the tree of subproblems has at

most 2~ nodes, each a problem on a graph of at most F1/4d vertices. Thus, the

depth of the tree is at most log~ n, and there are at most Z~.O 2dn/4d =

Z:= ~ n/2~ = 2n vertices total in the original problem and all subproblems.

THEOREM 4.1. The worst-case running time of the minimum-spanning-forest

algorithm is 0(min{n2, m log n}), the same as the bound for Boribka’s algon’thm.

PROOF. We estimate the worst-case total number of edges in two different

ways. First, since there are no multiple edges in any subproblem, a subproblem

at depth d contaim at most (n /4d)2/2 edges. Summing over all subproblems

gives an 0(n2) bound on the total number of edges. Second, consider the left

and right children of some parent problem. Suppose the parent problem is on a

graph of u vertices. Every edge in the parent problem ends up in exactly one of

the children (the left if it is selected in Step (2), the right if it is not), with the

exception of the edges in the minimum spanning forest F of the sample graph

H, which end up in both subproblems, and the edges that are removed in Step

(1), which end up in no subproblem. If u‘ is the number of vertices in the graph
after Step (1), then F contains u‘ – 1 s v/4 edges. Since at least v/2 edges
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are removed in Step (l), the total number of edges in the left and right

subproblems is at most the number of edges in the parent problem.

It follows that the total number of edges in all subproblems at any single

recursive depth d is at most m. Since the number of different depths is O(log

n), the total number of edges in all recursive subproblems is O(rn log n). ❑

THEOREM 4.2. The expected running time of the minimum spanning forest

algorithm is O(m).

PROOF. Our analysis relies on a partition of the recursion tree into left

paths. Each such path consists of either the root or a right child and all nodes

reachable from this node through a path of left children. Consider a parent

problem on a graph of X edges, and let Y be the number of edges in its left

child. Since each edge in the parent problem is either removed in Step (1) or

has a chance of 1/2 of being selected in Step (2), J!3[Y I X = )c] s k/2. It

follows by linearity of expectation that E[Y] s E[X]/2. That is, the expected

number of edges in a left subproblem is at most half the expected number of

edges in its parent. It follows that, if the expected number of edges in a

problem is k, then the sum of the expected numbers of edges in every

subproblem along the left path descending from the problem is at most

Z;.O k/2’ = 2k.
Thus, the expected total number of edges is bounded by twice the sum of m

and the expected total number of edges in all right subproblems. By Lemma

2.1, the expected number of edges in a right subproblem is at most twice the

number of vertices in the subproblem. Since the total number of vertices in all

right subproblems is at most X;. ~2~ -‘ n/4~ = n/2, the expected number of

edges in the original problem and all subproblems is at most 2m + n. ❑

THEOREM 4.3. The minimum spanning forest algorithm runs in O(nz) time

with probability 1 – exp( – Q(m)).

PROOF. We obtain the high-probability result by applying a global version

of the analysis in the proof of Lemma 2.1. We first bound the total number of

edges in all right subproblems. These are exactly the edges that are found to be

F-1ight in Step (2) of the parent problems. Referring back to the proof of

Lemma 2.1, let us consider the nickel-tosses corresponding to these edges.

Each nickel that comes up heads corresponds to an edge in a spanning forest

in a right subproblem. The total number of edges in all such spanning forests in

all right subproblems is at most the number of vertices in all such subproblems,

which in turn is at most n/2 as shown in the proof of Theorem 4.2. Thus, n/2

is an upper bound on the total number of heads in nickel-flips. The probability

that there are more than 3m F-light edges is at most the probability that fewer
than iZ /2 heads occur in a sequence of 3m nickel-tosses. By a Chernoff bound

[Alon and Spencer 1992; Chernoff 1952; Raghavan 19901, this probability is
exp( – Q(m)) since m > n/2.

We now consider the edges in left subproblems. The edges in a left

subproblem are obtained from the parent problem by sampling; that is, a coin

is tossed for each edge in the parent problem not deleted in Step (l), and the

edge is copied to the subproblem if the coin comes up heads and is not copied

if the coin comes up tails. To put it another way, an edge in the root or in a

right subproblem gives rise to a sequence of copies in left subproblems, each

copy resulting from a coin-flip coming up heads. The sequence ends if a
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coin-flip comes up tails. The number of occurrences of tails is at most the

number of sequences, which in turn is at most the number m‘ of edges in the

root problem and in all right subproblems. The total number of edges in all

these sequences is equal to the total number of heads, which in turn is at most

the total number of coin-tosses. Hence, the probability that this number of

edges exceeds 3m’ is the probability that at most m‘ tails occur in a sequence

of more than 3m’ coin-tosses. Since m‘ > m, this probability is exp( – Q(m)) by

a Chernoff bound.

Combining this with the previous high-probability bound of O(m) on m‘, we

find that the total number of edges in the original problem and in all

subproblems is O(m) with probability 1 – exp( – Q(m)). ❑

5. Remarks

In work with [Cole et al. 1994], Klein and Tarjan have adapted the randomized

algorithm to run in parallel. The parallel algorithm does linear expected work

and runs in O(log n 210~‘n) expected time on a CRCW PRAM [Karp and

Ramachandran 1990]. This is the first parallel algorithm for minimum spanning

trees that does linear work. In contrast, Karger [1992] gives an algorithm

running on an EREW PRAM that requires O(log n) time and m/log n + nl +‘

processors for any constant ~ >0. Also, Cole and Vishkin [1986] give an

algorithm running on a CRCW PRAM that requires O(log n) time on

O((n + m)log log n\log n) processors.

Among remaining open problems, we note especially the following three:

(1) 1s there a deterministic linear-time minimum spanning tree algorithm in the
restricted random-access model?

(2) Can randomization or some other technique be used to simplify the
linear-time verification algorithm?

(3) Can randomization be used fruitfully to solve other network optimization
problems, such as the shortest-path problem? Randomization has already

proved valuable in solving the maximum-flow [Cheriyan et al. 1990] and

minimum-cut [Karger 1993a] problems.
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