Analysis of Randomised Algorithms
Math needed for the analysis of randomised algorithms:
Sample space… Ω = {ω1,…,ωn}
Probability… 0 ≤ P(ωi) ≤ 1
Event… E ⊆ Ω
- Basic probability theory
- P(E) = Σω∈E P(ω)
- P(Ω) = 1
- P(not E) = P(Ω\E) = 1 – P(E)
- P(E1 and E2) = P(E1∩E2) = P(E1) · P(E2) if E1,E2 independent
- Expectation
- event E has probability p ⇒ average number of trials needed to see E is 1/p
- Combinatorics
- number of ways to choose k objects from n objects…
`((n),(k))= (n·(n-1)·…·(n-k+1)) / (1·2·…·k)`
|