[prev] 18 [next]

Analysis of Randomised Algorithms

Math needed for the analysis of randomised algorithms:

Sample space…    Ω = {ω1,…,ωn}
Probability…    0 ≤ Pi) ≤ 1
Event…    E ⊆ Ω

  • Basic probability theory
    • P(E) = Σω∈E P(ω)
    • P(Ω) = 1
    • P(not E) = P(Ω\E) = 1 – P(E)
    • P(E1 and E2) = P(E1E2) = P(E1) · P(E2)   if E1,E2 independent
  • Expectation
    • event E has probability p ⇒ average number of trials needed to see E is 1/p

  • Combinatorics
    • number of ways to choose k objects from n objects…
      `((n),(k))= (n·(n-1)·…·(n-k+1)) / (1·2·…·k)`