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Bird densities are associated with household densities
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Abstract

Increasing housing density is an important component of global land transformation,
with major impacts on patterns of biodiversity. However, while there have been many
studies of the changes in biodiversity across rural-urban gradients, which are influenced
in large part by housing densities, how biodiversity changes across the full range of
regional variation in housing density remains poorly understood. Here, we explore these
relationships for the richness and abundance of breeding birds across Britain. Total
richness, and that of 27 urban indicator species, increased from low to moderate house-
hold densities and then declined at greater household densities. The richness of all
species increased initially faster with household density than did that of the urban
indicator species, but nonurban indicator species richness declined consistently after
peaking at a very low housing density. Avian abundance showed a rather different
pattern. Total abundance and that summed across all urban indicator species increased
over a wide range of household densities, and declined only at the highest household
densities. The abundance of individual urban indicator species generally exhibited a
hump-shaped relationship with housing density. While there was marked intraspecific
variation in the form of such relationships, almost invariably avian abundance declined
at housing densities below that at which the UK government requires new developments
to be built. Our data highlight the difficulties of maintaining biodiversity while
minimising land take for new development. High-density housing developments are
associated with declines in many of those species otherwise best able to exploit urban
environments, and those components of native biodiversity with which human popula-
tions are often most familiar.
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Introduction

The global human population passed 6.5 billion in 2005,
and is expected to reach 7.7-10.6 billion by 2050 (United
Nations, 2004). The resulting demand for housing exerts
enormous pressures on landscapes, and brings about
major changes in ecosystems. It contributes substan-
tially to the 4.7 million km* (ca. 4%) of global land area
(UNDP et al., 2000) that are covered by urban areas
(characterized by high human population densities or
significant commercial or industrial infrastructure), and
to the fact that urban areas (particularly suburban) are
growing proportionally faster than any other forms of
land cover, that the largest cities are becoming yet
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larger, and that the number of large cities is growing
(Meyer & Turner, 1992; McKinney, 2002). It has been
predicted that by 2007 more than half of the global
human population will live in urban areas (United
Nations, 2004). However, in many developed nations
that proportion is already much higher (Pickett et al.,
2001; Antrop, 2004). For example, since the late 1940s
there has been substantial growth in the urbanization of
the United Kingdom, with ca. 7% of the land presently
comprising built-up areas (from a full count of cover
based on a 25m grid; Fuller et al., 2002), and ca. 90% of
the human population being suburban/urban (ODPM,
2001), with a large proportion distributed among Lon-
don, the major conurbations (e.g. Birmingham, Man-
chester), and the larger cities (DETR, 2000).

This said, the impacts of housing are much more
widespread than those derived simply from levels of

1685



1686 J. TRATALOS et al.

urbanization, with housing developments shaping pat-
terns of land cover over much of the nonurban land-
scape, potentially even when housing occurs at rather
low densities. Moreover, in many developed regions,
human population growth is no longer the sole primary
driver of housing demand. The human population in
England alone, already high by European standards, is
projected to grow by a further 7% on the 49 million of
1998 to 52.4 million in 2021 (DETR, 2000). However,
social changes mean that more people are living alone
and for longer, such that around 3.8 million additional
houses may be required before 2021 (DETR, 2000).
There has been much debate and discussion of the need
for ‘compact cities” and densification of housing to limit
the resultant footprint (e.g. Breheny, 1997; Burgess,
2000; Schoon, 2001; Jim, 2004). Indeed, in order to
protect greenfield sites, the government target for Eng-
land is that 60% of new houses must be built on
brownfield sites or in place of existing buildings (DETR,
2000), and housing planning guidelines, therefore, re-
commend an increase in the current density of new
housing from 2000-2500 to 3000-5000 houses km >
(ODPM, 2002). In 2004, 72% of new dwellings were
built on previously developed land, at an average
density of 4000 dwellings km 2 (ODPM, 2006).

The broad scale implications for biodiversity of spa-
tial variation in housing density have been surprisingly
little explored. Large numbers of empirical studies have
examined changes in the size and composition of spe-
cies assemblages along rural-urban gradients (e.g. Blair,
1996; Blair & Launer, 1997; Germaine & Wakeling, 2001;
Marzluff, 2001; Niemeld et al., 2002; Green & Baker,
2003; Crooks et al., 2004; Riley et al., 2005; Zanette et al.,
2005). While much has been learnt from these, they
have typically comprised comparisons among rural,
suburban and heavily urbanized study plots around
and within individual towns and cities. However, in the
absence of an understanding of the full shape of rela-
tionships between, for example, species richness or
abundance and housing density, across a sufficient
range of variation in housing density, limited inferences
can be made about the consequences for biodiversity of
continued densification.

In this paper, we examine the relationship between
bird species richness and abundance and household
density across a full continuous range of the latter and
across the whole of Britain.

Materials and methods

Avian data

Analyses were based on BTO/RSPB/JNCC Breeding
Bird Survey (BBS) data for 2000. Full field methods of

the BBS are given in Raven ef al. (2005). Squares of
1km x 1km were selected across Britain (the United
Kingdom excluding Northern Ireland), according to a
stratified random design, stratification being based on
the availability of observers. Two bird-recording visits
were made by volunteers to each square, the first
between early April and mid-May and the second
between mid-May and late June. Birds were recorded
within 200 m sections along two 1 km transects in one of
three distance bands (0-25, 25-100, 100m or more),
estimated at right angles to the transect line. Counts
began at 06:00-07:00 hours where possible. Flying birds
not actively using resources in a square were excluded
from counts, and observers were asked not to include
juvenile birds in their counts (the BBS aims to monitor
the number of breeding individuals). All other birds
were assigned to the distance band in which they were
first located. To reduce further the probability of includ-
ing immature birds we only used data from the first
visit for the earlier breeding residents, and to maximize
the probability that all migrants that would arrive at a
site were included we only used data from late visits for
such species. We, thus, only included squares for which
two visits were made. Habitat within each 200 m trans-
ect section was recorded according to a four-level
hierarchical coding system describing the main habitat
type, together with data on finer level habitat features
(Crick, 1992).

Detectability must be taken into account when con-
verting count data into densities, otherwise the latter
will be underestimated. This was achieved using dis-
tance sampling software (PROGRAM DISTANCE, version 4.1
Release 2; Buckland et al., 2001; Thomas et al., 2004) to
model the decline in detectability with distance from
the transect line. Birds recorded in the final distance
band (100 m or more) were excluded from the analyses,
because counts within an unbounded category are
difficult to interpret. Because the vast majority of spe-
cies tend not to form flocks during the breeding season,
we assume here that counts were a collection of indivi-
dual birds rather than attempt to model the detectabil-
ity of flocks.

Habitat types differ in vegetation structure and are,
thus, likely to influence detectability in different ways.
Region may also influence detectability (e.g. the struc-
ture of a single main habitat type, such as broadleaved
woodland, may exhibit geographical variation). We
took into account heterogeneity in detectability arising
from variation in habitat type and region by incorpor-
ating the effect of multiple covariates into the estima-
tion procedure using a conditional likelihood approach
(Marques & Buckland, 2003). We fitted half-normal and
hazard-rate key functions, as other key functions avail-
able in DISTANCE either do not allow the inclusion of
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covariates (uniform key) or have an implausible shape
(exponential key). We identified nine main habitat types
(broadleaved woodland, coniferous woodland, mixed
woodland, scrub, semi-natural grassland, heath and
bog, farmland, human sites and water bodies) based
on Crick (1992), and 11 regions (nine English Govern-
ment Office Regions, Wales, and Scotland) and adopted
the following stepwise approach. For each species we
estimated f(0) (i.e. the value of the probability density
function of perpendicular distances at zero distance)
without including habitat or region covariates to both
half-normal and hazard-rate models. We then added a
single covariate habitat or region and established
whether the model fit was improved, defined as a
reduction in the Akaike Information Criterion (AIC),
and identified the best-fitting model. We then fitted a
model with both habitat and region as covariates and
used AIC to see whether the relative fit of the model
improved. If there was no improvement in model fit (i.e.
no decrease in the AIC value was observed), the best-
fitting model with a single covariate was regarded as
that which best explained heterogeneity in detectability.
Once this best-fitting model had been chosen for a
species, it was applied to the encounters from surveyed
squares to produce an estimate of the number of in-
dividuals of that species within each square.

We calculated the following, assemblage level, re-
sponse variables (i) species richness, (ii) total bird
density, and (iii) an abundance index (akin to those
used in many biodiversity indicators). Abundance in-
dices were calculated for each species by dividing the
density in each square by the total density of that
species summed across all squares. Abundance indices
for assemblages were then calculated by summing the
indices across each species in the assemblage and
dividing by the number of species in the assemblage;
this value was then rescaled by multiplying by 100.

The UK government has five urban biodiversity in-
dicators, one of which is based on ‘UK populations of
birds in towns and gardens’ (indicator T3: DEFRA,
2002; indicator T1: DEFRA, 2003), ‘to ensure that urban
areas contribute fully to the goals of biodiversity con-
servation and enhance the quality of life of people who
live there by maintaining town and garden bird popu-
lations” (DEFRA, 2002). The indicator is based on 27
species that occur in urban/suburban areas to a greater
degree than would be expected based on their national
population estimates, with four of these species being
identified as urban specialists as at least 15% of their
national population occurs in urban areas (Table 1).
Given the major contribution of housing densities to
urbanization, at least in Britain, we explicitly analysed
the relationship between housing density and the den-
sity of each of these species for two reasons. First, these
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Table 1 The 27 urban indicator species with a greater pro-
portion of their national population occurring in urban areas
than expected by chance (Defra, 2002, 2003)

Blackbird Turdus merula
Blackcap Sylvia atricapilla

Blue tit Parus caeruleus

Carrion crow Corvus corone
Chaffinch Fringilla coelebs
Collared dove Streptopelia decaocto*
Dunnock Prunella modularis
Goldfinch Carduelis carduelis
Great tit Parus major

Green woodpecker Picus viridis
Greenfinch Carduelis chloris
House martin Delichon urbicum*
House sparrow Passer domesticus™
Jackdaw Corvus monedula

Jay Garrulus glandarius
Long-tailed tit Aegithalos caudatus
Magpie Pica pica

Mallard Anas platyrhynchos
Mistle thrush Turdus viscivorus
Pied wagtail Motacilla alba

Robin Erithacus rubecula

Song thrush Turdus philomelos
Sparrowhawk Accipiter nisus
Starling Sturnus vulgaris

Swift Apus apus*

Woodpigeon Columba palumbus
Wren Troglodytes troglodytes

*Species with more than 15% of their national population
occurring in urban areas are considered urban specialists.

are species which are known to be able to thrive in areas
with at least some housing, and are therefore, more
likely to show effects of specific housing densities on
their abundance, rather than merely effects due to
changes from nonresidential to residential habitat types.
Second, these species are the ones most likely to be
encountered by the majority of the human population,
and therefore, have the largest effects on their quality of
life.

Household data

Household density in each BBS square was obtained
from the 2001 UK census (Boyle & Dorling, 2004). The
country is divided into output areas, each of which
contains approximately 100 households. For each cen-
sus output area sharing at least part of its location with
one of the BBS squares, the number of households for
the output area was obtained, and its value multiplied
by the proportion of the output area lying within the
BBS square. The values obtained by this process were
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Fig. 1 Examples of two different types of areas with high
housing densities. (a) A suburban residential development com-
prising mainly semi-detached and detached houses set within a
1km square containing an estimated 1082 households and (b)
comprises mainly terraced housing set within a 1km square
containing an estimated 3781 households. Progressively lighter
shading indicates buildings, impervious surface, gardens and
vegetated surface, respectively. Each map covers an area of
500m x 500 m. Mapping from Ordnance Survey MasterMap data
(Ordnance Survey © Crown Copyright. All rights reserved).

summed for each grid square, to obtain an estimate of
the density of households in each square (Fig. 1).

Analyses

Regression models of the relationships between house-
hold density and the structure of avian assemblages
and the densities of individual species were constructed
in sas version 9.1 (SAS Institute Inc., 2001). For the

models of the assemblage variables, all six of which
were approximately normally distributed after appro-
priate transformations, the PROC MIXED procedure was
used. Total avian density estimates were square-root
transformed and the mean species abundance index
was log, transformed after adding 0.01 to allow trans-
formation of zero values. There was no need to trans-
form the species richness variables. For the individual
species models we used the PROC GLIMMIX version 1.0
add-in to construct Poisson regression models due to
the high proportion of zero and low values. In order to
reduce the skew in the distribution of household den-
sity the latter was also log. transformed after adding 1.
Square terms of household density were included in
order to detect simple nonlinear relationships.

We first constructed independent error models. How-
ever, spatial autocorrelation may invalidate the assump-
tion of independent errors, distorting classical tests of
association and rendering correlation coefficients, re-
gression slopes and associated significance tests mis-
leading (Cressie, 1991; Lennon, 2000; Legendre et al.,
2002). To avoid this, analyses were also conducted that
implemented spatial correlation models that fit a spatial
covariance matrix to the data and use this to adjust test
statistics accordingly (Littell et al., 1996). The choice of
the exponential, over other spatial covariance struc-
tures, was based on inspection of semi-variograms of
independent error model residuals. Spatial models
fitted the maximum geographic distance or range para-
meter (p) over which spatial autocorrelation in equiva-
lent independent errors model residuals was observed
to occur. This involved estimating p from the semi-
variograms that included the relevant combination of
predictors. In all cases, forward stepwise model-build-
ing procedures were used to determine minimum ade-
quate models. Estimates of variance explained (i.e. r*
values), cannot be derived from either of the spatial
model types, or from independent error Poisson mod-
els, but are provided for independent error normal
models. To show the relationships graphically, the
household density data were log. transformed after
adding 1, and split into 10 equal interval groups. The
cut-off point for the final group was lowered so as to
ensure there were at least 20 observations in the group,
thus facilitating the comparison of standard error bars.

Results

Assemblage patterns

The species richness of all recorded bird species, and of
the 27 urban indicator species, increased from low to
moderate household densities and then declined at
greater household densities (Fig. 2a and Table 2). The
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richness of all species increased initially faster with
household density than did that of the urban indicator
species, but nonurban indicator species richness de-
clined consistently after peaking at a very low housing
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density (Fig. 2a). These patterns in species richness were
evident in both spatial and nonspatial models (Table 2).
Avian abundance showed a rather different pattern,
increasing for all species and for urban indicator species
over a wide range of household densities, and appar-
ently declining only at the highest household densities
(Fig. 2b). Feral pigeon Columba livia was not included
in the DEFRA list of urban indicator species, and its
elevated abundance in highly urbanized areas (Fig. 3) is
solely responsible for an apparent rise in abundance of
nonurban indicator species at the highest household
densities (Fig. 2b). Nonspatial models had a statistically
significant negative squared loghousehold density
term, indicating that the increase in avian abundance
was at least slowing with increasing household density
if not actually declining at the highest household den-
sities (Table 2), although sample sizes at these high
densities were too small formally to distinguish the
two possibilities. Spatial models had no significant
squared log household density term (Table 2). The re-
lationships between abundance and household density
were similar for all bird species and for just the urban
indicator species, although any decline in abundance at
high household densities may be more pronounced for
the latter (Fig. 2b).

By contrast, the relationship between the abundance
index and housing density differed substantially be-
tween all species and urban indicator species (Fig. 2c).
Using a nonspatial model, the abundance index for all
species declined with household density, although ex-
planatory power was extremely low, while using a
spatial model there was no significant relationship
(Table 2). For urban indicator species, there was a
hump-shaped relationship, with a pronounced decline
in the abundance index at the highest household den-
sities (Fig. 2c), supported by both nonspatial and spatial
models (Table 2).

Intraspecific patterns

The relationships between household density and the
abundances of each of the 27 urban indicator species
were highly variable (Fig. 3). However, with two excep-

4
N

Fig. 2 Relationships between housing density in 2132
1km x 1km squares across Britain and (a) mean number of
species, (b) mean number of individuals, and (c) abundance
index. Housing density (households per square kilometre) has
been binned into equal interval classes based on loge-trans-
formed data (see ‘Materials and methods’). Open circles are for
all species, black circles for the 27 urban indicator species, and
grey circles for the remaining species. Error bars are +1 SE.
Broken line indicates the average abundance index for all species
across all squares.
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Fig. 3 Relationships between number of individuals (km™?) and housing density for each of the 27 urban indicator species, and feral
pigeon (final plot). Housing density (km™2) has been binned into equal interval classes based on log-transformed data (see ‘Materials

and methods’). Error bars are +1 SE.
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tions, using nonspatial models all species had signifi-
cant positive parameter values for log household den-
sity, and significant negative parameter values for the
square term (Table 3), and in most cases these were
indicative of hump-shaped relationships (Fig. 3). Spatial
models generally supported this conclusion, although
for five species both household density terms were
nonsignificant, and for another five the log household
density term was positive and significant but the
squared term was not significant (Table 3).

These urban indicator species exhibited marked var-
iation in the housing densities at which they reached
their maximum abundance. Broadly speaking there
were three types of avian-housing density relation-
ships: (i) avian density peaks at low housing densities
(chaffinch), (ii) avian density peaks at high, although
typically not the highest, housing densities (carrion
crow, collared dove, greenfinch, house sparrow, mal-
lard, swift and feral pigeon), and (iii) avian density
peaks at intermediate housing densities (all other spe-
cies). House martin densities peaked at much lower
housing densities than the other three urban specialist
species. Moreover, it is noticeable that the only species
whose densities peaked at the highest housing densi-
ties, carrion crow and feral pigeon, are not considered
to be urban specialists. In the case of the former species
this is because its urban population is <15% of its
national population size, while feral pigeon is not
considered by DEFRA (2003).

Discussion

Avian species richness and abundance respond mark-
edly to spatial variation in household densities, pre-
sumably both through the direct impacts of the latter on
the availability of land for other uses and through the
associated changes in habitat and other resource avail-
abilities.

The positive relationship between species richness
and household density over much of the range of
variation in the latter (Fig. 2a) is consistent with pre-
vious demonstrations of a broadly positive relationship
between bird species richness and human population
density in Britain (Evans & Gaston, 2005; Evans et al.,
2007) and elsewhere (Balmford et al., 2001; Aratjo, 2003;
for a review see Gaston, 2005). This pattern in part
arises from species richness and human density re-
sponding in similar ways to environmental gradients,
reflected in the high richness and high density in south-
ern Britain (Evans & Gaston, 2005). In part it might also
arise from an increase in habitat diversity over much of
the range of variation in human densities across the
region (Fig. 4); bird species richness and habitat diver-
sity are generally positively correlated across Britain

© 2007 The Authors
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Habitat diveristy

log,, human population density (km™2)

Fig. 4 Relationship between log (1 + human population den-
sity) and habitat diversity, in 10km x 10km squares across
Britain. The latter is expressed as a Shannon-Wiener information
index and is based on broad habitat types (inland water, coastal,
moor/heathland /bog, woodland, built environments, grassland
and tilled land) sampled using remote sensing (Fuller et al.,
1994). Human population density data are from the 1991 popu-
lation census (Martin & Tate, 1997). Quadratic regression out-
performed higher order polynomial regression in describing the
relationship between the variables, and the result of this model
is shown as a best-fit line.

(Lennon et al., 2000). The decline in the richness both of
all bird species and of urban indicator species sets in at
much lower household densities than current planning
guidelines recommend (3000-5000 houses km~2), and
the decline does not abate (Fig. 2a), suggesting that as
housing is built at progressively higher densities the
richness of birds will become progressively poorer.

The summed abundance of the urban indicator bird
species, and of almost all of the individual species
increase over a wide span of household densities (Figs
2b and 3), generally substantiating their choice as urban
indicators. Using nonspatial models, the only species
not showing a significant positive relationship between
abundance and loghousehold density is the sparrow-
hawk (Table 3), the abundance estimates of which are
highly variable across all household densities, and for
which individual estimates doubtless have large asso-
ciated variances (because of the large home ranges of
adults). Using spatial models, the other species that do
not show a significant positive loghousehold density
term are carrion crow, house martin (an urban specialist
species, see ‘Materials and methods’), long-tailed tit,
pied wagtail and woodpigeon (Table 3). It is not ob-
vious that any particular trait unites these.

The majority of the urban indicator species also had
significant negative squared loghousehold density
terms, both for nonspatial and spatial models (Table
3). In some cases this could be indicative of a slowing
rate of increase in abundance with increasing house-
hold density (suggested by a turning point in the
relationship that lies beyond the highest observed

Journal compilation © 2007 Blackwell Publishing Ltd, Global Change Biology, 13, 1685-1695
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household density; Table 3). However, in most it is
plainly indicative of a hump-shaped relationship, with
abundance declining towards higher densities of house-
holds (Fig. 3). This decline sets in at different household
densities for different species, as shown by the turning
points of the relationships (Table 3), and the housing
density category in which the highest value of the
response variable was recorded (Fig. 3). However, re-
gardless of which measure is used, the decline typically
also sets in at much lower household densities than
current planning guidelines recommend, and does not
abate.

Determining the precise relationship between bird
abundance and the recommendations of housing plan-
ning guidelines is complicated by the scale dependency
of measures of household density. Readily available
measures of housing density, and those used here, are
of gross density (in ecological terms, ‘crude density’),
the numbers of households in a 1km x 1km grid cell.
However, plainly this can hide much heterogeneity.
Current housing developments are typically (though
not invariably) much smaller in extent, and planning
guidelines focus on the density within their bounds
(excluding major roads, schools, large open spaces and
landscape buffer strips; in ecological terms, ‘effective
density’). This means that the household density as
documented here that is of concern with regard to
present planning guidelines is likely to be lower than
that specified in the guidelines. Nonetheless, net den-
sities are not measured consistently in published na-
tional and local government statistics, with the
guidelines being interpreted in different ways, and
given the heterogeneity in urban form, it is not possible
to apply a simple correction factor to gross densities to
obtain net densities (ODPM, 2004). However, the abun-
dances of many of the urban indicator species plainly
start to decline at household densities that are much
lower than any realistic difference between crude and
effective housing densities.

In sum, the relationships between the abundances of
bird species and household density suggest a substan-
tial conflict between maintaining biodiversity and mini-
mising land area conversion for new development. In
the United Kingdom at least, our results suggest that
building new developments at intermediate housing
densities over a larger area of land will result in higher
overall avian abundance than building housing at the
very high densities suggested by current guidelines.
This is especially true when it comes to the densities of
the urban indicator species, a stated formal indicator of
urban development. These species appear to thrive in
areas occupied by housing, but show lower abundance
both in relatively undeveloped areas and areas of very
high housing density.

Our study indicates the need to understand more
precisely the drivers of the relationships between avian
abundance and housing density shown in this study.
These could relate to how the management and the
extent of green space affects habitat, the degree to which
specific types of housing provide suitable nest sites, the
effects of housing density and housing type on the
tendency of the human population to provide food
and habitat for birds, the effects of human disturbance,
and the disturbance and mortality caused by domestic
cats.
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