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Abstract

It is valuable to identify and catalog design patterns
for reconfigurable computing. These design patterns are
canonical solutions to common and recurring design chal-
lenges which arise in reconfigurable systems and applica-
tions. The catalog can form the basis for creating designs,
for educating new designers, for understanding the needs of
tools and languages, and for discussing reconfigurable de-
sign. Tying application and implementation lessons to the
expansion and refinement of this catalog will make those
lessons more relevant to the design community. In this pa-
per, we articulate this role for design patterns in reconfig-
urable computing, provide a few example patterns, offer a
starting point for the contents of the catalog, and discuss
the potential benefits of this effort.

1 Introduction

As we have seen repeatedly in this conference, reconfig-
urable solutions can often be orders of magnitude faster or
less expensive than conventional alternatives. Many design-
ers in this community have become quite skilled at harness-
ing FPGA-based systems to solve hard computational prob-
lems. Good reconfigurable solutions are often quite differ-
ent from the good sequential solutions familiar to most pro-
grammers. Building good reconfigurable designs requires
an appreciation of the different costs and opportunities in-
herent in reconfigurable architectures. This leads us to a
recurring question: How do we teach programmers and de-
signers to design good reconfigurable applications and sys-
tems?

Certainly, we can show them what an FPGA is: what
resources it has, how they are organized, what they cost in
area, delay, and energy. We can point them to proceedings
from 11 years of FCCM; there they will see over 200 papers
explaining particular applications and systems—numerous
examples of how people have done it before. From the basic
components and the complete solutions, the best students
will begin to generalize how to put together an application.

Is this the most efficient way to communicate the infor-

mation? Is this approach the fastest path to achieving design
competence or expertise? Does it reliably communicate the
major lessons to all individuals?

Borrowing a popular meme from the object-oriented soft-
ware [1] engineering community (who borrowed it from the
architecture community [2]), we suggest that it is useful
to identify and study design patterns. That is, it is useful
to crystallize out common challenges which reconfigurable
designs may encounter and the typical solutions which are
used to address them. These solutions are design elements
that suggest how we might organize parts of our overall so-
lution. Rather than just studying the properties of FPGAs,
this identifies techniques for dealing with the challenges
they pose; rather than just studying whole applications, this
focuses on the key elements of the solution which may be
reusable in other settings. Studying and discussing design
patterns gives us a way to talk directly about the design
process and design elements, helping the whole community
more readily share and assimilate design lessons.

In this paper, we advocate the study of design patterns.
We identify a number of design patterns which have been
used in this community and in the broader hardware and
software design communities which may be relevant to re-
configurable systems. We provide an initial classification of
these patterns into broad classes based on the problems they
address. We make no claims of originality for the patterns
presented here—we didn’t invent them. Rather, we attempt
to call them out and classify them so they are more readily
apparent for the reconfigurable designer. We think of the
list and classification presented here as a starting point—
no doubt there are many patterns we have not seen or been
able to crystallize into nameable entities. Even for the 89
patterns we have identified, there is no way we can treat
them all in appropriate detail in this paper. Rather, we focus
on introducing the ideas and providing references into the
existing literature as a placeholder until there is time and
space to treat them in the appropriate depth.

In the next section (Section 2), we further define de-
sign patterns and point to their progenitors. In Section 3
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we include two design pattern descriptions to illustrate ex-
amples of reconfigurable design patterns. In Section 4, we
introduce our classification of design patterns. We offer a
few recommendations and lessons which come from an un-
derstanding of design patterns (Section 5), and close with
thoughts about the next steps toward the development of a
set of useful reconfigurable computing design patterns.

2 Background

2.1 What is a Design Pattern?

Simply put, a design pattern is a solution to a recurring
problem. e.g. [problem] designs are often too big to fit
onto the hardware available, so we [solution] time multi-
plex the large design onto the limited, available hardware.
TIME MULTIPLEXING is a design pattern we use to address
the problem of limited, fixed capacity for a particular recon-
figurable platform.

Design patterns are elements of a design at an organiza-
tional level. That is, we certainly use leaf-cells and libraries
as the building blocks for a design (e.g. adders, multipli-
ers, multiplexers, CORDIC rotators, FIRs, FFTs), but this
does not tell us how they should be put together, organized,
and used, or even how they should be parameterized and
selected for a design. Design patterns offer us organizing
and structuring principles that help us understand how to
put them together. Once we decide to use the TIME MULTI-
PLEXING pattern, then we can think about which leaf-cells
should be instantiated and reused or which leaf-cells should
be reconfigured in each time-cycle to realize the large graph.

2.2 Object-Oriented Software Engineering

The term “Design Patterns” has been popularized in re-
cent years by the work of Gamma, Helm, Johnson, and Vlis-
sides [1] [3] and others. They articulate the idea that writing
in an object-oriented (OO) language is not sufficient, by it-
self, to produce good, reusable software. Rather, using the
popular languages of the day (e.g. C++, Java, Smalltalk),
there are many challenging requirements that arise during
program design and modification, and it is not immediately
obvious to the beginner how to achieve good modularity and
reusability. Over time, experienced designers have learned
common idioms and tricks that they use to address these
challenges. Good designers tend to employ a few common
patterns to address the recurring challenges. It is useful to
identify these patterns and share them with others. By giv-
ing names to the solutions people have been re-inventing
regularly, design patterns make it possible to talk at a higher
level about object-oriented designs. Warned about the com-
mon hazards of OO design and armed with these higher
level building blocks for avoiding them, the OO software
engineer is in a better position to write more flexible and
reusable code.

The design patterns which Gamma et. al. articulate [3]
are somewhat narrowly focused for organizing OO software
for flexibility and reuse. In particular, there are many use-
ful idioms and patterns in the broader context of software
design which they do not identify. We will be taking a
broader view of design patterns here, attempting to identify
patterns which solve more problems than simply code reuse
and adaptability for change. In this sense, our design pat-
terns are broadly in the theme of Christopher Alexander’s
work [2], which the OO design pattern community often
cites as part of their inspiration.

2.3 Paradigms of Programming

Before the modern OO movement and before modern
FPGAs, Robert Floyd articulated the value of identifying
the paradigms of programming and listed “a pattern, ex-
emplar, example” as the first definition for paradigm [4].
Floyd pointed out the value of identifying and studying
the different paradigms (patterns) that allowed us to solve
computing problems. Floyd, too, takes a broader view of
patterns including, for example, STRUCTURED PROGRAM-
MING, DIVIDE-AND-CONQUER, and GENERATE-FILTER-
ACCUMULATE in his list of programming paradigms. He
advocates that the study of paradigms should be part of
our systematic education of new programmers and that lan-
guage design should strive to support the paradigms which
are useful for programmers.

2.4 Pattern Description

One of the contributions of Gamma et. al. is to suggest
a standardized format and set of contents for the description
of a design pattern [3]. This stylization helps call attention
to the key things one will typically need to know in order to
understand and use a pattern. Their form includes:
• Name – a standard name for the pattern; by convention,

we typeset pattern names in SMALL CAPS to distinguish
them.

• Intent – What problem is this addressing? What is the
pattern trying to do?

• Motivation – Why would you want to use this pattern?
• Applicability – When can this pattern be used? One dis-

tinction of patterns is that there are often different pat-
terns for different, specialized contexts. What special
property of the problem would make this pattern applica-
ble or even preferred? What properties might make this
pattern inappropriate?

• Participants – What are the component players in the
pattern?

• Collaborations – How do the participants collaborate to
solve the problem?

• Consequences – What are the trade-offs associated with
using this pattern?

• Implementation – How would you implement this?
What general lessons are there for implementing this pat-
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tern? What pitfalls should be avoided? Are there hints
for optimization?

• Known Uses – What are common examples of where this
pattern has been used in a real system?

• Related Patterns – Which patterns are related to this
one? How do they work together? When might we
choose one pattern over the other?

3 Example Patterns

To be concrete about what design patterns are, we
present design pattern descriptions for two common pat-
terns. Again, we are not claiming to have invented any of
these patterns. We are simply illustrating how these are de-
scribed in a canonical manner so that they are readily avail-
able for a would be reconfigurable designer or as a reference
for the experienced designer.

3.1 Coarse-Grained Time Multiplexing

3.1.1 Intent COARSE-GRAINED TIME-MULTIPLEXING

allows a large design to be run on a smaller or fixed capacity
platform, perhaps at the expense of design throughput or
latency.

3.1.2 Motivation The capacity in any reconfigurable
platform is fixed. When that fixed capacity is smaller than
what would be required to implement a design fully spa-
tially, then it is necessary to reuse the resources in time
in order to realize the full design. Even when the fully
spatial implementation of a design fits onto a platform, it
may run too fast for an application, particular if the appli-
cation has real-time interfacing requirements or limitations.
Here, time multiplexing may allow the platform to imple-
ment more applications and features simultaneously or al-
low implementations with greater quality or precision.

3.1.3 Applicability The COARSE-GRAINED TIME-
MULTIPLEXING pattern is intended for cases where the
platform is not prepared to change configurations in just
a few cycles. Rather, this pattern is intended for cases
where it may take many thousands or millions of cycles to
reconfigure the device.

Since reconfiguration is slow, this pattern is limited to
cases where:
1. there are no feedback loops in the computational flow

graph (ACYCLIC DATAFLOW GRAPH pattern),
2. the feedback loops can be contained within the capacity

of the device, OR
3. the feedback loops are very slow, such that an upstream

element need not be effected by downstream elements for
thousands or millions of cycles

3.1.4 Participants We have a computational graph
which we wish to implement on a limited capacity platform.
The computational graph is divided into a number of sub-
graphs, each of which is capacity feasible for the platform.

Figure 1: Time Multiplexing Pattern

During execution, a control algorithm coordinates the re-
configuration of the platform to implement the various sub-
graphs in time.

3.1.5 Collaborations The controller manages recon-
figuration (SEQUENCER/CONTROLLER pattern), directing
when the subgraphs are swapped onto the platform.

3.1.6 Consequences The slow reconfiguration of the
platform is the most distinctive feature that must be ad-
dressed. Since this can take millions of cycles, one is usu-
ally forced to design applications so they can run for tens
of millions of cycles in order to amortize out the fixed over-
head associated with reconfiguration. Long run lengths in
turn require that we employ large buffers to hold intermedi-
ate results between the computational subgraphs which are
not running concurrently.

The fixed-size platform creates a bin into which we must
pack the subgraphs. This can result in a certain amount of
design fragmentation that prevents us from perfectly using
device resources.

3.1.7 Known Uses Villasenor, Jones, and Schoner
demonstrated that a video processing algorithm can be bro-
ken into suitable subgraphs and run on a small platform
which is reconfigured several times during the computation
of the entire video processing pipeline [5]. Villasenor et.
al. also demonstrated a specialized target recognition sys-
tem based on time multiplexing [6]. Eldredge and Hutch-
ings demonstrate a neural network implementation which
is broken into distinct phases and time multiplexed onto an
FPGA platform [7]. Caspi et. al. [8] described a compute
model based on COARSE-GRAINED TIME-MULTIPLEXING

and several other patterns in order to automate design scal-
ing.

3.1.8 Implementation The design must be broken into
subgraphs which will fit onto the available platform. This
has been done manually (e.g. [5], [7]). With the appropriate
compute models, this can be automated [9].
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Once the subgraphs exist, they must be sequenced onto
the platform. Typically a conventional processor is used to
issue commands to the platform to control reconfiguration
(e.g. SEQUENCER/CONTROLLER pattern). In the simplest
case, each subgraph is run for a fixed length of time be-
fore being swapped. However, for dynamic tasks, it is often
useful to monitor buffers and dynamically identify events
which motivate reconfiguration [9].

As noted above, reconfiguration time is a key issue.
Steps which can reduce reconfiguration time are often very
important. Parallel, on-chip memories for reconfiguration
[8] [10] can reduce reconfiguration times to thousands of
cycles. Partial reconfiguration can be used to reduce config-
uration time [11]. Configuration stream compression may
also help reduce reconfiguration time (e.g. [12]).

3.1.9 See Also Since configurations should be long
running, COARSE-GRAINED TIME MULTIPLEXING often
works with STREAMING DATA. QUEUES WITH BACK-
PRESSURE are naturally employed between portions of the
graph which are not co-resident on the platform, and they
are often useful between co-resident portions to smooth out
dynamic flow rate or delay effects. PARALLEL-PREFIX RE-
DUCTIONS are natural for quickly determing when recon-
figuration is appropriate [9].

3.2 Template Specialization

3.2.1 Intent Specialization patterns reduce space and/or
time for a computation, minimizing the instantaneous com-
puting requirements for the task. The TEMPLATE pattern
is distinguished from other specialization patterns in that it
minimizes the run-time work required to generate the spe-
cialized instance.

3.2.2 Motivation When you have early-bound data, that
data can often be folded into the implementation in order to
generate a more specific computation which requires less
computation (fewer resources, shorter critical paths) than
the generic problem. If the early-bound data remains con-
stant for a sufficiently long time, we can implement the spe-
cialized computation instead of the generic computation and
save area and/or time. This may allow us to place more
computations into a fixed-capacity reconfigurable system
or to fit the specialized problem when the generic problem
does not fit onto the resources available.

For the TEMPLATE pattern specifically, we want to min-
imize the work required to set up the reconfigurable system
for the specific instance. The more general specialization
patterns may require that we invoke the full CAD flow (e.g.
synthesis, placement, routing) in order to obtain the special-
ized mapping. Such invocations can be very time consum-
ing, diminishing the performance benefits of specialization
and forcing the techniques to only be viable when the early-
bound data is known to remain constant for very long pe-
riods of time. The TEMPLATE pattern, in contrast, is much

(Shown with 2-LUTs for simplicity)

Figure 2: Template Pattern

lighter weight, making it viable for more modest epochs of
bound data.

3.2.3 Applicability The TEMPLATE pattern is applica-
ble when the specialization can be cast so that we only need
to change the values of data in tables to adapt to the specific
early-bound data; usually this means we simply program
the LUTs which serve as programmable gates in the recon-
figurable array. The interconnect between the LUTs must
be able to remain the same across all instances.

3.2.4 Participants The basic design and connectivity is
the template cell. A template filler will need to fill in the
template (i.e. program the LUTs) with the values appropri-
ate for each specialized instance.

3.2.5 Collaborations The CONSTRUCTOR pattern is a
natural place for the template filler. That is, in a reconfig-
urable system with dynamic instance instantiation, an in-
stance is created like an object in an object-oriented system
(e.g. with a new) [8]. The constructor will take as argu-
ments the specification of the behavior of this instance. Part
of the constructor’s function is to convert the specification
into suitable LUT programming and apply that to the instan-
tiated template cell.

Template specialization may also be used with slowly
changing data. Here, the EXCEPTION pattern might be used
to invoke an exception handler that would contain the tem-
plate filler.

3.2.6 Consequences The optimization available is usu-
ally more limited than when a full specialization is per-
formed. The template always has the same size. In many
cases this size is larger than every specific instance. The
inability to vary the interconnect is one reason the template
may always be bigger than any particular instance.

The fact that the template is always the same size is good
in that the specific instance specialized does not affect the
capacity of the reconfigurable platform. It is bad in that the
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area and time could be smaller and faster for all instances
and, perhaps, much smaller in favorable instances.

3.2.7 Known Uses Multiply-by-Constant: Specialized
multipliers are a widely-known example of the TEMPLATE

pattern [13]. We can use n + 4 4-LUTs to multiply a 4-bit
value by an n-bit constant simply using table lookup. We
can multiply an m-bit value by an n-bit constant by per-
forming m

4 such constant multiplies and adding up the re-
sulting partial products. In contrast, it would take 4 4-LUTs
to simply multiply together two non-constant 2-bit values.

The constant coefficient multiplier template requires
(n + 4) × m

4 4-LUTs for the table lookups, followed by
an adder tree on m

4 inputs. The adder tree needs
(

m
4 − 1

)
adds, each of which could be implemented with less than
n + 4 augmented LUTs with carry logic. Consequently,
the table lookups and the adder tree each require roughly
n·m
4 4-LUTs for a total of n·m

2 4-LUTs. In contrast, for
a generic m × n multiplier the adder tree after generating
partial products will require m, n-bit adders, for a total of
m·n 4-LUTs. Partial product generation will add additional
cells. This gives at least factor of two reduction in area and
a factor of two reduction in time versus using a generalized
multiplication routine.

To “reconfigure” the template cell for the a new constant,
we simply need to fill in the values in the lookup tables (See
Fig. 2). In FPGAs where the LUTs can be used as read/write
memories (e.g. Xilinx 4000 [14] or Virtex [15] series), this
can be configured at the user level and there is no need to
have access to the device bitstream for reconfiguration and
no need to reload the device configuration bits which are not
part of the template and remain unchanged.

Note that we trade area for flexibility with this pat-
tern. Multiplications by many specific constants can be per-
formed in even less area than this; for example, multipli-
cation by 0x48 requires a single addition. Even the worst-
case constant can be implemented with a specific adder-tree
which is smaller than the template multiplication.

String and Sequence Matching: For string and sequence
matching problems, we can program a 4-LUT to match a
specific 4-bit input. When one value is a constant we com-
pare 4-bits per 4-LUT and need an n

4 -bit product tree. In
contrast, if we had to compare two variable n-bit sequences,
we would only be able to compare 2-bits of both sequences
with each 4-LUT, then we would need an n

2 -bit product tree.
Further, with the constant programmed into the 4-LUTs,
no registers are needed to hold the match value. This can
easily be exploited in string matching, when the maximum
string length is fixed. Genetic sequence matching is essen-
tially the same problem [16]. This can be extended to per-
form broader (e.g. wild-card, match one character of a set)
matches as well.

Content Addressable Memories: In a similar manner, a
sequence of 4-LUTs can implement the match signal for a

content-addressable memory. By filling in the 4-LUT con-
tents, we define the content match (e.g. [17]).

3.2.8 Implementation As noted for the multiply, if the
LUTs have a mode that allows the values to be both read and
written, one can simply build the write path into the FPGA
design allowing direct write into the memory.

For devices with direct write into configuration memory
(e.g. XC6000 [18]), a processor or controller can use the
configuration port directly to efficiently rewrite the tables.

If the full bitstream must be reloaded, including inter-
connect (even if it is a portion of the bitstream as in the
Virtex/Virtex-II series [19]), and the location of the LUT
programming in the bitstreams is known, then one can edit
the bitstream, overwriting only the LUT locations partici-
pating in the template and leaving the interconnect intact.

3.2.9 See Also As noted above, the CONSTRUCTOR or
EXCEPTION patterns may be useful for containing the tem-
plate filler.

The TEMPLATE pattern has a more restricted structure
than the PARTIAL EVALUATION or CUSTOM INSTANCE

GENERATION patterns. The TEMPLATE pattern requires
minimum computation and handling to accommodate a new
specialized instance, whereas the other patterns may re-
quire heavier CAD optimization. The TEMPLATE pattern is
of fixed size, while other specialization optimizations may
produce smaller designs at the expense of needing to per-
form run-time logic packing.

4 Design Pattern Classification Sketch

In this section we present a first pass at a catalog of im-
portant patterns and group them into broad classes based on
the problems they address. This list is, no doubt, incom-
plete and we invite input on important patterns and classes
which should further fill out the catalog of important recon-
figurable computing patterns. In lieu of providing a pat-
tern writeup for each pattern listed here, we reference sam-
ple papers where the pattern appears prominently. Patterns
which require at least load-time configuration are marked

with an icon of a loading CD
( )

, and patterns which

require run-time reconfiguration are marked with a running

man icon
( )

.

• Patterns for Area-Time Tradeoffs — one of the biggest
problems we have to address with reconfigurable ma-
chines is fitting the logical design to the hardware; fur-
ther, for designs to scale efficiently to larger reconfig-
urable platforms over time (e.g. larger FPGAs), we
need to be able to change the area-time tradeoff with-
out completely re-implementing the application. Con-
sequently, patterns that helps us trade off area and time
are essential to reusable reconfigurable designs.
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1. Sequential vs. Parallel Implementation (hard-
ware/software partitioning) [20]

2. Fine-Grained Time Multiplexing [21] [22] [23]
3. Coarse-Grained Time Multiplexing (Sec-

tion 3.1)
4. Common Element Sharing for Regular Graphs

(e.g. Cellular Automata) [24]
5. Common Operator Sharing for General Graphs

(e.g. boolean net, neural net, VLIW) [25]
6. Synthesis Objective Function Tradeoffs [26]
7. Scheduled Operator Sharing [27]
8. Datapath Serialization [28] [29] [30]

• Patterns for Expressing Parallelism — performance in
reconfigurable systems often comes from parallelism.
Consequently, patterns that allow us to parallelize the
computation are important. Parallelism patterns could
be considered a focused subset of the area-time trade-
off patterns.

9. Extract Implicit Parallelism from Control Flow
[20]

10. Dataflow [31]
11. Synchronous Dataflow [32]
12. Functional
13. Acyclic Dataflow Graph
14. Data Parallel [33] [34] [35]
15. Multithreaded [36] [37] [8]
16. Futures [38]

• Patterns for Implementing Parallelism — once we
have captured or discovered the parallelism, we em-
ploy various patterns to implement it.

17. If-Conversion and Predicated Execution [20]
18. SIMD [39]
19. Vector [40] [41]
20. Parallel Prefix, Reductions, Scans [33] [42] [35]
21. Communicating FSMDs [27]
22. Datapath Duplication
23. Direct Implementation of Graph [43] [44] [45]

• Patterns for Processor-FPGA Integration — often we
find it useful to use FPGAs and processors together.
This too, may be a subset of area-time tradeoffs as we
put the performance critical portion on the FPGA and
implement the rest of the problem on the processor.
Over the years we have seen several patterns for how
we might integrate and coordinate the processors and
the FPGAs.

24. Interfacing/IO [46] [47]
25. Co-processor [48]
26. Streaming Co-processor [48] [40]
27. Instruction Augmentation [49] [50] [51]
28. Sequencer/Controller [52] [8]

• Patterns for Common-Case Optimization — the gen-
eral case required to handle every conceivable possi-
bility is usually large and potentially slow. However,
what happens most of the time is often simpler and can
be done quickly with little hardware. A particularly
useful set of hardware-software tradeoffs is to imple-
ment the common-case spatially in minimal hardware
and have an escape mechanism to handle the less com-
mon cases which are needed for completeness. Of-
ten the uncommon cases are handled by a processor
in software (see processor-FPGA Integration patterns
above); sometimes they are simply handled by slower
logic. We are familiar with many of these from conven-
tional processor architecture (e.g. [36]), but the ideas
are much more general and may be even more impor-
tant in building efficient reconfigurable systems. Most
of these optimizations are not suitable for real-time ap-
plications. These patterns are all most useful in a run-
time reconfiguration setting, but there are uses of these
patterns even when the FPGA never reconfigures.

29. Caching and Memoization (data, results, instruc-
tions, instances) [50] [20] [53]

30. Common/Simple Hardware with Escape (e.g.
Translation Lookaside Buffer (TLB), Top-of-stack
Cache, Overflowing Queue [8])

31. Exceptions
32. Trace Scheduling/Exceptional Exit [20]
33. Prediction (branch, value)
34. Speculative Execution [20]
35. Parallel Verifier [54]

• Patterns for (Re)Using Hardware Efficiently — hard-
ware is efficient when it can be reused very rapidly;
that is, we want to run it at a high clock rate rather than
letting the resource sit idle.

36. Pipelining
37. Wave Pipelining [55]
38. Retiming [56] [57] [58]
39. C-slow (interleaved, data parallel, data indepen-

dent multithreading) [56] [42] [59]
40. Software Pipelining [60] [61] [62]

• Patterns for Specialization — one of the advantages
of reconfigurable machines is that they can be config-
ured to solve exactly the problem at hand, rather than
needing to be general enough to solve any problem.
This allows us to fold constants into the FPGA config-
uration. This specialization can often go a long way
toward closing the gap between programmable, recon-
figurable designs and full-custom designs [63].

41. Template (Section 3.2)
42. Worst-Case Footprint
43. Constructive Instance Generator [64] [65]
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44. Instance Generator [6] [43]
45. Partial Evaluation [66] [67]
46. Constructor [8] [68]

• Patterns for Partial Reconfiguration — full FPGA re-
configuration can be very slow. If we are going to
change configuration during execution as part of time
multiplexing or specialization, we can often save some
time by reconfiguring only the minimum subset of the
FPGA necessary to effect the change.

47. Isolate Varying Design from Fixed Portion [11]
48. Constant Fill-in [11] (related to TEMPLATE

above)
49. Unify Datapath Space/Structure for Variants

[11]
50. One-Dimensional Function Space [51]
51. Fixed-Size and Standardized-IO Pages [69] [8]
52. Bus Interface [70]

• Patterns for Expressing Communications – a key com-
ponent of any parallel implementation will be data
communication between portions of the computa-
tion.

53. Streaming Data [71] [8] [20]
54. Message Passing [72] [73] [74] [75]
55. Remote-Procedure Call [76] [77]
56. Shared Memory [36] [78]

• Patterns for Synchronization — coordinating the be-
havior of parallel operators is a recurring problem in
all forms of parallelism; this is particularly impor-
tant when operations can take variable time and when
we hope to reuse the design in different technologies
where the delays may vary.

57. Synchronous Clocking [79]
58. Asynchronous Handshaking (self-timed) [79] [80]
59. Tagged Data Presence [81] [82] [8]
60. Queues with Backpressure [8] (perhaps including

windowed advertisement [83])
61. H-Tree

• Patterns for Efficient Layout and Communications —
for spatial computations, interconnect is one of the
biggest consumers of area, delay, and energy. Fur-
ther, computing good placements is a computationally
hard problem that modern EDA tools only approximate
poorly. Regular, constructive layout strategies that al-
low us to keep wires short can be important to achiev-
ing high clock rates and efficient embeddings of de-
signs onto reconfigurable arrays.

62. Cellular Automata [84] [85] [86] [24]
63. Systolic, Semi-Systolic [87] [42] [39]
64. Fixed-Radius Communication [88]

65. Folded/Interleaved Torus [89]
66. Tree-of-Meshes and Fold-and-Squash Layouts

[90] [91]

• Patterns for Implementing Communication — inter-
connect is often the dominant area, delay, and energy
consumer in a programmable system. Consequently,
we want to make sure we use the interconnection wires
and switches efficiently. Further, interconnect require-
ments can often be the biggest limitation determining
when a design fits onto a system. Consequently, we
have developed several patterns for using and reusing
wires efficiently.

67. Shared Bus
68. Token Ring
69. Reconfigurable Interconnect
70. Pipelined Interconnect [57]
71. Serialized Communication [92]
72. Time-Switched Routing [93]
73. Circuit-Switched Routing [94]
74. Packet-Switched Routing [95]

• Value-Added Memory Patterns — memory bandwidth
is a key performance limiter in many systems. This
arises in part because conventional systems place a
large amount of data behind a limited-bandwidth in-
terconnect and serialize communication. We can of-
ten use a little bit of logic close to the memory to
reduce the total memory bandwidth requirements and
memory latency. CACHING (included under Patterns
for Common-Case Optimization) might also fit in this
group.

75. Address Generator (e.g. stride, zig-zag, FFT) [96]
76. Content-Addressable Memory [97]
77. Read-Modify-Write Operations [98]
78. Data Filter
79. Multiple Indirection/Redirection (forwarding) [99]
80. Scan-Select-Reorganize [100] [101]
81. Data Compression or Digest [102] [103]
82. Stack, Queue [104]
83. Data Structure [101] [105]

• Number Representation Patterns — fine-grained re-
configurable architectures allow us to use just as little
or as much precision and representation as necessary
for the problem; they further allow us to select the most
efficient representation for the distribution of computa-
tions we will need. This allows us to save space when
the design can use less precision than a fixed or coarse-
grained architecture and allows us to efficiently allo-
cate more precision when the application needs it.

84. Parameterize Datapath Operators by {bitwidth,
decimal point, signedness, exponent} [64] [106]
[107] [108]

Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’04) 
0-7695-2230-0/04 $ 20.00 IEEE 



85. Redundant Number Systems [109] [110]
86. Distributed Arithmetic [111]
87. Abstract Operator (implementation specialized to

match representation to operation sequence) [68]
88. Stochastic Bit-Serial Computation [112]
89. Bit-Slice Datapath [113]

As we move forward, patterns for energy minimization
will become important. Also, as we move to smaller fea-
tures sizes, we will begin to elaborate patterns for defect
and fault tolerance.

5 Lessons and Recommendations
For Instructors As stated at the outset, design patterns

can be an import part of how we explicitly teach people to
design reconfigurable systems. They draw attention to com-
mon problems and share known solutions. They are orga-
nized to present the key lessons from various applications.

For Developing Designers The pattern encyclopedia
can serve as a valuable reference source for design solu-
tions. The intent and motivation section of each pattern
helps the developing designer quickly find relevant solu-
tions. Has someone else encountered this problem before?
How did they solve it?

For Application Developers and Authors As the pro-
ceedings of this conference attests, many application devel-
opers are motivated to share their experiences with others.
Patterns can provide a useful organizing principle for com-
municating the lessons of the design. What patterns were
employed in developing your solution? Are they all old pat-
terns? Do you use a new design technique that might be
broadly applicable to others—a new pattern? What problem
did you need to solve? Where you have employed familiar
patterns, does your experience suggest new ideas for imple-
mentations or warn of pitfalls not previously documented?

For Tools, Language, and Programming System De-
signers What patterns do you support? How does your lan-
guage, tool, or system support patterns which are known?
What patterns do you automate? Is there a non-obvious way
to support some pattern with your system? If you are a tool
or language developer looking for a place to contribute, are
there patterns that are not well supported by existing tools
or languages? Can you provide a system that provides bet-
ter integrated support for the collaborative use of a large
fraction of the patterns people are identifying as useful?

6 What’s Next?
More ideas? The list we offer here is a starting point.

We are certain there are many things already known which
we have not been able to identify or articulate. We invite in-
put and suggestions so that we can help create a more com-
plete catalog to educate ourselves and the community.

Fill In Details In this forum, we were only able to cat-
alog most patterns. Each of the patterns in Section 4 needs

to be developed into descriptions at least as detailed as the
ones in Section 3, and the examples in Section 3 could stand
further elaboration.

We will be collecting ideas and references for
patterns and summarizing them on our web site:
<http://www.cs.caltech.edu/research/
ic/design_patterns/>.
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Purpose
Class Subclass Expression Implementation

Area-Time Basic Sequential vs. Parallel
Tradeoffs Fine-grain Time-Multiplexing

Coarse-grain Time-Multiplexing
Element Share Regular Graphs
Operator Share General Graphs
Synthesis Objective
Scheduled Operator Sharing
Datapath Sizing and Serialization

Parallel Extract Control Flow If-Conversion/Predication
Dataflow Parallel Prefix, Reduce, Scan
Synchronous Dataflow SIMD
Acylic Dataflow Graph Vector
Functional Datapath Duplication
Data Parallel Communicating FSMDs
Multithreaded Direct Implementation of Graph
Futures

Processor-FPGA Interfacing/IO
Co-processor
Streaming Co-processor
Instruction Augmentation
Sequencer/Controller

Common-Case Caching
Simple Hardware with Escape
Exception
Trace-Schedule/Exceptional Exit
Prediction
Speculation
Parallel Verifier

Reducing Reuse Hardware Pipelining
Area or Time Wave Pipelining

Retiming
C-Slow
Software Pipelining

Specialization Constructor Template
Worst-Case Footprint
Constructive Instance Generator
Instance Generator
Partial Evaluation

Partial Reconfiguration Isolate Fixed/Varying
Constant Fill-in
Unify Datapath Variants
1D Function Space
Fixed-Size and Std. IO Page
Bus Interface

Communications Basic Streaming Data Shared Bus
Message Passing Token Ring
Remote-Procedure Call Reconfigurable Interconnect
Shared Memory Pipelined Interconnect

Serialized Communcations
Time-Switched Routing
Circuit-Switched Routing
Packet-Switched Routing

Layout Cellular Automata
Systolic

Semi-Systolic Fixed-Radius Communication
Folded/Interleaved Torus
Tree-of-Meshes and Fold-and-Squash

Synchronization Synchronous Clock
Asynchronous Handshaking
Tagged Data Presence
Queues with Back Pressure
H-Tree

Memory Value-Added Address Generator
Content-Addressable Memory
Read-Modify-Write
Data Filter
Indirection/Redirection
Scan-Select-Reorganize
Data Compression/Digest
Stack, Queue
Data Structure

Numbers Representation Abstract Operators Parameterize Datapath Operators
and Functions Redundant Number System

Distributed Arithmetic
Stochastic Bit-Serial Computation
Bit-Slice Datapath

Table 1: Pattern Role and Classification Summary
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