
XML and Databases

E�cient XPath evaluation

Kim.Nguyen@nicta.com.au

Week 8

1 / 18

XPath

Given an XPath query, how to return the selected set of nodes?

I NodeSet algorithm: very easy, very ine�cient

I Automata-based algorithm: very e�cient, not too di�cult ;-)

We assume that the XPath query has been parsed into a sequence:

p ::= [(a1 , l1 , p1); . . . ; (an, ln, pn)]
a ::= child|descendant| . . .
l ::= ∗|tagname|text()

All the pi have the form:

pi ::= [(ai1 , li1 , [. . .]); . . . ; (ain, lin, [. . .])]

2 / 18

XPath

Given an XPath query, how to return the selected set of nodes?

I NodeSet algorithm: very easy, very ine�cient

I Automata-based algorithm: very e�cient, not too di�cult ;-)

We assume that the XPath query has been parsed into a sequence:

p ::= [(a1 , l1 , p1); . . . ; (an, ln, pn)]
a ::= child|descendant| . . .
l ::= ∗|tagname|text()

All the pi have the form:

pi ::= [(ai1 , li1 , [. . .]); . . . ; (ain, lin, [. . .])]

2 / 18

XPath

Given an XPath query, how to return the selected set of nodes?

I NodeSet algorithm: very easy, very ine�cient

I Automata-based algorithm: very e�cient, not too di�cult ;-)

We assume that the XPath query has been parsed into a sequence:

p ::= [(a1 , l1 , p1); . . . ; (an, ln, pn)]
a ::= child|descendant| . . .
l ::= ∗|tagname|text()

All the pi have the form:

pi ::= [(ai1 , li1 , [. . .]); . . . ; (ain, lin, [. . .])]

2 / 18

XPath

Given an XPath query, how to return the selected set of nodes?

I NodeSet algorithm: very easy, very ine�cient

I Automata-based algorithm: very e�cient, not too di�cult ;-)

We assume that the XPath query has been parsed into a sequence:

p ::= [(a1 , l1 , p1); . . . ; (an, ln, pn)]
a ::= child|descendant| . . .
l ::= ∗|tagname|text()

All the pi have the form:

pi ::= [(ai1 , li1 , [. . .]); . . . ; (ain, lin, [. . .])]

2 / 18

XPath

Given an XPath query, how to return the selected set of nodes?

I NodeSet algorithm: very easy, very ine�cient

I Automata-based algorithm: very e�cient, not too di�cult ;-)

We assume that the XPath query has been parsed into a sequence:

p ::= [(a1 , l1 , p1); . . . ; (an, ln, pn)]
a ::= child|descendant| . . .
l ::= ∗|tagname|text()

All the pi have the form:

pi ::= [(ai1 , li1 , [. . .]); . . . ; (ain, lin, [. . .])]

2 / 18

XPath

Given an XPath query, how to return the selected set of nodes?

I NodeSet algorithm: very easy, very ine�cient

I Automata-based algorithm: very e�cient, not too di�cult ;-)

We assume that the XPath query has been parsed into a sequence:

p ::= [(a1 , l1 , p1); . . . ; (an, ln, pn)]
a ::= child|descendant| . . .
l ::= ∗|tagname|text()

All the pi have the form:

pi ::= [(ai1 , li1 , [. . .]); . . . ; (ain, lin, [. . .])]

2 / 18

Node Set Algorithm (1/6)

NodeSet eval(Path p, NodeSet nodes, bool all)

Applies the path p to the set of nodes nodes and returns:

I All the nodes matching the query if all is true

I The �rst node matching the query if all is false

NodeSet eval_axis(Axis a, Label l, NodeSet nodes,bool all)

Given a set of nodes nodes of a document returns the nodes in the axis
a with label l

I if all is true, returns all the matching nodes.

I if all is false, returns the �rst matching node

3 / 18

Node Set Algorithm (2/6)

NodeSet e v a l (Path p , NodeSet nodes , boo l a l l){
NodeSet r = nodes ;
//we apply the steps one after another
for each (a , l , f) i n p {

//we select all the node matching the axis and label
r = e v a l_ax i s (a , l , r , a l l) ;
i f (f i l t e r != []) {

r ' = Empty ;
for each n i n r

i f (e v a l (f , { n } , f a l s e) != Empty)
r ' = add (r ' , n) ;

r = r ' ;
} ;

return r ;
}

4 / 18

Node Set Algorithm (3/6)

NodeSet e v a l_ax i s (Ax i s a , Labe l l , NodeSet n , boo l a l l)
{

switch (a){
c h i l d :

return e v a l_ch i l d (l , n , a l l) ;
de scendant :

return eva l_descendant (l , n , a l l) ;
//continue for all the axes

. . .
}

}

5 / 18

Node Set Algorithm (4/6)

NodeSet eva l_descendant (Labe l l , NodeSet n , boo l a l l)
{

NodeSet r = Empty ;
fo r each t i n n {

fo r each t c i n c h i l d r e n (t) {
i f (l a be l (t c) == l){

r = add (r , t c) ;
i f (! (a l l)) //we only want the �rst result

return r ;
}

} ; //r contains all the children of t tagged l
r = r ∪ eva l_descendant (l , c h i l d r e n (t)) ;

}
return r ;

}

6 / 18

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c

Called initially with the NodeSet containing the root

a

a a d

b a b d e c

ecc

eval_axis(desc,a,. . . ,true)
eval(d//e,. . . ,false)
Result of the �rst step
eval_axis(child,b,. . . ,true)
Result of the 2nd step
eval_axis(desc,c,. . . ,true)
Final result

7 / 18

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c

Called initially with the NodeSet containing the root

a

a a d

b a b d e c

ec

eval_axis(desc,a,. . . ,true)
eval(d//e,. . . ,false)
Result of the �rst step
eval_axis(child,b,. . . ,true)
Result of the 2nd step
eval_axis(desc,c,. . . ,true)
Final result

7 / 18

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c

Called initially with the NodeSet containing the root

a

a a d

b a b d e c

ec

eval_axis(desc,a,. . . ,true)

eval(d//e,. . . ,false)
Result of the �rst step
eval_axis(child,b,. . . ,true)
Result of the 2nd step
eval_axis(desc,c,. . . ,true)
Final result

7 / 18

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c

Called initially with the NodeSet containing the root

a

a a d

b a b d e c

ec

eval_axis(desc,a,. . . ,true)
eval(d//e,. . . ,false)

Result of the �rst step
eval_axis(child,b,. . . ,true)
Result of the 2nd step
eval_axis(desc,c,. . . ,true)
Final result

7 / 18

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c

Called initially with the NodeSet containing the root

a

a a d

b a b d e c

ec

eval_axis(desc,a,. . . ,true)
eval(d//e,. . . ,false)
Result of the �rst step

eval_axis(child,b,. . . ,true)
Result of the 2nd step
eval_axis(desc,c,. . . ,true)
Final result

7 / 18

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c

Called initially with the NodeSet containing the root

a

a a d

b a b d e c

ec

eval_axis(desc,a,. . . ,true)
eval(d//e,. . . ,false)
Result of the �rst step
eval_axis(child,b,. . . ,true)

Result of the 2nd step
eval_axis(desc,c,. . . ,true)
Final result

7 / 18

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c

Called initially with the NodeSet containing the root

a

a a d

b a b d e c

ec

eval_axis(desc,a,. . . ,true)
eval(d//e,. . . ,false)
Result of the �rst step
eval_axis(child,b,. . . ,true)
Result of the 2nd step

eval_axis(desc,c,. . . ,true)
Final result

7 / 18

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c

Called initially with the NodeSet containing the root

a

a a d

b a b d e c

ec

eval_axis(desc,a,. . . ,true)
eval(d//e,. . . ,false)
Result of the �rst step
eval_axis(child,b,. . . ,true)
Result of the 2nd step
eval_axis(desc,c,. . . ,true)

Final result

7 / 18

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c

Called initially with the NodeSet containing the root

a

a a d

b a b d e c

ec

eval_axis(desc,a,. . . ,true)
eval(d//e,. . . ,false)
Result of the �rst step
eval_axis(child,b,. . . ,true)
Result of the 2nd step
eval_axis(desc,c,. . . ,true)
Final result

7 / 18

Node Set Algorithm (6/6)

Pros and cons of the algorithm:

+ Easy to implement

+ Can can be extended to all XPath axes easily

- May return several copies of the same node, thus either use a Set
datastructure for the result, or sort and sieve the result at the end.

- Need to traverse many times the tree, cannot be done in streaming

Remains very ine�cient: O(|D|2) for forward XPath, O(2 |Q| + |D|2) for
full XPath (cf. Lecture)

8 / 18

Node Set Algorithm (6/6)

Pros and cons of the algorithm:

+ Easy to implement

+ Can can be extended to all XPath axes easily

- May return several copies of the same node, thus either use a Set
datastructure for the result, or sort and sieve the result at the end.

- Need to traverse many times the tree, cannot be done in streaming

Remains very ine�cient: O(|D|2) for forward XPath, O(2 |Q| + |D|2) for
full XPath (cf. Lecture)

8 / 18

Node Set Algorithm (6/6)

Pros and cons of the algorithm:

+ Easy to implement

+ Can can be extended to all XPath axes easily

- May return several copies of the same node, thus either use a Set
datastructure for the result, or sort and sieve the result at the end.

- Need to traverse many times the tree, cannot be done in streaming

Remains very ine�cient: O(|D|2) for forward XPath, O(2 |Q| + |D|2) for
full XPath (cf. Lecture)

8 / 18

Node Set Algorithm (6/6)

Pros and cons of the algorithm:

+ Easy to implement

+ Can can be extended to all XPath axes easily

- May return several copies of the same node, thus either use a Set
datastructure for the result, or sort and sieve the result at the end.

- Need to traverse many times the tree, cannot be done in streaming

Remains very ine�cient: O(|D|2) for forward XPath, O(2 |Q| + |D|2) for
full XPath (cf. Lecture)

8 / 18

Automata based algorithm

We proceed in two steps:

I �rst we see how this works for XPath expressions without �lters

I we add �lters

The idea is to see the XPath expression as a regular expression
matching the paths of the tree. The translation of a forward XPath
expression into an NFA is straightforward:

//a/b//c becomes: 1 32

* *

4
a b c

If we determinise, it becomes: 1 1,2

*\{a}

a b
ca

1,3
*\{a b}

1,3,4*\{a c}

1,2,3

a
c

a

*\{a c}

c
*\{a c}

a

9 / 18

Automata based algorithm

We proceed in two steps:

I �rst we see how this works for XPath expressions without �lters

I we add �lters

The idea is to see the XPath expression as a regular expression
matching the paths of the tree. The translation of a forward XPath
expression into an NFA is straightforward:

//a/b//c becomes: 1 32

* *

4
a b c

If we determinise, it becomes: 1 1,2

*\{a}

a b
ca

1,3
*\{a b}

1,3,4*\{a c}

1,2,3

a
c

a

*\{a c}

c
*\{a c}

a

9 / 18

Automata based algorithm

We proceed in two steps:

I �rst we see how this works for XPath expressions without �lters

I we add �lters

The idea is to see the XPath expression as a regular expression
matching the paths of the tree. The translation of a forward XPath
expression into an NFA is straightforward:

//a/b//c becomes: 1 32

* *

4
a b c

If we determinise, it becomes: 1 1,2

*\{a}

a b
ca

1,3
*\{a b}

1,3,4*\{a c}

1,2,3

a
c

a

*\{a c}

c
*\{a c}

a

9 / 18

Automata based algorithm

We proceed in two steps:

I �rst we see how this works for XPath expressions without �lters

I we add �lters

The idea is to see the XPath expression as a regular expression
matching the paths of the tree. The translation of a forward XPath
expression into an NFA is straightforward:

//a/b//c becomes: 1 32

* *

4
a b c

If we determinise, it becomes: 1 1,2

*\{a}

a b
ca

1,3
*\{a b}

1,3,4*\{a c}

1,2,3

a
c

a

*\{a c}

c
*\{a c}

a

9 / 18

Automata based algorithm

We proceed in two steps:

I �rst we see how this works for XPath expressions without �lters

I we add �lters

The idea is to see the XPath expression as a regular expression
matching the paths of the tree. The translation of a forward XPath
expression into an NFA is straightforward:

//a/b//c becomes:

1 32

* *

4
a b c

If we determinise, it becomes: 1 1,2

*\{a}

a b
ca

1,3
*\{a b}

1,3,4*\{a c}

1,2,3

a
c

a

*\{a c}

c
*\{a c}

a

9 / 18

Automata based algorithm

We proceed in two steps:

I �rst we see how this works for XPath expressions without �lters

I we add �lters

The idea is to see the XPath expression as a regular expression
matching the paths of the tree. The translation of a forward XPath
expression into an NFA is straightforward:

//a/b//c becomes: 1 32

* *

4
a b c

If we determinise, it becomes: 1 1,2

*\{a}

a b
ca

1,3
*\{a b}

1,3,4*\{a c}

1,2,3

a
c

a

*\{a c}

c
*\{a c}

a

9 / 18

Automata based algorithm

We proceed in two steps:

I �rst we see how this works for XPath expressions without �lters

I we add �lters

The idea is to see the XPath expression as a regular expression
matching the paths of the tree. The translation of a forward XPath
expression into an NFA is straightforward:

//a/b//c becomes: 1 32

* *

4
a b c

If we determinise, it becomes:

1 1,2

*\{a}

a b
ca

1,3
*\{a b}

1,3,4*\{a c}

1,2,3

a
c

a

*\{a c}

c
*\{a c}

a

9 / 18

Automata based algorithm

We proceed in two steps:

I �rst we see how this works for XPath expressions without �lters

I we add �lters

The idea is to see the XPath expression as a regular expression
matching the paths of the tree. The translation of a forward XPath
expression into an NFA is straightforward:

//a/b//c becomes: 1 32

* *

4
a b c

If we determinise, it becomes: 1 1,2

*\{a}

a b
ca

1,3
*\{a b}

1,3,4*\{a c}

1,2,3

a
c

a

*\{a c}

c
*\{a c}

a

9 / 18

Automata based algorithm

Problems of determinisation:

I Exponential blow-up in the number of states

I computing the default transition * is tricky!

Good news: we don't need to determinize!
Reference:

Processing XML streams with deterministic automata and stream indexes

By T.J. Green, A. Gupta, G. Miklau, M. Onizuka, D. Suciu, TODS 2004

10 / 18

Automata based algorithm

Problems of determinisation:

I Exponential blow-up in the number of states

I computing the default transition * is tricky!

Good news: we don't need to determinize!
Reference:

Processing XML streams with deterministic automata and stream indexes

By T.J. Green, A. Gupta, G. Miklau, M. Onizuka, D. Suciu, TODS 2004

10 / 18

Automata based algorithm

Problems of determinisation:

I Exponential blow-up in the number of states

I computing the default transition * is tricky!

Good news: we don't need to determinize!
Reference:

Processing XML streams with deterministic automata and stream indexes

By T.J. Green, A. Gupta, G. Miklau, M. Onizuka, D. Suciu, TODS 2004

10 / 18

Automata based algorithm

Problems of determinisation:

I Exponential blow-up in the number of states

I computing the default transition * is tricky!

Good news: we don't need to determinize!
Reference:

Processing XML streams with deterministic automata and stream indexes

By T.J. Green, A. Gupta, G. Miklau, M. Onizuka, D. Suciu, TODS 2004

10 / 18

Topdown XPath evaluation

// Takes a NFA, a set of states and a document node
// Returns the set of nodes matched by the automaton
NodeSet e v a l (Automaton a , S t a t e s S , Node t){

//The empty tree yields no result
i f (t == nu l l) return Empty
e l s e { //Everything is done here, see next slide

S'={q′ | ∀q ∈ S , s.t. q, l → q′ ∈ a, l = label(t) or *}
r = Empty ;
fo r each t ' i n children(t) {

r = r ∪ e v a l (a , S' , t ') ;
} ;
i f (finalstate(a) ∈ S')

r = r ∪ {t}
} ;
return r ;

}

11 / 18

Topdown XPath evaluation

What does this do?

S ′ = {q′ | ∀q ∈ S , s.t. q, l → q′ ∈ a, l = label(t) or *}

For each state q of the NFA in S it computes the set of states in which
we can go with the label of the current node t

I Then we recursively evaluate S ′ on all the children of t

I If we took a transition which lead us to an accept state, then we
also need to add t to the �nal result

To represent the NFA, we need:

I The set of all states, Q, the initial state I , the �nal state F

I a hash table mapping pairs of states×labels to states

12 / 18

Topdown XPath evaluation

What does this do?

S ′ = {q′ | ∀q ∈ S , s.t. q, l → q′ ∈ a, l = label(t) or *}

For each state q of the NFA in S it computes the set of states in which
we can go with the label of the current node t

I Then we recursively evaluate S ′ on all the children of t

I If we took a transition which lead us to an accept state, then we
also need to add t to the �nal result

To represent the NFA, we need:

I The set of all states, Q, the initial state I , the �nal state F

I a hash table mapping pairs of states×labels to states

12 / 18

Topdown XPath evaluation

What does this do?

S ′ = {q′ | ∀q ∈ S , s.t. q, l → q′ ∈ a, l = label(t) or *}

For each state q of the NFA in S it computes the set of states in which
we can go with the label of the current node t

I Then we recursively evaluate S ′ on all the children of t

I If we took a transition which lead us to an accept state, then we
also need to add t to the �nal result

To represent the NFA, we need:

I The set of all states, Q, the initial state I , the �nal state F

I a hash table mapping pairs of states×labels to states

12 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

We start on the

root, with the initial

state

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

For label �a� in state

1, the NFA can end

up in two states, 1

and 2. . .

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

So we call recursively,

with S = {1 , 2} on

the �rst child of the

root. . .

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

Here label �b� allows

us to go in state

3 and also stays in

state 1

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

We arrive in �c�. The

call on the children

returns Empty. One

of our state is �nal,

so there is a run of

the automaton which

accepts this path, we

mark the node as se-

lected.

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

a

a a d

b a b d e c

ecc

1 32

* *

4
a b c

Q = {1 , 2 , 3 , 4}
I = {1}
F = {4}
1, a 7→ 2
1, * 7→ 1
2, b 7→ 3
3, c 7→ 4
3, * 7→ 3

13 / 18

Topdown XPath evaluation

What is the complexity of the algorithm?

I We do only one pre-order traversal

I For each node, we perform the following:

1. S ′ = {q′ | ∀q ∈ S , s.t. q, l → q′ ∈ a, l = label(t) or *}
⇒ this is linear in the size of S , which is at most as big as the number

of states in the NFA. As we have seen, the number of states is
linear in the size of the query so this operation costs |Q|

2. r = r ∪ {t}
⇒ Since we traverse the tree in pre-order and only once for every node

we can use a list for the result set, and just add {t} at the
begining, which is constant time. In particular, we don't have to
sort the result, nor use a data structure with |O(log(n))| insertion
to guarantee the right order nor do we have to �lter the results to
remove duplicates: huge improvement.

Complexity is O(|Q| × |D|), which is the best complexity for this
problem (cf lecture).

14 / 18

Topdown XPath evaluation

What is the complexity of the algorithm?

I We do only one pre-order traversal

I For each node, we perform the following:

1. S ′ = {q′ | ∀q ∈ S , s.t. q, l → q′ ∈ a, l = label(t) or *}
⇒ this is linear in the size of S , which is at most as big as the number

of states in the NFA. As we have seen, the number of states is
linear in the size of the query so this operation costs |Q|

2. r = r ∪ {t}
⇒ Since we traverse the tree in pre-order and only once for every node

we can use a list for the result set, and just add {t} at the
begining, which is constant time. In particular, we don't have to
sort the result, nor use a data structure with |O(log(n))| insertion
to guarantee the right order nor do we have to �lter the results to
remove duplicates: huge improvement.

Complexity is O(|Q| × |D|), which is the best complexity for this
problem (cf lecture).

14 / 18

Topdown XPath evaluation

What is the complexity of the algorithm?

I We do only one pre-order traversal

I For each node, we perform the following:

1. S ′ = {q′ | ∀q ∈ S , s.t. q, l → q′ ∈ a, l = label(t) or *}

⇒ this is linear in the size of S , which is at most as big as the number
of states in the NFA. As we have seen, the number of states is
linear in the size of the query so this operation costs |Q|

2. r = r ∪ {t}
⇒ Since we traverse the tree in pre-order and only once for every node

we can use a list for the result set, and just add {t} at the
begining, which is constant time. In particular, we don't have to
sort the result, nor use a data structure with |O(log(n))| insertion
to guarantee the right order nor do we have to �lter the results to
remove duplicates: huge improvement.

Complexity is O(|Q| × |D|), which is the best complexity for this
problem (cf lecture).

14 / 18

Topdown XPath evaluation

What is the complexity of the algorithm?

I We do only one pre-order traversal

I For each node, we perform the following:

1. S ′ = {q′ | ∀q ∈ S , s.t. q, l → q′ ∈ a, l = label(t) or *}
⇒ this is linear in the size of S , which is at most as big as the number

of states in the NFA. As we have seen, the number of states is
linear in the size of the query so this operation costs |Q|

2. r = r ∪ {t}
⇒ Since we traverse the tree in pre-order and only once for every node

we can use a list for the result set, and just add {t} at the
begining, which is constant time. In particular, we don't have to
sort the result, nor use a data structure with |O(log(n))| insertion
to guarantee the right order nor do we have to �lter the results to
remove duplicates: huge improvement.

Complexity is O(|Q| × |D|), which is the best complexity for this
problem (cf lecture).

14 / 18

Topdown XPath evaluation

What is the complexity of the algorithm?

I We do only one pre-order traversal

I For each node, we perform the following:

1. S ′ = {q′ | ∀q ∈ S , s.t. q, l → q′ ∈ a, l = label(t) or *}
⇒ this is linear in the size of S , which is at most as big as the number

of states in the NFA. As we have seen, the number of states is
linear in the size of the query so this operation costs |Q|

2. r = r ∪ {t}

⇒ Since we traverse the tree in pre-order and only once for every node
we can use a list for the result set, and just add {t} at the
begining, which is constant time. In particular, we don't have to
sort the result, nor use a data structure with |O(log(n))| insertion
to guarantee the right order nor do we have to �lter the results to
remove duplicates: huge improvement.

Complexity is O(|Q| × |D|), which is the best complexity for this
problem (cf lecture).

14 / 18

Topdown XPath evaluation

What is the complexity of the algorithm?

I We do only one pre-order traversal

I For each node, we perform the following:

1. S ′ = {q′ | ∀q ∈ S , s.t. q, l → q′ ∈ a, l = label(t) or *}
⇒ this is linear in the size of S , which is at most as big as the number

of states in the NFA. As we have seen, the number of states is
linear in the size of the query so this operation costs |Q|

2. r = r ∪ {t}
⇒ Since we traverse the tree in pre-order and only once for every node

we can use a list for the result set, and just add {t} at the
begining, which is constant time. In particular, we don't have to
sort the result, nor use a data structure with |O(log(n))| insertion
to guarantee the right order nor do we have to �lter the results to
remove duplicates: huge improvement.

Complexity is O(|Q| × |D|), which is the best complexity for this
problem (cf lecture).

14 / 18

Topdown XPath evaluation

What is the complexity of the algorithm?

I We do only one pre-order traversal

I For each node, we perform the following:

1. S ′ = {q′ | ∀q ∈ S , s.t. q, l → q′ ∈ a, l = label(t) or *}
⇒ this is linear in the size of S , which is at most as big as the number

of states in the NFA. As we have seen, the number of states is
linear in the size of the query so this operation costs |Q|

2. r = r ∪ {t}
⇒ Since we traverse the tree in pre-order and only once for every node

we can use a list for the result set, and just add {t} at the
begining, which is constant time. In particular, we don't have to
sort the result, nor use a data structure with |O(log(n))| insertion
to guarantee the right order nor do we have to �lter the results to
remove duplicates: huge improvement.

Complexity is O(|Q| × |D|), which is the best complexity for this
problem (cf lecture).

14 / 18

Topdown XPath evaluation

What is the complexity of the algorithm?

I We do only one pre-order traversal

I For each node, we perform the following:

1. S ′ = {q′ | ∀q ∈ S , s.t. q, l → q′ ∈ a, l = label(t) or *}
⇒ this is linear in the size of S , which is at most as big as the number

of states in the NFA. As we have seen, the number of states is
linear in the size of the query so this operation costs |Q|

2. r = r ∪ {t}
⇒ Since we traverse the tree in pre-order and only once for every node

we can use a list for the result set, and just add {t} at the
begining, which is constant time. In particular, we don't have to
sort the result, nor use a data structure with |O(log(n))| insertion
to guarantee the right order nor do we have to �lter the results to
remove duplicates: huge improvement.

Complexity is O(|Q| × |D|), which is the best complexity for this
problem (cf lecture).

14 / 18

Topdown XPath evaluation

How do we add �lters?

Consider:

//a[d//e]/b//c

We build two automata:

1

*
a

32

*

4
b c

65

*

7
d e

15 / 18

Topdown XPath evaluation

How do we add �lters?
Consider:

//a[d//e]/b//c

We build two automata:

1

*
a

32

*

4
b c

65

*

7
d e

15 / 18

Topdown XPath evaluation

How do we add �lters?
Consider:

//a[d//e]/b//c

We build two automata:

1

*
a

32

*

4
b c

65

*

7
d e

15 / 18

Topdown XPath evaluation

How do we add �lters?
Consider:

//a[d//e]/b//c

We build two automata:

1

*
a

32

*

4
b c

65

*

7
d e

15 / 18

Topdown XPath evaluation

NodeSet e v a l (Automata a , S t a t e s S , Node t ,
FilterStack FS){

i f (t == nu l l) return Empty , FS
e l se {

S '={q′ | q, l → q′ ∈ a, l = label(t) or *}
F i l t e r S e t f = {{InitState(FilterAuto(q))} |q ∈ S}
FS'=push (f , FS) ;
FS�=EmptyStack ;
f o r each f s i n FS' {

f s '=Empty ;
f o r each (_, s) i n f s
f s ' = f s ' ∪ {s×{q′ | q, l → q′ ∈ ai , l = label(t) or *}}
push (FS� , f s ') ;

}

. . .
16 / 18

Topdown XPath evaluation

r = Empty ;
f s = Empty ;
for each t ' i n children(t) {

r ' , FS� ' = e v a l (a , S' , t ' , FS�) ;
r = r∪ r ' ;
f s � ' = pop (FS� ') ;
f s � = pop (FS�) ;
for each (s , s ') i n f s � '

i f (finalstate(a ') ∈ s ')
remove (_, s) from fs� ;

FS� = push (FS� , f s �) ;
} ;

17 / 18

Topdown XPath evaluation

f s = peek (FS�) ;
i f (i s empty (f s))

i f (finalstate(a) ∈ S)
r = r ∪ {t} ;

e l se

r = Empty
return (r , FS�) ;

18 / 18

