
Tutorial session 7
DTD Validation and XPath

1 Movie database

For the next questions, we consider documents valid with respect to the DTD given in Figure 1.
A fragment of valid document is given in Figure 2.

<!ELEMENT movies (movie *,people*) >
<!ELEMENT movie (title,genre,year,cast,director,producer,studio) >
<!ELEMENT title (#PCDATA) >
<!ELEMENT genre (#PCDATA) >
<!ELEMENT year (#PCDATA) >
<!ELEMENT cast (character+) >
<!ELEMENT director (EMPTY) >
<!ATTLIST id type IDREF #REQUIRED >
<!ELEMENT producer (EMPTY) >
<!ATTLIST id type IDREF #REQUIRED >
<!ELEMENT studio (#PCDATA) >

<!ELEMENT character (role,name) >
<!ATTLIST id type IDREF #REQUIRED >

<!ELEMENT role (#PCDATA) >
<!ELEMENT name (first,last) >
<!ELEMENT first (#PCDATA) >
<!ELEMENT last (#PCDATA) >

<!ELEMENT people (name) >
<!ATTLIST id type ID #REQUIRED >

FIG. 1 – The DTD of an XML movie database

Questions :

1. considering all the constraints that are represented by this DTD, can you validate a docu-
ment against this DTD using only a tree automata ? If not, what prevents you to do so.

2. Rewrite the elements name and character so that they can have exactly the same content
but where the order doesn’t matter. (for instance name can be first,last or last,first
but not last,last for instance).

3. How many possibilities do you need to consider if you want to do the same for the movie
element.

4. (from the lecture) describe the algorithm used to efficiently validate a DTD doing a top-down
traversal of the tree.

5. give an algorithm to validate a DTD in streaming.

1

<movies>
...
<movie>
<title>The Good, the Bad and the Ugly</title>
<genre>Western</genre>
<year>1966</year>
<cast><character id="123">

<role>"The man with no name" is a mysterious man who
travels the country on his mule..</role>

<name><first>Blondie</first><last></last></name>
</character>

...
</cast>
...
</movie>
...
<movie>
<title>Million Dollar Baby</title>
<genre>Drama</genre>
<year>2004</year>
<cast>...</cast>
<director id="123"/>
<producer id="400"/>
<studio>Warner Bros. Pictures</studio>
</movie>
...
<people id="123"><name><first>Clint</first>

<last>Eastwood</last></name>
</people>
...
</movies>

FIG. 2 – Fragment of valid XML movie database

2 XPath to English

Describe in English what the following XPath expression computes :

1. //movie/title

2. //people/name[first = "Bruce"]

3. //movie[year > "1990"]

4. //role[contains(., "Batman")]/../../title

5. /descendant::movie[1]

6. /descendant::role[1]

7. //role[1]

8. /character[@id = //people[name ="AlPacino"]/@id]/name

9. /movies/movie[count(./cast/character) > 10]/title

10. /descendant::people[position() = 1]/preceding[position() = 1]

3 English to XPath

Give an XPath expression which answers the query (There might be many possible answers) :

2

– Give the title of the movies produced between 1955 and 1960
– Give the years of the 6 "Star Wars" movies were produced
– Give the id of the actors performing in “The Godfather”
– Give the id of all the producers who produced a film between 1990 and 2000.
– Give the title of all the movies where the director is also an actor
– Return the movie element occurring in the tenth position before the third movie (in docu-

ment order) featuring “Bruce Willis”.
– In Question 3 and 4, can you give the name instead of the id ? What is this operation called.

4 Checking constrains with XPath queries

Given a document which looks like a film database, we want to check using XPath queries that
some of the constraint of the DTD of Figure 1 are verified. Check the following constraint using
XPath queries. The result of the query must be non-empty if the constraint is verified :

– The root of the document is a movies element.
– The children of movies are a sequence of movie elements followed by a sequence of people

elements
– the content of every movie element is exactly as in the DTD : title, genre, year,
cast, director, producer, studio (only check for the labels).

– every cast element is non-empty
– every director, producer, people and character has an id attribute.

3

