
XML and Databases

XPath evaluation (3)

Kim.Nguyen@nicta.com.au

Week 10

1 / 9



Recap from last week

1 Using automata to run queries in streaming

2 Handling �lters with upward axes

Today

• How to add preceding-sibling/following-sibling ?

• What data structures to use for automata ?

2 / 9



Recap from last week

1 Using automata to run queries in streaming

2 Handling �lters with upward axes

Today

• How to add preceding-sibling/following-sibling ?

• What data structures to use for automata ?

2 / 9



Recap from last week

1 Using automata to run queries in streaming

2 Handling �lters with upward axes

Today

• How to add preceding-sibling/following-sibling ?

• What data structures to use for automata ?

2 / 9



Recap from last week

1 Using automata to run queries in streaming

2 Handling �lters with upward axes

Today

• How to add preceding-sibling/following-sibling ?

• What data structures to use for automata ?

2 / 9



Following-sibling

Fundamentally, not very di�erent from child!
In a pre-order traversal:

child : From a node, go firstChild then nextSibling, . . . ,
nextSibling until NULL is found

following-sibling : From a node, go nextSibling, . . . ,
nextSibling until NULL is found

What does it mean in terms of automata?

Add a new kind of transition

3 / 9



Following-sibling

Fundamentally, not very di�erent from child!
In a pre-order traversal:

child : From a node, go firstChild then nextSibling, . . . ,
nextSibling until NULL is found

following-sibling : From a node, go nextSibling, . . . ,
nextSibling until NULL is found

What does it mean in terms of automata?

Add a new kind of transition

3 / 9



Following-sibling

Fundamentally, not very di�erent from child!
In a pre-order traversal:

child : From a node, go firstChild then nextSibling, . . . ,
nextSibling until NULL is found

following-sibling : From a node, go nextSibling, . . . ,
nextSibling until NULL is found

What does it mean in terms of automata?

Add a new kind of transition

3 / 9



Example

//a/b//d

1 32

* *

4
a b d

//a/following-sibling::b//d?

1 32

* *

4
a b d

*

When we evaluate an automaton we can perform two kinds of
transitions:

• When doing a ��rst child� move, we take black transitions (Down)

• When doing a �next sibling� move, we take red transitions (Right)

4 / 9



Example

//a/b//d 1 32

* *

4
a b d

//a/following-sibling::b//d?

1 32

* *

4
a b d

*

When we evaluate an automaton we can perform two kinds of
transitions:

• When doing a ��rst child� move, we take black transitions (Down)

• When doing a �next sibling� move, we take red transitions (Right)

4 / 9



Example

//a/b//d 1 32

* *

4
a b d

//a/following-sibling::b//d?

1 32

* *

4
a b d

*

When we evaluate an automaton we can perform two kinds of
transitions:

• When doing a ��rst child� move, we take black transitions (Down)

• When doing a �next sibling� move, we take red transitions (Right)

4 / 9



Example

//a/b//d 1 32

* *

4
a b d

//a/following-sibling::b//d?

1 32

* *

4
a b d

*

When we evaluate an automaton we can perform two kinds of
transitions:

• When doing a ��rst child� move, we take black transitions (Down)

• When doing a �next sibling� move, we take red transitions (Right)

4 / 9



Example

//a/b//d 1 32

* *

4
a b d

//a/following-sibling::b//d?

1 32

* *

4
a b d

*

When we evaluate an automaton we can perform two kinds of
transitions:

• When doing a ��rst child� move, we take black transitions (Down)

• When doing a �next sibling� move, we take red transitions (Right)

4 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}

Initially, the stack contains the initial state

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{}

startElement("c"), one Down transition, no Right transition

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{}
{1},{}

startElement("d"), one Down transition, no Right transition

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{}

endElement("d"), replace last-sibling with the top of the stack

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1},{}

startElement("a"), one Down transition, one Right transition

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1},{}

the Right transition goes to state 2, update the right of the stack

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1},{}

the Down transition goes to state 1, pushed on the stack

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1,3},{}

endElement("a")

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1,3},{}

From {1} ∪ {2} compute the b transition

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1,3},{}

One Right (stay in state 2), replace right part of stack

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1,3},{}

Two Down (stay ins state 1, go to state 3), push on the stack

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1,3},{}
{1,3},{}

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1,3},{}
{1,3},{}
{1,3},{}

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1,3},{}
{1,3},{}

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1,3},{}
{1,3},{}
{1,3,4},{}

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1,3},{}
{1,3},{}

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1,3},{}
{1,3},{}
{1,3},{}

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1,3},{}
{1,3},{}
{1,3},{}

5 / 9



Example

c

ad b c b

d d dcc c

1 32

* *

4
a b d

*

{1},{}
{1},{2}
{1,3},{}
{1,3},{}
{1,3,4},{}

5 / 9



Path with following-sibling and no �lters

Adapt last week's algorithm:

• keep a stack of pairs of sets of states

• the �rst set of states represents the states of the parent

• the second set of states represents the states of the previous-sibling

More precisely, on startElement

1 Take the top of the stack Sparent, Spresib;

2 Compute the union S = Sparent ∪ Spresib

3 Compute two new sets S ′parent and S ′presib
4 S ′parent is the set of states that can be reached from S with a Down

transition S ′presib is the set of states that can be reached by a
Right transition

5 At the top of the stack, replace Spresib with S ′presib
6 Push S ′parent, {} at the top of the stack

6 / 9



Path with following-sibling and no �lters

Adapt last week's algorithm:

• keep a stack of pairs of sets of states

• the �rst set of states represents the states of the parent

• the second set of states represents the states of the previous-sibling

More precisely, on startElement

1 Take the top of the stack Sparent, Spresib;

2 Compute the union S = Sparent ∪ Spresib

3 Compute two new sets S ′parent and S ′presib
4 S ′parent is the set of states that can be reached from S with a Down

transition S ′presib is the set of states that can be reached by a
Right transition

5 At the top of the stack, replace Spresib with S ′presib
6 Push S ′parent, {} at the top of the stack

6 / 9



Adding preceding-sibling in �lters

Consider //a//b[./parent::c/preceding-sibling::d]/c.
What can we say about the b nodes ?

• They must have a parent c

• The parent must have a preceding-sibling d

This is true for all the nodes which are:

• below a c

• which is a following sibling of a d

• which can occur anywhere

⇒ //d/following-sibling::c/*

Only need to adapt last week's algorithm to following-sibling

7 / 9



Some more examples of rewriting of �lters

[./ancestor::d/preceding-sibling::e/parent::f]

becomes
//f/e/following-sibling::d//*

[./preceding-sibling::e/ancestor::d/preceding-sibling::f]

becomes
//f/following-sibling::d//e/folowing-sibling::*

What is the general rule ?

8 / 9



Some more examples of rewriting of �lters

[./ancestor::d/preceding-sibling::e/parent::f]

becomes
//f/e/following-sibling::d//*

[./preceding-sibling::e/ancestor::d/preceding-sibling::f]

becomes
//f/following-sibling::d//e/folowing-sibling::*

What is the general rule ?

8 / 9



Some more examples of rewriting of �lters

[./ancestor::d/preceding-sibling::e/parent::f]

becomes
//f/e/following-sibling::d//*

[./preceding-sibling::e/ancestor::d/preceding-sibling::f]

becomes
//f/following-sibling::d//e/folowing-sibling::*

What is the general rule ?

8 / 9



Rewriting backward �lters

Let [ f ] be a �lter with backward axes. We rewrite it into a path d .
d and f do *NOT* compute the same results but, for every node
selected by d , [ f ] is true. Let:

f = ./a0::t0/a1::t1/ . . . /an::tn
where ai ∈ {parent, ancestor, preceding-sibling} andn ti is a
label or *.

//tn/ān::tn−1/ . . . /ā0::*
where āi is the inverse axis of ai (parent is the inverse of child,
descendant the inverse of ancestor and preceding-sibling the
inverse of following-sibling)

9 / 9


