Kim.Nguyen®@nicta.com.au

Week 10

1/9

Recap from last week

@ Using automata to run queries in streaming

Recap from last week

@ Using automata to run queries in streaming

® Handling filters with upward axes

Recap from last week

@ Using automata to run queries in streaming

® Handling filters with upward axes

Recap from last week

@ Using automata to run queries in streaming

® Handling filters with upward axes

Today

e How to add preceding-sibling/following-sibling 7
e What data structures to use for automata ?

Following-sibling

Fundamentally, not very different from child!
In a pre-order traversal:
child : From a node, go firstChild then nextSibling, ...,
nextSibling until NULL is found

following-sibling : From a node, go nextSibling, ...,
nextSibling until NULL is found

Following-sibling

Fundamentally, not very different from child!
In a pre-order traversal:
child : From a node, go firstChild then nextSibling, ...,
nextSibling until NULL is found
following-sibling : From a node, go nextSibling, ...,
nextSibling until NULL is found

What does it mean in terms of automata?

Following-sibling

Fundamentally, not very different from child!
In a pre-order traversal:
child : From a node, go firstChild then nextSibling, ...,
nextSibling until NULL is found

following-sibling : From a node, go nextSibling, ...,
nextSibling until NULL is found

What does it mean in terms of automata?

Add a new kind of transition

Example

//a/b//d

4/9

Example

*

A

a b o d
TN YV ROROEOR O

Example

) a b o d
TN YV ROROEOR O

//a/following-sibling: :b//d7?

Example

o a b C d
/7arv//a D-@=C—@
//a/follow1ng 81b11ng :b//d7?
(y (v d

ERLRE LI

Example

) a b o d
N YTROROREOR O

//a/follow1ng 81b11ng :b//d7?

@ —D@%@H@
When we evaluate an automaton we can perform two kinds of
transitions:

e When doing a "first child” move, we take black transitions (Down)

e When doing a “next sibling” move, we take red transitions (Right)

Example

Initially, the stack contains the initial state

{1}.{}

Example

{134}
{1}.{}

startElement ("c"), one Down transition, no Right transition

Example

{1}.{}
{134}

{1}.{}

startElement ("d"), one Down transition, no Right transition

Example

% % *
SEYGLEGLYo

{134}
{1}.{}

endElement ("d"), replace last-sibling with the top of the stack

Example

{1}.{}
{1},{2}
{1}.{}

startElement ("a"), one Down transition, one Right transition

Example

{1}.{}
{1},{2}
{1}.{}

the Right transition goes to state 2, update the right of the stack

Example

{1}.{}
{1},{2}
{1}.{}

the Down transition goes to state 1, pushed on the stack

Example

*

QLY LRORN

C
d

endElement ("a")

{1,3}.{}
{1},{2}
{1}.{}

Example

% % *
SEYGLEGLYo

From {1} U {2} compute the b transition

{1,3}.{}
{1},{2}
{1}.{}

Example

{1,3}.{}
{1},{2}
{1}.{}

One Right (stay in state 2), replace right part of stack

Example

{1,3}.{}
{1},{2}
{1}.{}

Two Down (stay ins state 1, go to state 3), push on the stack

5/9

5/9

5/9

5/9

5/9

5/9

5/9

5/9

Path with following-sibling and no filters

Adapt last week’s algorithm:
e keep a stack of pairs of sets of states
e the first set of states represents the states of the parent

e the second set of states represents the states of the previous-sibling

Path with following-sibling and no filters

Adapt last week’s algorithm:

e keep a stack of pairs of sets of states

e the first set of states represents the states of the parent

e the second set of states represents the states of the previous-sibling
More precisely, on startElement

© Take the top of the stack Sparent: Spresib;

® Compute the union S = Sparent U Spresib

©® Compute two new sets S, ... and S

O S,..en 1S the set of states that can be reached from S with a Down
transition S) ., is the set of states that can be reached by a
Right transition

@ At the top of the stack, replace Spresib With S) g,
O Push S/, ... {} at the top of the stack

presib

Adding preceding-sibling in filters

Consider //a//bl./parent: :c/preceding-sibling
What can we say about the b nodes ?

e They must have a parent ¢
e The parent must have a preceding-sibling d

This is true for all the nodes which are:

e below a c
e which is a following sibling of a d
e which can occur anywhere

= //d/following-sibling: :c/*
Only need to adapt last week’s algorithm to following-sibling

::d]/c.

~

Some more examples of rewriting of filters

[./ancestor::d/preceding-sibling: :e/parent: :f]
becomes
//f/e/following-sibling: :d//*

Some more examples of rewriting of filters

[./ancestor::d/preceding-sibling: :e/parent: :f]
becomes
//f/e/following-sibling: :d//*

[./preceding-sibling: :e/ancestor: :d/preceding-sibling: :f]
becomes
//f/following-sibling::d//e/folowing-sibling: :*

Some more examples of rewriting of filters

[./ancestor::d/preceding-sibling: :e/parent: :f]
becomes
//f/e/following-sibling: :d//*

[./preceding-sibling: :e/ancestor: :d/preceding-sibling: :f]
becomes

//f/following-sibling::d//e/folowing-sibling: :*

What is the general rule 7

Rewriting backward filters

Let [£ 1 be a filter with backward axes. We rewrite it into a path d.
d and f do *NOT* compute the same results but, for every node
selected by d, [f] is true. Let:

f=./apg::tg/ag::t;1/.../an: :t,
where a; € {parent, ancestor, preceding-sibling} andn t; is a
label or *.

[/tn/an: ita—1/ ... /3 %

where 3; is the inverse axis of a; (parent is the inverse of child,
descendant the inverse of ancestor and preceding-sibling the
inverse of following-sibling)

