Kim.Nguyen®@nicta.com.au

Week 9

1/14

Recap from last week

©® Node Selection algorithm: can be used for full XPath (with filters,
ancestor and parent axes, ...), but is not very efficient and
cannot work in streaming.

2/14

Recap from last week

©® Node Selection algorithm: can be used for full XPath (with filters,
ancestor and parent axes, ...), but is not very efficient and
cannot work in streaming.

® Automata-based algorithm: efficient, can be used for streaming
XPath but only handles / and //, no filters.

2/1

4

Recap from last week

©® Node Selection algorithm: can be used for full XPath (with filters,
ancestor and parent axes, ...), but is not very efficient and
cannot work in streaming.

® Automata-based algorithm: efficient, can be used for streaming
XPath but only handles / and //, no filters.

2/1

4

Recap from last week

©® Node Selection algorithm: can be used for full XPath (with filters,
ancestor and parent axes, ...), but is not very efficient and
cannot work in streaming.

® Automata-based algorithm: efficient, can be used for streaming
XPath but only handles / and //, no filters.

Today

Automata algorithm for XPath with backward filters

Streaming?

To answer a query in streaming, you are only allowed to use memory
proportional to the depth of the tree.

In practice you might need a stack whose size is at most the depth of
the tree. You are not allowed to buffer the whole document, load it into
memory with DOM or precompute another data-structure using a SAX
parser (DAG, tables,. ..).

Automata and XPath

For the XPath query:
//a/b//d

a/14

Automata and XPath

For the XPath query:
//a/b//d

We can execute the NFA:

OREOLEGRN

a/14

XPath with backward filters

What about the query:

//al./ancestor: :c/parent::bl/b//d[./parent: :e]

5/14

XPath with backward filters

What about the query:

//al ./ancestor::c/parent::bl/b//d[./parent: :e]

when is this true ?

5/14

XPath with backward filters

What about the query:

//al ./ancestor::c/parent::bl/b//d[./parent: :e]

when is this true ?

® The node must be an a

5/14

XPath with backward filters

What about the query:

//al ./ancestor::c/parent::bl/b//d[./parent: :e]

when is this true ?

® The node must be an a
® With an ancestor ¢

5/14

XPath with backward filters

What about the query:

//al ./ancestor::c/parent::bl/b//d[./parent: :e]

when is this true ?

® The node must be an a
® With an ancestor ¢
©® Whose parentisab

5/14

XPath with backward filters

What about the query:

//al ./ancestor::c/parent::bl/b//d[./parent: :e]

when is this true ?

® The node must be ana = The descendant of
® With an ancestor ¢
©® Whose parentisab

5/14

XPath with backward filters

What about the query:

//al ./ancestor::c/parent::bl/b//d[./parent:

when is this true ?

® The node must be ana = The descendant of
® With an ancestor ¢ = anode c
©® Whose parentisab

el

5/14

XPath with backward filters

What about the query:

//al ./ancestor::c/parent::bl/b//d[./parent:

when is this true ?

® The node must be ana = The descendant of
® With an ancestor ¢ = anode c
©® Whose parentisab = which is the child of a b

el

5/14

XPath with backward filters

What about the query:

//al ./ancestor::c/parent::bl/b//d[./parent:

when is this true ?

® The node must be ana = The descendant of
® With an ancestor ¢ = anode c
©® Whose parentisab = which is the child of a b

= which can occur anywhere

el

5/14

XPath with backward filters

What about the query:

//al ./ancestor::c/parent::bl/b//d[./parent:

when is this true ?

® The node must be ana = The descendant of
® With an ancestor ¢ = anode c
©® Whose parentisab = which is the child of a b

= which can occur anywhere

el

5/14

XPath with backward filters

What about the query:

//al ./ancestor::c/parent::bl/b//d[./parent:

when is this true ?

® The node must be ana = The descendant of
® With an ancestor ¢ = anode c
©® Whose parentisab = which is the child of a b

= which can occur anywhere

= //b/c//*

el

5/14

XPath with backward filters

What about the query:
//al ./ancestor::c/parent::bl/b//d[./parent: :e]

when is this true ?

® The node must be ana = The descendant of
® With an ancestor ¢ = anode c
©® Whose parentisab = which is the child of a b

= which can occur anywhere

= //b/c//*

A node matches the first step of the original query if it's an a-node
which would be selected by the second query

5/14

XPath with backward filters

What about the query:
//al ./ancestor::c/parent::bl/b//d[./parent: :e]

when is this true ?

® The node must be ana = The descendant of
® With an ancestor ¢ = anode c
©® Whose parentisab = which is the child of a b

= which can occur anywhere

= //b/c//*

A node matches the first step of the original query if it's an a-node
which would be selected by the second query

5/14

XPath and backward filters

//b/c//*

6/14

XPath and backward filters

//b/c//*

This is a simple query! We can use the automaton:

X

&y

c%*
5>-®-1)—@

6/14

XPath and backward filters

//b/c//*

This is a simple query! We can use the automaton:

X
&

5>-®-1)—@

And also: [./parent::e | becomes //e/* for which we can use:

)0 -0

6/14

Running the automata

From
//al./ancestor::c/parent::b]l/b//d[./parent: :e]
we get

* * Ao is the automaton
for the “main”

(y a b (» d
@ s @ _>@_>@ XPath expression.
Ay = " The other A;

(*)) % automata
b C correspond to the
A, :@ —>@ —>@—> filter which must be
* checked for state i
* of automaton A.

() e
Ay =@_’_’@

7/14

Query transformation algorithm

©® Split the query into a “main” downward query and its filters.
e.g.
//al./ancestor: :c/parent::b]/b//d[./parent: :e]
becomes:

//a/b//d , ./ancestor::c/parent::b, ./parent::e

8/14

Query transformation algorithm

©® Split the query into a “main” downward query and its filters.
e.g.
//al./ancestor: :c/parent::b]/b//d[./parent: :e]
becomes:
//a/b//d , ./ancestor::c/parent::b, ./parent::e

® The main query is unchanged. Transform the backward queries
into forward ones. e.g.:
//a/b//d , ./ancestor::c/parent::b, ./parent::e
becomes:

//a/b//d, //b/c//* . [/e/*

8/14

Query transformation algorithm

©® Split the query into a “main” downward query and its filters.
e.g.
//al./ancestor: :c/parent::b]/b//d[./parent: :e]
becomes:
//a/b//d , ./ancestor::c/parent::b, ./parent::e

® The main query is unchanged. Transform the backward queries
into forward ones. e.g.:
//a/b//d , ./ancestor::c/parent::b, ./parent::e
becomes:

//a/v//d, //v/c//*, //e/*
© Transform each query obtained in step 2 into an NFA.

8/14

XPath evaluation algorithm over SAX events

Remember, to evaluate an NFA, you keep track of the current states
that you have reached, in a set of states S.

When you read a label, for each state in S, you compute the destination
states according to the transitions and put them in a state S'.

* *
W W
a b d
For instance with: @ @ @ @if your current set of states

is {1, 3} and you see an a-node, you go into the states {I, 2, 3}. Now,
we just have several automata, so we keep several sets of states.

“Reading a label” corresponds to seeing a startElement(. ..)

9/14

XPath evaluation algorithm over SAX events

Assume you have an automaton class: Auto with the following
methods:

o StateSet transition(String label, StateSet S): Computes
the set of states reachable from the states in S, with a given label.

10/14

XPath evaluation algorithm over SAX events

Assume you have an automaton class: Auto with the following
methods:

o StateSet transition(String label, StateSet S): Computes
the set of states reachable from the states in S, with a given label.

e bool isFinal(StateSet S) returns true is a final state of the
automaton is in S.

10/14

XPath evaluation algorithm over SAX events

Assume that your main query has states: {1,..., N} You need:

e An array AAutos[N+1] containing Auto objects. AAutos[0]
contains the automaton for the main query, AAutos[i] contains
the automaton for state i of the main query (can be null if there
is no automaton for that state)

e A counter the preorder number

e A Stack which will contain arrays of set of states. Each array has
size N+1 the cell i of such an array contains the current set of
states for automaton AAutos[i].

11/14

XPath evaluation algorithm over SAX events
Initialisation : Create an array States[N+1] and put in States[i]

the set containing the initial state of AAutos[i] (put null
if Alutos[i] == null). Push States on the Stack.

12/14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]
the set containing the initial state of AAutos[i] (put null
if Alutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.

12/14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]
the set containing the initial state of AAutos[i] (put null
if Alutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.

12/14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]
the set containing the initial state of AAutos[i] (put null
if Alutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.
Create a new array of sets of states NextStates [N+1].

12/14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]
the set containing the initial state of AAutos[i] (put null
if Alutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.
Create a new array of sets of states NextStates [N+1].
Fori=1toN
if (AAutos[i] != null)
NextStates[i] =
AAutos[i] .transition(label,States[i])

12/14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]
the set containing the initial state of AAutos[i] (put null
if Alutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.
Create a new array of sets of states NextStates [N+1].
Fori=1toN
if (AAutos[i] != null)
NextStates[i] =
AAutos[i] .transition(label,States[i])
Compute Stemp =
AAutos[0] .transition(label,States[0])

12/14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]
the set containing the initial state of AAutos[i] (put null
if Alutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.
Create a new array of sets of states NextStates [N+1].
Fori=1toN
if (AAutos[i] != null)

NextStates[i] =
AAutos[i] .transition(label,States[i])
Compute Stemp =
AAutos[0] .transition(label,States[0])
For g € Stemp

if (AAutos[i] == null ||
AAutos[i] .isFinal (NextStates[i]))

leave g in Stemp, otherwise remove it.

12/14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]
the set containing the initial state of AAutos[i] (put null
if Alutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.
Create a new array of sets of states NextStates [N+1].
Fori=1toN
if (AAutos[i] != null)

NextStates[i] =
AAutos[i] .transition(label,States[i])
Compute Stemp =
AAutos[0] .transition(label,States[0])
For g € Stemp

if (AAutos[i] == null ||
AAutos[i] .isFinal (NextStates[i]))

leave g in Stemp, otherwise remove it.

12/14

XPath evaluation algorithm over SAX events

startElement(String label) (continued) :
NextStates[0] = Stemp

13/14

XPath evaluation algorithm over SAX events

startElement(String label) (continued) :
NextStates[0] = Stemp

13/14

XPath evaluation algorithm over SAX events

startElement(String label) (continued) :
NextStates[0] = Stemp
if (AAutos[0].isFinal (NextStates[0]))
print the current preorder

13/14

XPath evaluation algorithm over SAX events

startElement(String label) (continued) :
NextStates[0] = Stemp
if (AAutos[0].isFinal(NextStates[0]))
print the current preorder
Push NextStates on the stack

13/14

XPath evaluation algorithm over SAX events

startElement(String label) (continued) :
NextStates[0] = Stemp
if (AAutos[0].isFinal (NextStates[0]))
print the current preorder
Push NextStates on the stack
Increment preorder counter

13/14

XPath evaluation algorithm over SAX events

startElement(String label) (continued) :
NextStates[0] = Stemp
if (AAutos[0].isFinal (NextStates[0]))
print the current preorder
Push NextStates on the stack
Increment preorder counter

endElement(String label) : Just pop the stack!

13/14

Next week

o Adding following-sibling/preceding siblings

e More hints/pseudo code on how to implement automata

14

/1

4

