
XML and Databases

XPath evaluation (2)

Kim.Nguyen@nicta.com.au

Week 9

1 / 14

Recap from last week

1 Node Selection algorithm: can be used for full XPath (with �lters,
ancestor and parent axes, . . .), but is not very e�cient and
cannot work in streaming.

2 Automata-based algorithm: e�cient, can be used for streaming
XPath but only handles / and //, no �lters.

Today

Automata algorithm for XPath with backward �lters

2 / 14

Recap from last week

1 Node Selection algorithm: can be used for full XPath (with �lters,
ancestor and parent axes, . . .), but is not very e�cient and
cannot work in streaming.

2 Automata-based algorithm: e�cient, can be used for streaming
XPath but only handles / and //, no �lters.

Today

Automata algorithm for XPath with backward �lters

2 / 14

Recap from last week

1 Node Selection algorithm: can be used for full XPath (with �lters,
ancestor and parent axes, . . .), but is not very e�cient and
cannot work in streaming.

2 Automata-based algorithm: e�cient, can be used for streaming
XPath but only handles / and //, no �lters.

Today

Automata algorithm for XPath with backward �lters

2 / 14

Recap from last week

1 Node Selection algorithm: can be used for full XPath (with �lters,
ancestor and parent axes, . . .), but is not very e�cient and
cannot work in streaming.

2 Automata-based algorithm: e�cient, can be used for streaming
XPath but only handles / and //, no �lters.

Today

Automata algorithm for XPath with backward �lters

2 / 14

Streaming?

To answer a query in streaming, you are only allowed to use memory
proportional to the depth of the tree.

In practice you might need a stack whose size is at most the depth of
the tree. You are not allowed to bu�er the whole document, load it into
memory with DOM or precompute another data-structure using a SAX
parser (DAG, tables,. . .).

3 / 14

Automata and XPath

For the XPath query:
//a/b//d

We can execute the NFA:

1 32

* *

4
a b d

4 / 14

Automata and XPath

For the XPath query:
//a/b//d

We can execute the NFA:

1 32

* *

4
a b d

4 / 14

XPath with backward �lters

What about the query:

//a[./ancestor::c/parent::b]/b//d[./parent::e]

//a[./ancestor::c/parent::b︸ ︷︷ ︸
when is this true ?

]/b//d[./parent::e]

1 The node must be an a

2 With an ancestor c

3 Whose parent is a b

⇒ The descendant of

⇒ a node c

⇒ which is the child of a b

⇒ which can occur anywhere

⇒ //b/c//*
A node matches the �rst step of the original query if it's an a-node
which would be selected by the second query

5 / 14

XPath with backward �lters

What about the query:

//a[./ancestor::c/parent::b]/b//d[./parent::e]

//a[./ancestor::c/parent::b︸ ︷︷ ︸
when is this true ?

]/b//d[./parent::e]

1 The node must be an a

2 With an ancestor c

3 Whose parent is a b

⇒ The descendant of

⇒ a node c

⇒ which is the child of a b

⇒ which can occur anywhere

⇒ //b/c//*
A node matches the �rst step of the original query if it's an a-node
which would be selected by the second query

5 / 14

XPath with backward �lters

What about the query:

//a[./ancestor::c/parent::b]/b//d[./parent::e]

//a[./ancestor::c/parent::b︸ ︷︷ ︸
when is this true ?

]/b//d[./parent::e]

1 The node must be an a

2 With an ancestor c

3 Whose parent is a b

⇒ The descendant of

⇒ a node c

⇒ which is the child of a b

⇒ which can occur anywhere

⇒ //b/c//*
A node matches the �rst step of the original query if it's an a-node
which would be selected by the second query

5 / 14

XPath with backward �lters

What about the query:

//a[./ancestor::c/parent::b]/b//d[./parent::e]

//a[./ancestor::c/parent::b︸ ︷︷ ︸
when is this true ?

]/b//d[./parent::e]

1 The node must be an a

2 With an ancestor c

3 Whose parent is a b

⇒ The descendant of

⇒ a node c

⇒ which is the child of a b

⇒ which can occur anywhere

⇒ //b/c//*
A node matches the �rst step of the original query if it's an a-node
which would be selected by the second query

5 / 14

XPath with backward �lters

What about the query:

//a[./ancestor::c/parent::b]/b//d[./parent::e]

//a[./ancestor::c/parent::b︸ ︷︷ ︸
when is this true ?

]/b//d[./parent::e]

1 The node must be an a

2 With an ancestor c

3 Whose parent is a b

⇒ The descendant of

⇒ a node c

⇒ which is the child of a b

⇒ which can occur anywhere

⇒ //b/c//*
A node matches the �rst step of the original query if it's an a-node
which would be selected by the second query

5 / 14

XPath with backward �lters

What about the query:

//a[./ancestor::c/parent::b]/b//d[./parent::e]

//a[./ancestor::c/parent::b︸ ︷︷ ︸
when is this true ?

]/b//d[./parent::e]

1 The node must be an a

2 With an ancestor c

3 Whose parent is a b

⇒ The descendant of

⇒ a node c

⇒ which is the child of a b

⇒ which can occur anywhere

⇒ //b/c//*
A node matches the �rst step of the original query if it's an a-node
which would be selected by the second query

5 / 14

XPath with backward �lters

What about the query:

//a[./ancestor::c/parent::b]/b//d[./parent::e]

//a[./ancestor::c/parent::b︸ ︷︷ ︸
when is this true ?

]/b//d[./parent::e]

1 The node must be an a

2 With an ancestor c

3 Whose parent is a b

⇒ The descendant of

⇒ a node c

⇒ which is the child of a b

⇒ which can occur anywhere

⇒ //b/c//*
A node matches the �rst step of the original query if it's an a-node
which would be selected by the second query

5 / 14

XPath with backward �lters

What about the query:

//a[./ancestor::c/parent::b]/b//d[./parent::e]

//a[./ancestor::c/parent::b︸ ︷︷ ︸
when is this true ?

]/b//d[./parent::e]

1 The node must be an a

2 With an ancestor c

3 Whose parent is a b

⇒ The descendant of

⇒ a node c

⇒ which is the child of a b

⇒ which can occur anywhere

⇒ //b/c//*
A node matches the �rst step of the original query if it's an a-node
which would be selected by the second query

5 / 14

XPath with backward �lters

What about the query:

//a[./ancestor::c/parent::b]/b//d[./parent::e]

//a[./ancestor::c/parent::b︸ ︷︷ ︸
when is this true ?

]/b//d[./parent::e]

1 The node must be an a

2 With an ancestor c

3 Whose parent is a b

⇒ The descendant of

⇒ a node c

⇒ which is the child of a b

⇒ which can occur anywhere

⇒ //b/c//*
A node matches the �rst step of the original query if it's an a-node
which would be selected by the second query

5 / 14

XPath with backward �lters

What about the query:

//a[./ancestor::c/parent::b]/b//d[./parent::e]

//a[./ancestor::c/parent::b︸ ︷︷ ︸
when is this true ?

]/b//d[./parent::e]

1 The node must be an a

2 With an ancestor c

3 Whose parent is a b

⇒ The descendant of

⇒ a node c

⇒ which is the child of a b

⇒ which can occur anywhere

⇒ //b/c//*
A node matches the �rst step of the original query if it's an a-node
which would be selected by the second query

5 / 14

XPath with backward �lters

What about the query:

//a[./ancestor::c/parent::b]/b//d[./parent::e]

//a[./ancestor::c/parent::b︸ ︷︷ ︸
when is this true ?

]/b//d[./parent::e]

1 The node must be an a

2 With an ancestor c

3 Whose parent is a b

⇒ The descendant of

⇒ a node c

⇒ which is the child of a b

⇒ which can occur anywhere

⇒ //b/c//*

A node matches the �rst step of the original query if it's an a-node
which would be selected by the second query

5 / 14

XPath with backward �lters

What about the query:

//a[./ancestor::c/parent::b]/b//d[./parent::e]

//a[./ancestor::c/parent::b︸ ︷︷ ︸
when is this true ?

]/b//d[./parent::e]

1 The node must be an a

2 With an ancestor c

3 Whose parent is a b

⇒ The descendant of

⇒ a node c

⇒ which is the child of a b

⇒ which can occur anywhere

⇒ //b/c//*
A node matches the �rst step of the original query if it's an a-node
which would be selected by the second query

5 / 14

XPath with backward �lters

What about the query:

//a[./ancestor::c/parent::b]/b//d[./parent::e]

//a[./ancestor::c/parent::b︸ ︷︷ ︸
when is this true ?

]/b//d[./parent::e]

1 The node must be an a

2 With an ancestor c

3 Whose parent is a b

⇒ The descendant of

⇒ a node c

⇒ which is the child of a b

⇒ which can occur anywhere

⇒ //b/c//*
A node matches the �rst step of the original query if it's an a-node
which would be selected by the second query

5 / 14

XPath and backward �lters

//b/c//*

This is a simple query! We can use the automaton:

5 76

* *

8
b c *

And also: [./parent::e] becomes //e/* for which we can use:

9 1110

*
e *

6 / 14

XPath and backward �lters

//b/c//*
This is a simple query! We can use the automaton:

5 76

* *

8
b c *

And also: [./parent::e] becomes //e/* for which we can use:

9 1110

*
e *

6 / 14

XPath and backward �lters

//b/c//*
This is a simple query! We can use the automaton:

5 76

* *

8
b c *

And also: [./parent::e] becomes //e/* for which we can use:

9 1110

*
e *

6 / 14

Running the automata

From
//a[./ancestor::c/parent::b]/b//d[./parent::e]

we get

A0 =
1 32

* *

4
a b d

A2 =
5 76

* *

8
b c *

A4 =
9 1110

*
e *

A0 is the automaton
for the �main�
XPath expression.
The other Ai

automata
correspond to the
�lter which must be
checked for state i
of automaton A0 .

7 / 14

Query transformation algorithm

1 Split the query into a �main� downward query and its �lters.
e.g.:
//a[./ancestor::c/parent::b]/b//d[./parent::e]

becomes:
//a/b//d , ./ancestor::c/parent::b , ./parent::e

2 The main query is unchanged. Transform the backward queries
into forward ones. e.g.:
//a/b//d , ./ancestor::c/parent::b , ./parent::e
becomes:
//a/b//d , //b/c//* , //e/*

3 Transform each query obtained in step 2 into an NFA.

8 / 14

Query transformation algorithm

1 Split the query into a �main� downward query and its �lters.
e.g.:
//a[./ancestor::c/parent::b]/b//d[./parent::e]

becomes:
//a/b//d , ./ancestor::c/parent::b , ./parent::e

2 The main query is unchanged. Transform the backward queries
into forward ones. e.g.:
//a/b//d , ./ancestor::c/parent::b , ./parent::e
becomes:
//a/b//d , //b/c//* , //e/*

3 Transform each query obtained in step 2 into an NFA.

8 / 14

Query transformation algorithm

1 Split the query into a �main� downward query and its �lters.
e.g.:
//a[./ancestor::c/parent::b]/b//d[./parent::e]

becomes:
//a/b//d , ./ancestor::c/parent::b , ./parent::e

2 The main query is unchanged. Transform the backward queries
into forward ones. e.g.:
//a/b//d , ./ancestor::c/parent::b , ./parent::e
becomes:
//a/b//d , //b/c//* , //e/*

3 Transform each query obtained in step 2 into an NFA.

8 / 14

XPath evaluation algorithm over SAX events

Remember, to evaluate an NFA, you keep track of the current states
that you have reached, in a set of states S .

When you read a label, for each state in S , you compute the destination
states according to the transitions and put them in a state S ′.

For instance with: 1 32

* *

4
a b d

if your current set of states
is {1 , 3} and you see an a-node, you go into the states {1 , 2 , 3}. Now,
we just have several automata, so we keep several sets of states.

�Reading a label� corresponds to seeing a startElement(...)

9 / 14

XPath evaluation algorithm over SAX events

Assume you have an automaton class: Auto with the following
methods:

• StateSet transition(String label, StateSet S): Computes
the set of states reachable from the states in S , with a given label.

• bool isFinal(StateSet S) returns true is a �nal state of the
automaton is in S .

10 / 14

XPath evaluation algorithm over SAX events

Assume you have an automaton class: Auto with the following
methods:

• StateSet transition(String label, StateSet S): Computes
the set of states reachable from the states in S , with a given label.

• bool isFinal(StateSet S) returns true is a �nal state of the
automaton is in S .

10 / 14

XPath evaluation algorithm over SAX events

Assume that your main query has states: {1 , . . . ,N} You need:

• An array AAutos[N+1] containing Auto objects. AAutos[0]
contains the automaton for the main query, AAutos[i] contains
the automaton for state i of the main query (can be null if there
is no automaton for that state)

• A counter the preorder number

• A Stack which will contain arrays of set of states. Each array has
size N+1 the cell i of such an array contains the current set of
states for automaton AAutos[i].

11 / 14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]

the set containing the initial state of AAutos[i] (put null
if AAutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.

Create a new array of sets of states NextStates[N+1].
For i = 1 to N

if (AAutos[i] != null)

NextStates[i] =

AAutos[i].transition(label,States[i])

Compute Stemp =

AAutos[0].transition(label,States[0])

For q ∈ Stemp

if (AAutos[i] == null ||

AAutos[i].isFinal(NextStates[i]))

leave q in Stemp, otherwise remove it.

12 / 14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]

the set containing the initial state of AAutos[i] (put null
if AAutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.

Create a new array of sets of states NextStates[N+1].
For i = 1 to N

if (AAutos[i] != null)

NextStates[i] =

AAutos[i].transition(label,States[i])

Compute Stemp =

AAutos[0].transition(label,States[0])

For q ∈ Stemp

if (AAutos[i] == null ||

AAutos[i].isFinal(NextStates[i]))

leave q in Stemp, otherwise remove it.

12 / 14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]

the set containing the initial state of AAutos[i] (put null
if AAutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.

Create a new array of sets of states NextStates[N+1].
For i = 1 to N

if (AAutos[i] != null)

NextStates[i] =

AAutos[i].transition(label,States[i])

Compute Stemp =

AAutos[0].transition(label,States[0])

For q ∈ Stemp

if (AAutos[i] == null ||

AAutos[i].isFinal(NextStates[i]))

leave q in Stemp, otherwise remove it.

12 / 14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]

the set containing the initial state of AAutos[i] (put null
if AAutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.
Create a new array of sets of states NextStates[N+1].

For i = 1 to N
if (AAutos[i] != null)

NextStates[i] =

AAutos[i].transition(label,States[i])

Compute Stemp =

AAutos[0].transition(label,States[0])

For q ∈ Stemp

if (AAutos[i] == null ||

AAutos[i].isFinal(NextStates[i]))

leave q in Stemp, otherwise remove it.

12 / 14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]

the set containing the initial state of AAutos[i] (put null
if AAutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.
Create a new array of sets of states NextStates[N+1].
For i = 1 to N

if (AAutos[i] != null)

NextStates[i] =

AAutos[i].transition(label,States[i])

Compute Stemp =

AAutos[0].transition(label,States[0])

For q ∈ Stemp

if (AAutos[i] == null ||

AAutos[i].isFinal(NextStates[i]))

leave q in Stemp, otherwise remove it.

12 / 14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]

the set containing the initial state of AAutos[i] (put null
if AAutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.
Create a new array of sets of states NextStates[N+1].
For i = 1 to N

if (AAutos[i] != null)

NextStates[i] =

AAutos[i].transition(label,States[i])

Compute Stemp =

AAutos[0].transition(label,States[0])

For q ∈ Stemp

if (AAutos[i] == null ||

AAutos[i].isFinal(NextStates[i]))

leave q in Stemp, otherwise remove it.

12 / 14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]

the set containing the initial state of AAutos[i] (put null
if AAutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.
Create a new array of sets of states NextStates[N+1].
For i = 1 to N

if (AAutos[i] != null)

NextStates[i] =

AAutos[i].transition(label,States[i])

Compute Stemp =

AAutos[0].transition(label,States[0])

For q ∈ Stemp

if (AAutos[i] == null ||

AAutos[i].isFinal(NextStates[i]))

leave q in Stemp, otherwise remove it.

12 / 14

XPath evaluation algorithm over SAX events

Initialisation : Create an array States[N+1] and put in States[i]

the set containing the initial state of AAutos[i] (put null
if AAutos[i] == null). Push States on the Stack.

startElement(String label) : States = top of the Stack.
Create a new array of sets of states NextStates[N+1].
For i = 1 to N

if (AAutos[i] != null)

NextStates[i] =

AAutos[i].transition(label,States[i])

Compute Stemp =

AAutos[0].transition(label,States[0])

For q ∈ Stemp

if (AAutos[i] == null ||

AAutos[i].isFinal(NextStates[i]))

leave q in Stemp, otherwise remove it.

12 / 14

XPath evaluation algorithm over SAX events

startElement(String label) (continued) :
NextStates[0] = Stemp

if (AAutos[0].isFinal(NextStates[0]))

print the current preorder
Push NextStates on the stack
Increment preorder counter

endElement(String label) : Just pop the stack!

13 / 14

XPath evaluation algorithm over SAX events

startElement(String label) (continued) :
NextStates[0] = Stemp

if (AAutos[0].isFinal(NextStates[0]))

print the current preorder
Push NextStates on the stack
Increment preorder counter

endElement(String label) : Just pop the stack!

13 / 14

XPath evaluation algorithm over SAX events

startElement(String label) (continued) :
NextStates[0] = Stemp

if (AAutos[0].isFinal(NextStates[0]))

print the current preorder

Push NextStates on the stack
Increment preorder counter

endElement(String label) : Just pop the stack!

13 / 14

XPath evaluation algorithm over SAX events

startElement(String label) (continued) :
NextStates[0] = Stemp

if (AAutos[0].isFinal(NextStates[0]))

print the current preorder
Push NextStates on the stack

Increment preorder counter

endElement(String label) : Just pop the stack!

13 / 14

XPath evaluation algorithm over SAX events

startElement(String label) (continued) :
NextStates[0] = Stemp

if (AAutos[0].isFinal(NextStates[0]))

print the current preorder
Push NextStates on the stack
Increment preorder counter

endElement(String label) : Just pop the stack!

13 / 14

XPath evaluation algorithm over SAX events

startElement(String label) (continued) :
NextStates[0] = Stemp

if (AAutos[0].isFinal(NextStates[0]))

print the current preorder
Push NextStates on the stack
Increment preorder counter

endElement(String label) : Just pop the stack!

13 / 14

Next week

• Adding following-sibling/preceding siblings

• More hints/pseudo code on how to implement automata

14 / 14

