
Tutorial session 1
DOM and basics of XML parsing

1 XML lexing and parsing
In this excercise, we suppose a function getchar() which returns the next ASCII character

of some input or EOF after the last character of the input has been read.

Questions :

1. Write a small function (in pseudo-language) that returns true the input is a well-formed
XML opening tag (“<foo>”).

2. Write a set of functions which check whether the sequence of characters in the input is
compatible with an XML document (you only have to check for opening, closing tags and
attributes ; you don’t need to consider special tags such as <? xml ...?>, processing ins-
tructions, CDATA sections, comments, entities, . . . ).

3. What would you need to add to verify that the input is a well-formed XML document, that
is, that every opening tag is correctly closed and that the document has a root element ?

4. (extra) modify your function to check the well formedness of the document.

2 UTF-8 sequences
UTF-8 is a standard for character encoding. It is backward compatible with 7 bit ASCII, which

means that every character whose code is below 127 is the same, both in ASCII and UTF-8. UTF-8
was designed to take into account languages with wide range of characters (more than the 256
characters that one can represent using one byte, e.g. Chinese, Japanese, Korean, Arabic with
ligatures, Mathematics, . . . ). Hence any character of code 128 and above must be encoded. These
extended characters can take up to 4 bytes. The encoding works as follows :

Character range ↔ bit representation sample character

0-7F 1 0xxxxxxx A=10 65=16 41=2 01000001
(0-127)

80-7FF 2 110yyyxx 10xxxxxx Ł=10 321=16 141=2 1 01000001
(128-2047) 11000101 10000001=16 C581

0800-FFFF 3 1110yyyy 10yyyyxx 10xxxxxx Ễ=10 7876=16 1EC4
(2048-65535) 1EC4=2 11110 11000100

11100001 10111011 10000100
=16 E1BB84

010000-10FFFF 4 11110zzz 10zzyyyy A =10 120120=16 1D538
(65536-1114111) 10yyyyxx 10xxxxxx 1D538=2 1 11010101 00111000

11110000 10011101
10010100 10111000=16 F09D94B8

1



Questions :

1. How many bytes are needed to encode the string "Żubrówka", knowing that ’Ż’ is the
379th UTF-8 character and ’ó’ is the 243rd UTF-8 character.

2. In C or C++, strings are usually equivalent to arrays of bytes. Suppose you have a well-
formed UTF-8 string represented as an array of bytes, terminated by the NULL (byte 00)
character. Write (informally) the algorithm computing the number of characters in this array.

3. Write the algorithm that gives you the position of the nth character of a given string. Is it as
fast as for ASCII strings (plain C strings) ?

4. How could you store the UTF-8 string to get fast access to any character. How many bytes
would then take the string "Żubrówka" in this data-structure. How many bytes are wasted
by doing so ?

Note : In reality, handling UTF-8 strings is much more complicated than this, due to the presence
of combining characters. For instance, the character number 769, ’´’ (combining accute accent,
which is different from the plain accute accent with code 180) can be used to put an accute accent
on any character. Thus, the sequence CC 81 40 which is composed of CC 81 = ’´’ and 40 = @
gives the character ’@́’ and should be counted as a single character.

3 Size of a DOM implementation
The DOM specification defines the various fields and methods that each type of node in an

XML document should have. For element node and text nodes, these are :

Element :
nodeName Tag of the element
nodeValue null
nodeType (constant) ELEMENT_NODE
parentNode (pointer to) the parent
childNodes (pointer to) the list of children
firstChild The first node contained in childNodes
lastChild The last node contained in childNodes
previousSibling (pointer to) the previous sibling
nextSibling (pointer to) the next sibling
attributes (pointer to) the map of attribute nodes
textContent Concatenation of the textContent attribute value of

every child node, excluding COMMENT_NODE and
PROCESSING_INSTRUCTION_NODE nodes.

Text :
nodeName "#text"
nodeType (constant) TEXT_NODE
parentNode (pointer to) the parent
childNodes null
firstChild null
lastChild null
previousSibling null
nextSibling null
attributes null
data A String including all character code

contained in this node
length The number of 16-bit units needed to encode

all ISO 10646 character code contained in the
character information items using the
UTF-16 encoding.

isElementContentWhitespace The element content whitespace property

2



1. Give a reasonable type for every attribute

2. Based on it, how much space would one Element object take in memory ? a Text object ?
(you can assume that the size of an object is the sum of the size of its fields).

3. Consider the following document in Figure 1. What is the size in bytes of this document
(supposing the encoding is ASCII).

4. What would be the size of its DOM representation, assuming that each element is repre-
sented by an Element object and each text content by a Text object (Note : UTF-16 encodes
every character on at least two bytes and every character outside of the range 0-FFFF with
4 bytes. It is compatible with 7 bit ASCII, meaning that every ASCII character whose code
xx is below 127 is encoded as 00xx).

5. Assuming that the factor between size on disk and size of the DOM is constant, what is the
biggest document that you could parse with DOM on a machine with 2GB ram.

<addressbook>
< c o n t a c t>

<name>
< f i r s t >John</ f i r s t >
< l a s t >Smith</ l a s t >

</name>
< t e l >0206578913</ t e l >
<email>john@smith . com</email>

</ c o n t a c t>
< c o n t a c t>

<name>
< f i r s t >Foo</ f i r s t >
< l a s t >Bar</ l a s t >

</name>
< t e l >010203040506</ t e l >
<email>foobar@baz . whitehouse . gov . us</email>

</ c o n t a c t>
</addressbook>

FIG. 1 – Addressbook document

3


