XML and Databases

Lecture 13
Fast Substring Search

Sebastian Maneth
NICTA and UNSW

CSE@UNSW - Semester 1, 2010

Fast Substring Search

Recall the contalns-predicate of XPath:
//book/abstract[contains(.,”fix”)]

For instance the abstract node:

<book>. .
<abstract>This article dicusses the advantages of
suffix arrays, for the purpose of substring search ..
</abstract>. .

</book>

will be returned, because it contains the substring “fix”

because it appears in the word “suffix” mentioned in the abstract text.

Fast Substring Search

Question
Given a very large text, how do you search for
-> All occurrences of a given keyword?

-> All occurrences of a given substring?
- Count them (can be done faster?)

Fast Substring Search

Question
Given a very large text, how do you search for
-> All occurrences of a given keyword?

-> All occurrences of a given substring?
- Count them (can be done faster?)

What we know so far:

-> can use KMP-algorithm.
for a text of length n, it only takes O(n) time to locate
all occurrences of the substring.

-> in a database, that is *way* to slow!!
How do you think Google indexes text for fast search??

Fast Substring Search

Question
Given a very large text, how do you search for
-> All occurrences of a given keyword?

-> All occurrences of a given substring?
- Count them (can be done faster?)

We want search time to be independent of the size n of
the text, but should only depend on the length of the keyword.

We are allowed to preprocess the string in linear time
(“indexing”).

Fast Substring Search

Question
Given a very large text, how do you search for
-> All occurrences of a given keyword?

-> All occurrences of a given substring?
- Count them (can be done faster?)

Ideal --we search for exact WORDS, not substrings—
Make a “dictionary” of every WORD that occurs in the text:

1: this[0, 89, 2098] - a[90, 183, 290,

Sort it!

1 21
2: article[8, 29300] 2: actual[450, 9812, ..
3: . 3: article[8, 29300]
3: .

1

Fast Substring Search

Given a keyword a,a,...a,, of length m,

How much time required to locate all occurrences of
the keyword?

Easy: keep start rows of strings that “start with a_1" (for any letter),
and within those rows, again those that “continue with letter a_2" (for all letters)
Etc. (this is a tree of height=length of longest word, and

branching=# different letters)

Fast Substring Search

Given a keyword a,a,...a,, of length m,

How much time required to locate all occurrences of
the keyword?

= only time O(m)! ©

Problems (1) indexing time?!
(2) how to do substring search??

Ideal --we search for exact WORDS, not substrings—
Make a “dictionary” of every WORD that occurs in the text:
1: this[0, 89, 2098] 1: a[90, 183, 290, ..]
2: article[8, 29300] 2: actual[450, 9812, ..]
3: . 3: article[8, 29300]

3-

Sort it!

Ideal --we search for exact WORDS, not substrings—
Make a “dictionary” of every WORD that occurs in the text:
1: this[0, 89, 2098] 1: a[90, 183, 290, ..]
2: article[8, 29300] 2: actual[450, 9812, ..]
3: . 3: article[8, 29300]

3-

Sort it!

9 10
Fast Substring Search The Burrows-Wheeler Transform
Given the text of length n, how many substrings Idea comes from compression.
are there? bzip2 is based on the Burrows-Wheeler Transform!
> (begin position, end position) 1) Add an end-marker “$” to the end of the text
Quadratically many! That is, O(n"2). 2 I‘E$r3d<-r;'ar<kﬁ;’$<|‘sc’sznallest<|n‘zovrge‘32’ng.
Thus, itis impossible in linear time to list all these 3) Compute all cyclic shifts of text
substrings and put them into a (sorted) dictionary! 4) Sort them lexicographically
Ideal --we search for exact WORDS, not substrings— / Burrows-Wheeler Transform of text T
Make a “dictionary” of every WORD that occurs in the text: banana$
$banana
1: this[0, 89, 2098] 1: a[90, 183, 290, ..] a$banan
2: article[8, 29300] 2: actual[450, 9812, ..] nasbana
3: . 3: article[8, 29300] ana$ban sort
Sort it! s nana$ba
ananash
11 12

The Burrows-Wheeler Transform

Idea comes from compression.
bzip2 is based on the Burrows-Wheeler Transform!

The Burrows-Wheeler Transform

Idea comes from compression.
bzip2 is based on the Burrows-Wheeler Transform!

1) Add an end-marker “$” to the end of the text
2) End-marker $ is smallest in ordering:
$<a<h<ic<.... <7 <A<

3) Compute all cyclic shifts of text
4) Sort them lexicographically
/ Burrows-Wheeler Transform of text T
banana$
$bhanana -
a$banan Question

Why do you think is the BWT good
for compression?

na$hana |::>

ana$ban sort
nana$ba
ananas$b

1) Add an end-marker “$” to the end of the text
2) End-marker $ is smallest in ordering:
$<a<h<ic<.... <7 <A<

3) Compute all cyclic shifts of text
4) Sort them lexicographically
/ Burrows-Wheeler Transform of text T
banana$.
First row: only tells us
$banana A

how many substrings

- start with “a” (3)

- how many start with “b” (1)

etc.

Same for any text with these letters!
We canNOT reconstruct T from row 1!

a$banan

na$bana |::>
ana$ban sort
nana$ba

ananas$b

The Burrows-Wheeler Transform

Idea comes from compression.
bzip2 is based on the Burrows-Wheeler Transform!

1) Add an end-marker “$” to the end of the text

2) End-marker $ is smallest in ordering:
$<a<h<ic< ... <7 <A<

3) Compute all cyclic shifts of text

4) Sort them lexicographically

canNOT reconstruct T
from second row!

Second row: tells us
how many substrings
start with “n”, if letter before is “a” (2)
->start with “a” if letter before is “n” (2)

Burrows-Wheeler Transform of text T

gg;i;ﬁ: First row: only tells us
how many substrings
a$banan Y g

-> start with “a” (3)

- how many start with “b” (1)

etc.

Same for any text with these letters!
We canNOT reconstruct T from row 1!

nagbana |::>

anasban sort
nana$bha
ananas$h

The Burrows-Wheeler Transform

But, we can reconstruct T from the last row!! ©
How?

Naive way:
1. given “annb$aa”, sort the letters. This gives row 1!

(mm

sort
What's next?
Hint this tells us all two-letter substrings!

ST Q&
D YWHLOTSS

banana$

$bhanana

a$banan

nagbana |::>
ana$han gort
nana$bha

ananash

“— Burrows-Wheeler Transform of text T

14

15 16
The Burrows-Wheeler Transform The Burrows-Wheeler Transform
But, we can reconstruct T from the last row!! © But, we can reconstruct T from the last row!! ©
How? $ a How? $ a
a n a n
Naive way: a n Naive way: a n
1. given “annb$aa”, sort the letters. This gives row 1! a <:| b 1. given “annb$aa”, sort the letters. This gives row 1! a <:| b
b $ 2. Constuct 2-letter substrings, sort. Gives row 2! b $
sort .) sort
S n a 3. Construct 3-letter substrings, sort. Gives row 3! n a
: etc
Hint: this tells us all two-letter substrings! n a n a
pre-pend
Text contains Text contains
a$ a$ ash $ba
na This is row 2! na nad asb
na na nan ana
ba ba ban ana
$b sort $b sort $ba Sort ban
an an ana na$
an an ana nan
17 18
The Burrows-Wheeler Transform BWT: Better Decompression
But, we can reconstruct T from the last row!! © - In areal implementation we may NOT construct all
How? $ a cyclic shifts and sort... (because that takes quadratic time!!)
a n -> Same for decompression. May not do it the naive way!
Naive way: a n
1. given “annb$aa”, sort the letters. This gives row 1! a <:| b
2. Constuct 2-letter substrings, sort. Gives row 2! b N $
3. Construct 3-letter substrings, sort. Gives row 3! n sorf a gg;ﬁgs: cs$abn
etc 0145
n a asbanan
na$hana
pre-pend ana$ban LF-mapping
nana$ba LF(i=CILLi1] + rank ;7(L, D)
anana$h
$ha $banana O(log S) time
ash a$banan using wavelet tree
ana ana$ban
ana |::> |:> |:> anana3b . Retrieving T: start from end marker, read backwards (by applying LF)
ban prepend ~ SOrt prepend ~ SOrt banana$ == Originall
na$ nagbana e.g.: LF(5)=1, LF(1)=2, LF(2)=6, LF(6)=3, LF(3)=7, LF(7)=4
nana$ba

nan

L= % a n a n ab

Backward Search
S = size of
Here comes the magic: we are now able to count the number of alphabet

occurrences of a substring of length m, only in time O(m log S)!

Y

This is what makes fast keyword
Search a la Google possible!

Search time is INDEPENDENT of
the size of the text!!

20

Backward Search
S = size of
Here comes the magic: we are now able to count the number of alphabet

occurrences of a substring of length m, only in time O(m log S)!

banana$

$banana Csabn

agbanan 0145

na$bana

anashan LF-mapping

nana$ba LF(i)=CLLLI1] + rank (L, i)
anana$h

O(log S) time

Backward search for Pattern P[1]..P[m] using wavelet tree

Initial range: [sp,ep] with sp=C[P[m]]+1 and ep=C[P[m]+1]
Then [s,e] with

s = C[PLi]1] + rank ;;(L,sp-1) + 1

e = C[P[i]] + rank_;;(L.ep)

21 22
Backward Search Backward Search
S =size of S =size of
Here comes the magic: we are now able to count the number of alphabet Here comes the magic: we are now able to count the number of alphabet
occurrences of a substring of length m, only in time O(m log S)! occurrences of a substring of length m, only in time O(m log S)!
banana$ banana$
$banana 123 $banana asbanan C$abn 3
agbanan P= a agbanan anagban 0145 P= 4gna
nagbhana [sp.ep] =[2,4] na$hana [sp.ep] = [2,4]
ana$han ana$han
nana$ba nanasba s=C[“n"] + rank(L,1) +1
ananash ananash =5+0+1=6
e=5 +rank(L,4)
Backward search for Pattern P[1]..P[m] Backward search for Pattern P[1]..P[m] =5+2=7
=> Initial range: [sp,ep] with sp=C[P[m]]+1 and ep=C[P[m]+1]
Then [s,e] with Then [s,e] with
s = C[P[i]] + rank ;;(L,sp-1) + 1 s = C[P[i]1] + rank ;;(L,sp-1) + 1
e = C[P[i1] + rank_;;(L.ep) e = C[P[i1] + rank_;;(L.ep)
23 24
Backward Search Backward Search
S =size of S =size of
Here comes the magic: we are now able to count the number of alphabet Here comes the magic: we are now able to count the number of alphabet
occurrences of a substring of length m, only in time O(m log S)! occurrences of a substring of length m, only in time O(m log S)!
banana$
$bhanana 123 Backward search for Pattern P[1]..P[m] ~ Counting: O(m log S) time
a$banan P = |apa
nagbana [sp_,ep] =[2,4] Locating
anashan sp=6 f I=log1+epsion S led
nanagba ep=7 If every I=log n position is sample
then O(Il log S) per occurrence,
ananash

s=C[“a”] + rank,(L,5) + 1
=1+1+1=3
Backward search for Pattern P[1]..P[m]

e=1+rank_a(L,7) =

1+3=4
s = C[P[i]] + rank_;;(L.sp-1) + 1 Donel!
e = C[PLi1] + rank ;7(L.ep) [3.4]=final range

= 2 Occs of “ana”

by backward traversal using LF.

Real Performance

/* In order : IsContains, T ng of IsContains, GlobalCount, T
GlobalCount, CountContains, time of CountContains,
time of Full Report Contains */

Sampling rate 64
“Bakst": 1, 0.038, 1, 0.004, 1, 0.04, 0.012, max_mem = 61
“ruminants'”: 1, 0.04, 22, 0.009, 19, 2.281, 1.588, max_mem = 61

1, 0.026, 392, 0.009, 144, 29.924, 32.668, max_mem = 61
1, 0.028, 438, 0.009, 438, 4.616, 4.457, max_mem = 61
1, 0.051, 1472, 0.008, 966, 128.28, 122.014, max_mem = 61
, 0.02, 2685, 0.005, 1493, 218.462, 215.196, max_mem = 61
0.019, 6897, 0.005, 4690, 553.496, 548.009, max_mem = 62

1, 0.016, 20859, 0.004, 12073, 1722.95, 171

1, 0.016, 63332, 0.004, 22974, 5084.14, 508

1, 0.014, 238638, 0.003, 42586, 19641.8, 19630.3, max_mem

: 1, 0.001, 2932251, 0, 595716, 189299, 188377, max_mem = 93
"\n": 1, 0.001, 9730750, 0.001, 5870474, 132780, 132241, max_mem = 86

64

use
naive CountContains/FullContains on nairve text: ca. 2700ms

26
Real Performance

/* In order : IsContains, Ti g of IsContains, GlobalCount,
GlobalCount, CountContains, time of CountContains,
time of Full Report Contains */

g rate 5

“Bakst'": 1, 0.038, 1, 0.005, 1, 0.049, 0.013, max_mem = 100

“ruminants™: 1, 0.038, 22, 0.01, 19, 0.156, 0.086, max_mem = 100

i 1, 0.027, 392, 0.009, 144, 1.718, 1.357, max_mem = 100

: 1, 0.098, 438, 0.009, 438, 4.145, 3.942, max_mem = 100
1, 0.029, 1472, 0.009, 966, 6.247, 5.853, max_mem = 101
0.019, 2685, 0.006, 1493, 12.24, 11.588, max_mem 101

, 0.018, 6897, 0.005, 4690, 25.403, 27.344, max_mem = 101
0.026, 10402, 0.005, 8534, 77.175, 73.613, max_mem = 101

.016, 20859, 0.003, 12073, 84.012, 78.663, max_mem = 101
015, 63332, 0.004, 22974, 242.834, 235.043, max_mem 102

108
119

. max_menm
78.85, max_mem
i, 0, 595716, 13183.4, 13173. max_mem = 133

: 1, 0.001, 9730750, 0.001, 5870474, 87770.9, 88230.4, max_mem = 126

use
naive CountContains/FullContains on naive text: ca. 2700ms

27 28
Construction Time © Advertisement ©
XMark data 174 different element labels New course, will be first offered in Session 1 of 2011.
Max Depth: 14, Average Depth: 9.6
P 9 P COMP9319 -- Web Data Compression and Search (PG, UOC: 6)
116MB XMark 6,074,297 nodes ‘Text: 7min 18s TOTAL= 9min 203‘
559MB XMark 29,239,763 nodes |Text: 38min 45s TOTAL= 53min 25s | Contents
1GB XMark 58,472,941 nodes |[Text: 1h 24min TOTAL= 1h 55min |
Data Compression : (a) Adaptive Coding, Information Theory
. . (b) Text Compression (ZIP, GZIP, BZIP, etc)
f th Mi
mosolze sfthe Indexin fmeotcry (M) (c) Burrows-Wheeler Transform and Backward Search
(d) XML Compression
800 —— I FM-Index
&00 . ::;; -Srfrﬁﬂ_ Search: (a) Indexing
(b) Pattern Matching and Regular Expression Search
400 l | (c) Distributed Querying
. ' (d) Fast Index Construction
200 - [| | Ll By (e) Implementation
0 | — - | | - If time allows: Streaming Algorithms, On-Line Data Analytics
116 3 335 447 559
Size of the Input document (M) The lecture materials will be complemented by projects and assignments.
29

END
Lecture 13 and of the course.

- Thanks for your attention and hard work.
- Hopefully you have enjoyed the lecture.
- Good luck and all the best with
the exam on June 12t,

