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Fast Substring Search

Recall the  contains-predicate of XPath:

//book/abstract[contains(.,”fix”)]

For instance the abstract node:
<book>..
<abstract>This article dicusses the advantages of
suffix arrays, for the purpose of substring search ..
</abstract>..

</book>

will be returned, because it contains the substring “fix”
because it appears in the word “suffix” mentioned in the abstract text.
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Fast Substring Search

Question

Given a  very large text,  how do you search for

Æ All occurrences of a given keyword?
Æ All occurrences of a given substring?
Æ Count them (can be done faster?)
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Fast Substring Search

Question

Given a  very large text,  how do you search for

Æ All occurrences of a given keyword?
Æ All occurrences of a given substring?
Æ Count them (can be done faster?)

What we know so far:

Æ can use KMP-algorithm.
for a text of  length n, it only takes  O(n) time to locate
all occurrences of the substring.

Æ in a database, that is *way* to slow!!
How do you think Google indexes text for fast search??
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Fast Substring Search

Question

Given a  very large text,  how do you search for

Æ All occurrences of a given keyword?
Æ All occurrences of a given substring?
Æ Count them (can be done faster?)

We want search time to be independent of the size n of
the text, but should only depend on the length of the keyword.

We are allowed to preprocess the string in linear time 
(“indexing”).
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Fast Substring Search

Question

Given a  very large text,  how do you search for

Æ All occurrences of a given keyword?
Æ All occurrences of a given substring?
Æ Count them (can be done faster?)

Idea 1 --we search for exact WORDS, not substrings—

Make a “dictionary” of every WORD that occurs in the text:

1: this[0, 89, 2098]
2: article[8, 29300]
3: …

Sort it!

1: a[90, 183, 290, … ]
2: actual[450, 9812, … ]
3: article[8, 29300]
3: …
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Fast Substring Search

Idea 1 --we search for exact WORDS, not substrings—

Make a “dictionary” of every WORD that occurs in the text:

1: this[0, 89, 2098]
2: article[8, 29300]
3: …

Sort it!

1: a[90, 183, 290, … ]
2: actual[450, 9812, … ]
3: article[8, 29300]
3: …

Given a keyword  a1a2…am of length m,

How much time required to locate all occurrences of 
the keyword?

Easy: keep start rows of strings that “start with a_1” (for any letter),
and within those rows, again those that “continue with letter a_2” (for all letters)
Etc.  (this is a tree of height=length of longest word, and

branching=# different letters)
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Fast Substring Search

Idea 1 --we search for exact WORDS, not substrings—

Make a “dictionary” of every WORD that occurs in the text:

1: this[0, 89, 2098]
2: article[8, 29300]
3: …

Sort it!

1: a[90, 183, 290, … ]
2: actual[450, 9812, … ]
3: article[8, 29300]
3: …

Given a keyword  a1a2…am of length m,

How much time required to locate all occurrences of 
the keyword?

Î only time O(m)! ☺

Problems   (1)   indexing time?!
(2)   how to do substring search??
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Fast Substring Search

Idea 1 --we search for exact WORDS, not substrings—

Make a “dictionary” of every WORD that occurs in the text:

1: this[0, 89, 2098]
2: article[8, 29300]
3: …

Sort it!

1: a[90, 183, 290, … ]
2: actual[450, 9812, … ]
3: article[8, 29300]
3: …

Given the text of  length n, how many substrings
are there?

Æ (begin position, end position)

Quadratically many! That is, O(n^2).
Thus, it is  impossible in linear time to list all these
substrings and put them into a (sorted) dictionary!
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The Burrows-Wheeler Transform
Idea comes from compression.
bzip2 is based on the Burrows-Wheeler Transform!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

Burrows-Wheeler Transform of text T

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

1) Add an end-marker “$” to the end of the text
2) End-marker $ is smallest in ordering:

‘$’ < ‘a’ < ‘b’ < ‘c’ < …..   < ‘z’ < ‘A’ < ….
3) Compute all cyclic shifts of text
4) Sort them lexicographically

sort 
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The Burrows-Wheeler Transform
Idea comes from compression.
bzip2 is based on the Burrows-Wheeler Transform!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

Burrows-Wheeler Transform of text T

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

1) Add an end-marker “$” to the end of the text
2) End-marker $ is smallest in ordering:

‘$’ < ‘a’ < ‘b’ < ‘c’ < …..   < ‘z’ < ‘A’ < ….
3) Compute all cyclic shifts of text
4) Sort them lexicographically

sort 

Question
Why do you think is the BWT good
for compression?
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The Burrows-Wheeler Transform
Idea comes from compression.
bzip2 is based on the Burrows-Wheeler Transform!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

Burrows-Wheeler Transform of text T

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

1) Add an end-marker “$” to the end of the text
2) End-marker $ is smallest in ordering:

‘$’ < ‘a’ < ‘b’ < ‘c’ < …..   < ‘z’ < ‘A’ < ….
3) Compute all cyclic shifts of text
4) Sort them lexicographically

First row: only tells us
how many substrings 
Æ start with “a” (3)
Æ how many start with “b” (1)
etc.
Same for any text with these letters!
We canNOT reconstruct T from row 1!

sort 
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The Burrows-Wheeler Transform
Idea comes from compression.
bzip2 is based on the Burrows-Wheeler Transform!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

Burrows-Wheeler Transform of text T

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

1) Add an end-marker “$” to the end of the text
2) End-marker $ is smallest in ordering:

‘$’ < ‘a’ < ‘b’ < ‘c’ < …..   < ‘z’ < ‘A’ < ….
3) Compute all cyclic shifts of text
4) Sort them lexicographically

First row: only tells us
how many substrings 
Æ start with “a” (3)
Æ how many start with “b” (1)
etc.
Same for any text with these letters!
We canNOT reconstruct T from row 1!

Second row: tells us 
how many substrings 
Æstart with “n”, if letter before is “a” (2)
Æstart with “a” if letter before is “n” (2)

canNOT reconstruct T
from second row!

sort 
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The Burrows-Wheeler Transform

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

Burrows-Wheeler Transform of text T

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

But, we can reconstruct T from the last row!!   ☺
How?

Naïve way:
1. given “annb$aa”, sort the letters. This gives row 1!

a
n
n
b
$
a
a

$
a
a
a
b
n
n

sort 

sort 

What’s next?
Hint:  this tells us all two-letter substrings!
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The Burrows-Wheeler Transform
But, we can reconstruct T from the last row!!   ☺
How?

Naïve way:
1. given “annb$aa”, sort the letters. This gives row 1!

a
n
n
b
$
a
a

$
a
a
a
b
n
n

sort 
What’s next?
Hint:  this tells us all two-letter substrings!

Text contains
a$
na
na
ba
$b
an
an

sort 

$b
a$
an
an
ba
na
na

This is row 2!
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The Burrows-Wheeler Transform
But, we can reconstruct T from the last row!!   ☺
How?

Naïve way:
1. given “annb$aa”, sort the letters. This gives row 1!
2. Constuct 2-letter substrings, sort. Gives row 2!
3. Construct 3-letter substrings, sort. Gives row 3!
etc

a
n
n
b
$
a
a

$
a
a
a
b
n
n

sort 

Text contains
a$
na
na
ba
$b
an
an

sort 

$b
a$
an
an
ba
na
na

pre-pend

a$b
na$
nan
ban
$ba
ana
ana

sort 

$ba
a$b
ana
ana
ban
na$
nan
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The Burrows-Wheeler Transform
But, we can reconstruct T from the last row!!   ☺
How?

Naïve way:
1. given “annb$aa”, sort the letters. This gives row 1!
2. Constuct 2-letter substrings, sort. Gives row 2!
3. Construct 3-letter substrings, sort. Gives row 3!
etc

a
n
n
b
$
a
a

$
a
a
a
b
n
n

sort 

pre-pend

$ba
a$b
ana
ana
ban
na$
nan

prepend sort prepend sort 
….

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

Original!
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BWT:  Better Decompression
Æ In a real implementation we may NOT construct all
cyclic shifts and sort… (because that takes quadratic time!!)
Æ Same for decompression. May not do it the naïve way!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

C $ a b n
0 1 4 5 

LF-mapping
LF(i)=C[L[i]] + rankL[i](L,i)

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

O(log S) time
using wavelet tree

Retrieving T: start from end marker, read backwards (by applying LF) 

e.g.: LF(5)=1, LF(1)=2, LF(2)=6, LF(6)=3, LF(3)=7, LF(7)=4 
L[.]=      $             a             n             a          n             a   b
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Backward Search
Here comes the magic:  we are now able to count the number of
occurrences of a  substring of length m,  only in time O(m log S)!

S = size of
alphabet

This is what makes fast keyword
Search a la Google possible!

Search time is  INDEPENDENT  of
the size of the text!!
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Backward Search
Here comes the magic:  we are now able to count the number of
occurrences of a  substring of length m,  only in time O(m log S)!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

C $ a b n
0 1 4 5 

LF-mapping
LF(i)=C[L[i]] + rankL[i](L,i)

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

O(log S) time
using wavelet treeBackward search for Pattern P[1]..P[m]

Initial range:  [sp,ep] with  sp=C[P[m]]+1 and ep=C[P[m]+1]
Then [s,e] with 
s = C[P[i]] + rankL[i](L,sp-1) + 1
e = C[P[i]] + rankL[i](L,ep)

S = size of
alphabet
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Backward Search
Here comes the magic:  we are now able to count the number of
occurrences of a  substring of length m,  only in time O(m log S)!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

C $ a b n
0 1 4 5 

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

Backward search for Pattern P[1]..P[m]

Î Initial range:  [sp,ep] with  sp=C[P[m]]+1 and ep=C[P[m]+1]
Then [s,e] with 
s = C[P[i]] + rankL[i](L,sp-1) + 1
e = C[P[i]] + rankL[i](L,ep)

123
P =  ana
[sp,ep] = [2,4]

S = size of
alphabet
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Backward Search
Here comes the magic:  we are now able to count the number of
occurrences of a  substring of length m,  only in time O(m log S)!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

C $ a b n
0 1 4 5 

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

Backward search for Pattern P[1]..P[m]

Then [s,e] with 
s = C[P[i]] + rankL[i](L,sp-1) + 1
e = C[P[i]] + rankL[i](L,ep)

123
P =  ana
[sp,ep] = [2,4]

s=C[“n”] + rankn(L,1) +1
= 5 + 0 + 1 = 6

e= 5 + rankn(L,4) 
= 5 + 2 = 7

S = size of
alphabet
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Backward Search
Here comes the magic:  we are now able to count the number of
occurrences of a  substring of length m,  only in time O(m log S)!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

C $ a b n
0 1 4 5 

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

Backward search for Pattern P[1]..P[m]

s = C[P[i]] + rankL[i](L,sp-1) + 1
e = C[P[i]] + rankL[i](L,ep)

123
P =  ana
[sp,ep] = [2,4]
sp=6
ep=7

s=C[“a”] + ranka(L,5) + 1
= 1 + 1 + 1  = 3

e = 1 + rank_a(L,7) = 
1 + 3 = 4

Done!
[3,4]=final range
Î 2 Occs of “ana”

S = size of
alphabet
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Backward Search
Here comes the magic:  we are now able to count the number of
occurrences of a  substring of length m,  only in time O(m log S)!

S = size of
alphabet

Backward search for Pattern P[1]..P[m] Counting:  O(m log S) time 

Locating
If every   l=log1+epsilon n position is sampled
then O(l log S) per occurrence,

by backward traversal using LF.
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Real Performance

/* In order : IsContains, Timing of IsContains, GlobalCount, Timing of
GlobalCount, CountContains, time of CountContains, 
time of Full Report Contains */
-----------------
Sampling rate 64
"Bakst": 1, 0.038, 1, 0.004, 1, 0.04, 0.012, max_mem = 61
"ruminants": 1, 0.04, 22, 0.009, 19, 2.281, 1.588, max_mem = 61
"morphine": 1, 0.026, 392, 0.009, 144, 29.924, 32.668, max_mem = 61
"AUSTRALIA": 1, 0.028, 438, 0.009, 438, 4.616, 4.457, max_mem = 61
"molecule": 1, 0.051, 1472, 0.008, 966, 128.28, 122.014, max_mem = 61
"brain": 1, 0.02, 2685, 0.005, 1493, 218.462, 215.196, max_mem = 61
"human": 1, 0.019, 6897, 0.005, 4690, 553.496, 548.009, max_mem = 62
"blood": 1, 0.018, 10402, 0.005, 8534, 401.214, 399.674, max_mem = 62
"from": 1, 0.016, 20859, 0.004, 12073, 1722.95, 1717.83, max_mem = 62
"with": 1, 0.016, 63332, 0.004, 22974, 5084.14, 5083.77, max_mem = 63
" in": 1, 0.014, 238638, 0.003, 42586, 19641.8, 19630.3, max_mem = 64
"a": 1, 0.001, 2932251, 0, 595716, 189299, 188377, max_mem = 93
"\n": 1, 0.001, 9730750, 0.001, 5870474, 132780, 132241, max_mem = 86

CountContains/FullContains on naïve text:  ca. 2700ms

use 
naïve 
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Real Performance

/* In order : IsContains, Timing of IsContains, GlobalCount, Timing of
GlobalCount, CountContains, time of CountContains, 
time of Full Report Contains */
-----------------
Sampling rate 5
"Bakst": 1, 0.038, 1, 0.005, 1, 0.049, 0.013, max_mem = 100
"ruminants": 1, 0.038, 22, 0.01, 19, 0.156, 0.086, max_mem = 100
"morphine": 1, 0.027, 392, 0.009, 144, 1.718, 1.357, max_mem = 100
"AUSTRALIA": 1, 0.098, 438, 0.009, 438, 4.145, 3.942, max_mem = 100
"molecule": 1, 0.029, 1472, 0.009, 966, 6.247, 5.853, max_mem = 101
"brain": 1, 0.019, 2685, 0.006, 1493, 12.24, 11.588, max_mem = 101
"human": 1, 0.018, 6897, 0.005, 4690, 25.403, 27.344, max_mem = 101
"blood": 1, 0.026, 10402, 0.005, 8534, 77.175, 73.613, max_mem = 101
"from": 1, 0.016, 20859, 0.003, 12073, 84.012, 78.663, max_mem = 101
"with": 1, 0.015, 63332, 0.004, 22974, 242.834, 235.043, max_mem = 102
" in": 1, 0.012, 238638, 0.002, 42586, 1105.6, 1091.43, max_mem = 103
"b": 1, 0, 411409, 0.001, 135307, 1779.27, 1762.62, max_mem = 108
"g": 1, 0.001, 748326, 0, 320440, 3411.65, 3378.85, max_mem = 119
""a": 1, 0, 2932251, 0, 595716, 13183.4, 13173.4, max_mem = 133
"\n": 1, 0.001, 9730750, 0.001, 5870474, 87770.9, 88230.4, max_mem = 126

CountContains/FullContains on naïve text:  ca. 2700ms

use 
naïve 
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Construction Time

XMark data 174 different element labels
Max Depth: 14,  Average Depth: 9.6

116MB XMark 6,074,297 nodes

559MB XMark 29,239,763 nodes

1GB XMark 58,472,941 nodes

Text: 7min 18s TOTAL= 9min 20s

Text: 38min 45s TOTAL= 53min 25s

Text: 1h 24min TOTAL= 1h 55min
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☺ Advertisement  ☺
New course, will be first offered in  Session 1 of 2011.

COMP9319 -- Web Data Compression and Search (PG, UOC: 6)

Contents

Data Compression : (a) Adaptive Coding, Information Theory 
(b) Text Compression (ZIP, GZIP, BZIP, etc) 
(c) Burrows-Wheeler Transform and Backward Search 
(d) XML Compression

Search: (a) Indexing 
(b) Pattern Matching and Regular Expression Search 
(c) Distributed Querying 
(d) Fast Index Construction 
(e) Implementation
If time allows: Streaming Algorithms, On-Line Data Analytics 

The lecture materials will be complemented by projects and assignments.
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END
Lecture 13 and of the course.

Æ Thanks for your attention and hard work.
Æ Hopefully you have enjoyed the lecture.
Æ Good luck and all the best with

the exam on June 12th.


