XML and Databases

Lecture 13
Fast Substring Search

Sebastian Maneth
NICTA and UNSW

CSE@UNSW - Semester 1, 2010

Fast Substring Search

Recall the contains-predicate of XPath:
//book/abstract[contains(.,”fTix’)]

For instance the abstract node:

<book>..
<abstract>This article dicusses the advantages of
suffix arrays, for the purpose of substring search ..
</abstract>..

</book>

will be returned, because it contains the substring “fix”
because it appears in the word “suffix” mentioned in the abstract text.

Fast Substring Search

Question
Given a very large text, how do you search for
—> All occurrences of a given keyword?

—> All occurrences of a given substring?
- Count them (can be done faster?)

Fast Substring Search

Question
Given a very large text, how do you search for
—> All occurrences of a given keyword?

—> All occurrences of a given substring?
- Count them (can be done faster?)

What we know so far:

—> can use KMP-algorithm.
for a text of length n, it only takes O(n) time to locate
all occurrences of the substring.

- in a database, that is *way* to slow!!
How do you think Google indexes text for fast search??

Fast Substring Search

Question
Given a very large text, how do you search for
—> All occurrences of a given keyword?

—> All occurrences of a given substring?
- Count them (can be done faster?)

We want search time to be independent of the size n of
the text, but should only depend on the length of the keyword.

We are allowed to preprocess the string in linear time
(“indexing”).

Fast Substring Search

Question

Given a very large text, how do you search for
—> All occurrences of a given keyword?

—> All occurrences of a given substring?
- Count them (can be done faster?)

Idea 1l --we search for exact WORDS, not substrings—
Make a “dictionary” of every WORD that occurs in the text:
1: this[0, 89, 2098] 1: a[90, 183, 290, ..]
2: article[8, 29300] 2: actual[450, 9812, ..]
3: .. 3: article[8, 29300]

3: .

Sort it!

Fast Substring Search

Given a keyword a,a,...a, of length m,

How much time required to locate all occurrences of
the keyword?

Easy: keep start rows of strings that “start with a_1" (for any letter),
and within those rows, again those that “continue with letter a_2” (for all letters)
Etc. (this is a tree of height=length of longest word, and

branching=# different letters)

Idea 1l --we search for exact WORDS, not substrings—

Make a “dictionary” of every WORD that occurs in the text:

1: this[0, 89, 2098] 1: a[90, 183, 290, ..]
2: article[8, 29300] 2: actual[450, 9812, ..]
3: .. 3: article[8, 29300]

i 3: ..
Sort It!

Fast Substring Search

Given a keyword a,a,...a, of length m,

How much time required to locate all occurrences of
the keyword?

= only time O(m)! ©

Problems (1) indexing time?!
(2) how to do substring search??

Idea 1l --we search for exact WORDS, not substrings—

Make a “dictionary” of every WORD that occurs in the text:
1: this[0, 89, 2098] 1: a[90, 183, 290, ..]
2: article[8, 29300] 2: actual[450, 9812, ..]
3: .. 3: article[8, 29300]

3: .

Sort it!

Fast Substring Search

Given the text of length n, how many substrings
are there?

—> (begin position, end position)

Quadratically many! That is, O(n"2).

Thus, itis impossible in linear time to list all these
substrings and put them into a (sorted) dictionary!

ldea 1

--we search for exact WORDS, not substrings—

Make a “dictionary” of every WORD that occurs in the text:

1
2
3

- this[0, 89, 2098]

Sort it!

> a[90, 183, 290, ..

article[8, 29300]

1

1
2: actual[450, 9812, ..
3:
3-

1

The Burrows-Wheeler Transform

Idea comes from compression.
bzip2 is based on the Burrows-Wheeler Transform!

1) Add an end-marker “$” to the end of the text

2) End-marker $ is smallest in ordering:
$F<a<bh<c<..... <'Z7<'A<....

3) Compute all cyclic shifts of text

4) Sort them lexicographically

/ Burrows-Wheeler Transform of text T

banana$ $bana
$banana a$ban
a$banan anas$b
na$bana anana
ana$ban sort banan
nana$ba na$ba

anana$b nana$

The Burrows-Wheeler Transform

Idea comes from compression.
bzip2 is based on the Burrows-Wheeler Transform!

1) Add an end-marker “$” to the end of the text

2) End-marker $ is smallest in ordering:
$F<a<bh<c<..... <'Z7<'A<....

3) Compute all cyclic shifts of text

4) Sort them lexicographically

/ Burrows-Wheeler Transform of text T

banana$ $bana

$banana a$ban :

a$banan ana$b Question o

na$bana anana Why do you think is the BWT good
ana$ban sort banan for compression?

nana$bha na$ba
anana$b nana$

Idea comes from compression.

The Burrows-Wheeler Transform

bzip2 is based on the Burrows-Wheeler Transform!

12

1) Add an end-marker “$” to the end of the text

2) End-marker $ is smallest in ordering:

‘$1 < la1 < (b! < ‘C’ <
3) Compute all cyclic shifts of text
4) Sort them lexicographically

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

sort

<Z<A<...

/ Burrows-Wheeler Transform of text T

First row: only tells us

how many substrings

—> start with “a” (3)

= how many start with “b” (1)

etc.

Same for any text with these letters!
We canNOT reconstruct T from row 1!

Idea comes from compression.

The Burrows-Wheeler Transform

bzip2 is based on the Burrows-Wheeler Transform!

13

1) Add an end-marker “$” to the end of the text
2) End-marker $ is smallest in ordering:
‘P<'a<sh<c'<
3) Compute all cyclic shifts of text
4) Sort them lexicographically

Burrows-Wheeler Transform of text T

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

sort

canNOT reconstruct T
from second row!

<72 <'A<.... /

Second row: tells us
how many substrings
—>start with “n”, if letter before is “a” (2)
—>start with “a” if letter before is “n” (2)

First row: only tells us

how many substrings

—> start with “a” (3)

= how many start with “b” (1)

etc.

Same for any text with these letters!
We canNOT reconstruct T from row 1!

How?

Naive way:

1. given “annb%$aa”, sort the letters. This gives row 1!

The Burrows-Wheeler Transform

But, we can reconstruct T from the last row!! ©

What's next?
Hint: this tells us all two-letter substrings!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

sort

(——

sort

5 DT Q9 O &»
QY LHLT S SO

7

“— Burrows-Wheeler Transform of text T

14

The Burrows-Wheeler Transform

But, we can reconstruct T from the last row!! ©
How?

Naive way:
1. given “annb%$aa”, sort the letters. This gives row 1!

—

sort

What's next?
Hint: this tells us all two-letter substrings!

S~ -7

Text contains
a$
na
na
ba
$h sort
an

an

5 DT Q9 O &»

This is row 2!

QY HLT S SO

How?

Naive way:
1. given “annb%$aa”, sort the letters. This gives row 1!

The Burrows-Wheeler Transform

But, we can reconstruct T from the last row!! ©

2. Constuct 2-letter substrings, sort. Gives row 2!
3. Construct 3-letter substrings, sort. Gives row 3!

etc

Text contains

a$
na
na
ba
$b
an
an

sort

pre-pend

a$b
na$
nan

ban
$ba
ana
ana

sort

5 DT Q9 O &»

$ba
a$b
ana
ana
ban
na$
nan

—

sort

QY HLT S SO

16

17

The Burrows-Wheeler Transform

But, we can reconstruct T from the last row!! ©

How? $ a
a n
Naive way: a n
1. given “annb%$aa”, sort the letters. This gives row 1! a < b
2. Constuct 2-letter substrings, sort. Gives row 2! b " $
3. Construct 3-letter substrings, sort. Gives row 3! n S0 a
etc n a
pre-pend
$ha $banana
a$b a$banan
ana ana$ban
ana ananas$b o
ban prepend SOrt prepend ~ SOIt banana$ 4= Original
na$ nas$bana
nanasba

nan

BWT: Better Decompression

- In a real implementation we may NOT construct all
cyclic shifts and sort... (because that takes quadratic time!!)
- Same for decompression. May not do it the naive way!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

C$abn
0145

LF-mapping
LFCI)=C[LL1]] + rank g (L, 1)

O(log S) time
using wavelet tree

Retrieving T: start from end marker, read backwards (by applying LF)

e.g.. LF(5)=1, LF(1)=2, LF(2)=6, LF(6)=3, LF(3)=7, LF(7)=4
L. $ a n a n a b

19

Backward Search

S = size of
Here comes the magic: we are now able to count the number of alphabet
occurrences of a substring of length m, only in time O(m log S)!

/

This is what makes fast keyword
Search a la Google possible!

Search time is INDEPENDENT of
the size of the text!!

Backward Search
S = size of
Here comes the magic: we are now able to count the number of alphabet
occurrences of a substring of length m, only in time O(m log S)!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

C%$abn
0145

LF-mapping
LFCi)=CLLL1]] + rank g (L,1)

O(log S) time

Backward search for Pattern P[1]..P[m] using wavelet tree

Initial range: [sp,ep] with sp=C[P[m]]+1 and ep=C[P[m]+1]
Then [s,e] with

S CI[PLi1] + rank ;;(L,sp-1) + 1

e CI[PLi1] + rank ;7(L.ep)

20

Backward Search
S = size of
Here comes the magic: we are now able to count the number of alphabet
occurrences of a substring of length m, only in time O(m log S)!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

i)
N T
o1 5
-
|
||QJH

[sp.ep] = [2,4]

Backward search for Pattern P[1]..P[m]

=> Initial range: [sp,ep] with sp=C[P[m]]+1 and ep=C[P[m]+1]
Then [s,e] with

S CI[PLil1] + rank ;;(L,sp-1) + 1

e CI[PLi1] + rank ;7(L.ep)

21

Backward Search

S = size of

Here comes the magic: we are now able to count the number of alphabet
occurrences of a substring of length m, only in time O(m log S)!

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

= Q
~ T
o1 5

Backward search for Pattern P[1]..P[m]

Then [s,e] with

S
e

C[PLi1] + rank ;;(L,sp-1) + 1
C[PLi1] + rank ;7(L.ep)

3
P= 4dna

[sp.ep] = [2,4]

s=C[“n"] + rank(L,1) +1
=5+0+1=6

e=5 +rank (L,4)
=5+2=7

22

Backward Search
S = size of
Here comes the magic: we are now able to count the number of alphabet
occurrences of a substring of length m, only in time O(m log S)!

banana$

$banana !23
a$banan P = l|aha
na$bana [sp,ep] = [2,4]
ana$ban sp=6
nana$ba ep=7
anana$b

s=C[*a"] + rank,(L,5) + 1
=1+1+1 =3
Backward search for Pattern P[1]..P[m]

e=1+rank a(L,7) =

1+3=4
s = C[PLi1] + rank ;;(L,sp-1) + 1 Done!!
e = C[P[1]] + rank ;;(L.ep) [3,4]=Final range

=» 2 Occs of “ana”

24

Backward Search

S = size of
Here comes the magic: we are now able to count the number of alphabet
occurrences of a substring of length m, only in time O(m log S)!

Backward search for Pattern P[1]..P[m] Counting: O(m log S) time

Locating
If every I=logl*ersion n position is sampled
then O(l log S) per occurrence,
by backward traversal using LF.

v

use

25
Real Performance

/* In order : IsContains, Timing of IsContains, GlobalCount, Timing of
GlobalCount, CountContains, time of CountContains,

time of Full Report Contains */

Sampling rate 64

"Bakst™: 1, 0.038, 1, 0.004, 1, 0.04, 0.012, max_mem = 61
“"ruminants': 1, 0.04, 22, 0.009, 19, 2.281, 1.588, max_mem = 61
"morphine': 1, 0.026, 392, 0.009, 144, 29.924, 32.668, max_mem = 61
"AUSTRALIA": 1, 0.028, 438, 0.009, 438, 4.616, 4.457, max_mem = 61
"molecule": 1, 0.051, 1472, 0.008, 966, 128.28, 122.014, max_mem = 61
“"brain: 1, 0.02, 2685, 0.005, 1493, 218.462, 215.196, max _mem = 61
"human'': 1, 0.019, 6897, 0.005, 4690, 553.496, 548.009, max_mem = 62

L Ersnbees smaldl it ol Shet e Ul i sl U0 e s S il T e D s e
‘with''. 1, 0 016, 63332, 0. 004, 228974 5084 14, B0OB3 //(, max mem = b3
" in": 1, 0.014, 238638, 0.003, 42586, 19641.8, 19630.3, max_mem = 64
"a': 1, 0.001, 2932251, 0, 595716, 189299, 188377, max_mem = 93

"\n": 1, 0.001, 9730750, 0.001, 5870474, 132780, 132241, max_mem = 86

naive CountContains/FullContains on narve text: ca. 2700ms

26

Real Performance

/* In order : IsContains, Timing of IsContains, GlobalCount, Timing of
GlobalCount, CountContains, time of CountContains,

time of Full Report Contains */

Sampling rate 5

"Bakst™: 1, 0.038, 1, 0.005, 1, 0.049, 0.013, max_mem = 100

“"ruminants'': 1, 0.038, 22, 0.01, 19, 0.156, 0.086, max_mem = 100
"morphine”: 1, 0.027, 392, 0.009, 144, 1.718, 1.357, max_mem = 100
"AUSTRALIA": 1, 0.098, 438, 0.009, 438, 4.145, 3.942, max_mem 100
"molecule: 1, 0.029, 1472, 0.009, 966, 6.247, 5.853, max_mem 101
“"brain™: 1, 0.019, 2685, 0.006, 1493, 12.24, 11.588, max _mem = 101
"human™: 1, 0.018, 6897, 0.005, 4690, 25.403, 27.344, max_mem 101
"blood": 1, 0.026, 10402, 0.005, 8534, 77.175, 73.613, max _mem = 101
“"from": 1, 0.016, 20859, 0.003, 12073, 84.012, 78.663, max _mem = 101
"with": 1, 0.015, 63332, 0.004, 22974, 242.834, 235.043, max_mem = 102

" ans 1, 0.012, 238638, 0.002, 42586, 1105.6, 1091.43, max mem = 103
b 1, 0, 411409, 0.001, 135307, 1779 .27 1762 .62, max mem = 108
'g - 1, 0001, /48376, 0, 320440, 3411 65, 33/8 85, max mem = 119
a1, 0, 2932251, 0O, 595716, 13183.4, 13173.4, max_mem = 133

"\n": 1, 0.001, 9730750, 0.001, 5870474, 87770.9, 88230.4, max _mem = 126

use
naive CountContains/FullContains on narve text: ca. 2700ms

Construction Time

XMark data 174 different element labels
Max Depth: 14, Average Depth: 9.6

116MB XMark 6,074,297 nodes Text: 7min 18s TOTAL= 9min 20s

559MB XMark 29,239,763 nodes | Text: 38min 45s TOTAL= 53min 25s

1GB XMark 58,472,941 nodes |Text: 1h 24min TOTAL= 1h 55min

Size of the index in memory (MB)

1000

800

600

400

200

0

B FM-Index

| | Aux. Text
B Tree Struct.

- =

116 223

335 447 559
Size of the input document (MB)

© Advertisement ©

New course, will be first offered in Session 1 of 2011.

COMP9319 -- Web Data Compression and Search (PG, UOC: 6)

28

Contents

Data Compression : (a) Adaptive Coding, Information Theory
(b) Text Compression (ZIP, GZIP, BZIP, etc)

(c) Burrows-Wheeler Transform and Backward Search

(d) XML Compression

Search: (a) Indexing

(b) Pattern Matching and Regular Expression Search

(c) Distributed Querying

(d) Fast Index Construction

(e) Implementation

If time allows: Streaming Algorithms, On-Line Data Analytics

The lecture materials will be complemented by projects and assignments.

29

END
Lecture 13 and of the course.

- Thanks for your attention and hard work.
- Hopefully you have enjoyed the lecture.
- Good luck and all the best with
the exam on June 12,

