XML and Databases

Lecture 13
Update Languages for XML

Sebastian Maneth
NICTA and UNSW

CSE@UNSW -- Semester 1, 2010

Outline

1. Update Languages for XML

- XQuery Update Facility: delete,insert,replace,rename,remove
> type issues
-> snapshot semantics

2. The physical site
- how to update a DAG?

- how to update PRE/POST encoding?
- other storage schemes?

XML Updates -- History

Updates = write operations, e.g., delete, insert, replace, rename, etc

Want to have Update Language, i.e., a formalism for “update programs”.

Currently, there is no accepted standard XML Update Language

- XUpdate (XML:DB, working draft from 9/2000)
- XQuery! (by the implementors of the Galax XQuery engine)

- XQuery Update Facility (W3C Candidate Recommendation,
09 June 2009)

plus lots of other smaller projects...

Note

XML Updates Every node has an
“identity” = a unique
Example updates for XML data identifier.

Also: there may be
attributes of type “ID"!

(1) delete subtree rooted at node x

delete “x”

—

XML Updates

Example updates for XML data

Use XPath to specify
the nodes x

(1) delete subtree rooted at node x to be deleted.
Explicit examples
Delete the last author of the first book in a given bibliography.

do delete fn:doc("bib.xml"")/books/book[1]/author[last()]

Delete all email messages that are more than 365 days old.

do delete /email/message[fn:currentDate()-date >
xs:dayTimeDuration(*'P365D™)]

Note

XML Updates Every node has an
“identity” = a unique
Example updates for XML data identifier.

Also: there may be
attributes of type “ID"!

(2) insertsubtree “t" as first of node x

insert t as first “x”

—

Note

Every node has an
“identity” = a unique
Example updates for XML data identifier.

Also: there may be
attributes of type “ID"!

XML Updates

(2) insertsubtree “t" as first of node x

insert t as first “x”

—

Question Can t be arbitrary?
For which t should the insert fail?

Note

Every node has an
“identity” = a unique
Example updates for XML data identifier.

Also: there may be
attributes of type “ID"!

XML Updates

(2) insertsubtree “t" as first of node x

insert t as first “x”

—

Question Can t be arbitrary? = non-unique values of
For which t should the insert fail? ID-attributes!

XML Updates

Example updates for XML data

(3) insertsubtree “t" as last of node x

insert t as last “x”

—

XML Updates

Example updates for XML data

(4) insertsubtree “t” before node x

insert t before “x”

—

10

XML Updates

Example updates for XML data

(5) insertsubtree “t" after node x

insert t after “x”

—

11

XML Updates

Example updates for XML data

(5) insertsubtree “t" after node x

insert t after “x”

—

All insert operations: “subtree t” can easily be generalized
to a sequence of subtrees (t_1,t 2,t 3,....t.n)

12

XML Updates

Example updates for XML data

(5) insertsubtree “t" after node x

Explicit examples

Insert a year element after the publisher of the first book.

do insert <year>2005</year> after
Fn:doc(""bib.xml")/books/book[1]/publisher

Navigating by means of several bound variables, insert a new police report
into the list of police reports for a particular accident.

do insert $new-police-report
as last into fn:doc(insurance.xml')/policies
/policy[id = $pid]
/driver[license = $license]
/accident[date = $accdate]
/police-reports

13

XML Updates

Note
The rename operation
preserves node identity!

Example updates for XML data

(6) rename node x as name

Rename x as “PrAuthor”

same
node identity

14

XML Updates

Note
The rename operation
preserves node identity!

Example updates for XML data

(6) rename node x as name

Explicit examples
Rename the first author element of the first book to principal-author.

do rename fn:doc("'bib.xml")/books/book[1]/author[1]
as "principal-author™

Rename the first author element of the first book to the QName that is
the value of the variable $newname.

do rename fn:doc(“'bib.xml'")/books/book[1]/author[1]
as $newname

15

XML Updates
Example updates for XML data

(7) replace nodex with (n_1 n_2 n_3 ...n_m)

replace x
with (n_1 .. n_m)

—

16

XML Updates
Example updates for XML data

(7) replace nodex with (n_1 n_2 n_3 ...n_m)

Explicit examples

Replace the publisher of the first book with the publisher of the second book.

do replace fn:doc("bib.xml"")/books/book[1]/publisher

with fn:doc('bib.xml"")/books/book[2]/publisher

XML Updates

Note
The replace-value-of op.
preserves node identity!

Example updates for XML data

(8) replace value of node x with “some string”

replace value of x
with “stringl”

olelo,

- Ifxis atext-node, then text-content of x becomes “stringl”
- If xis an attribute node, then attribute value becomes “stringl”

18

XML Updates

Note
The replace-value-of op.

Example updates for XML data
preserves node identity!

(8) replace value of node x with “some string”

Explicit examples

Increase the price of the first book by ten percent.

do replace value of
fn:doc(bib.xml")/books/book[1]/price

with fn:doc('bib.xml'")/books/book[1]/price * 1.1

19

XML Updates
Questions
- What about the different node types
Can Il insert an attribute node at any position?

Can | replace an attribute node by an element node, or vice versa?
etc

-> Do we really need so many different operations?
Which operation can be simulated by other ones?

- How to generalize the target, from a node to an XPath expression?
(bulk updates, using one operation)

Semantical issues: doc changes after first update,
this might affect the subsequent updates! How to deal with this?

20

Snapshot Semantics

for $e in //a insert as first <a>

\ Semantics of this
R — onthedocument <a> ??

insert <phone>02 83060405</phone>
as last into //address/name[text()="Jonny Pizzicato”]
for $e in //phone

rename $e as “telephone”

Snapshot Semantics

= Each update operation is logically applied to a separate
snapshot of the original document.

= Updates are applied independently from each other
to the original document. They don't see each others' effects.

= The order of the update operations is irrelevant.

21

Type Issues

must eval. to a sequence (n_1...n_m) of nodes.

do delete TargetExpr «— Otherwise: Type Error!

Semantics for all n_i, append upd:delete(n_i) to pending update list

22

Type Issues

must eval. to a sequence of nodes.

do delete TargetExpr «— Otherwise: Type Error!

do insert SourceExpr (as (first | last) into) | before | after TargetExpr

evaluates to

Otherwise: Type Error

[nin2 .. np|uluz. up]
S$alist S$clist

- TargetExpr must evaluate to single node (called $target)
- If before/after then $target must have a parent node ($parent)

as first/last upd:insertAttributes($target,$alist); append to
upd:insertintoAsLast($target,$clist) pending update list

before/after upd:insertAttributes($parent,$alist) append to
upd:insertBefore($target,$clist) pending update list

23

Type Issues

must eval. to a sequence of nodes.
— .
do delete TargetExpr Otherwise: Type Error! must eval. to a sequence of attribute
nodes followed by non-att nodes

do insert SourceExpr (as (first | last) into) | before | after TargetExpr

do replace TargetExpr with ExprSingle
evaluates to — Otherwise: Type Error

[N1n2.. nplfulu2.. up]
$alist $clist

-> TargetExpr must evaluate to single node (called $target)
and must have a parent ($parent)

If $target is element, text, comment, or PI node, then

upd:insertAttributes($parent,$alist);
upd:insertBefore($target,$clist)
upd:delete($target)

append to
pending update list

24

Type Issues

must eval. to a sequence of nodes.
do delete TargetExpr " Othemise: Type Error!

nodes followed by non-att nodes

do insert SourceExpr (as (first | last) into) | before | after TargetExpr

do replace TargetExpr with ExprSingle
evaluates to — Otherwise: Type Error

[n1n2.. nplluluz2..
S$alist S$clist

-> TargetExpr must evaluate to single node (called $target)
and must have a parent ($parent)

up|

If $target is attribute node, then

upd:insertAttributes($parent,$alist);
upd: insertBefore($parent,$clist)
upd:delete($target)

append to
pending update list

must eval. to a sequence of attribute

Ambiguity

If $target is element, text, comment, or Pl node, then
do replace TargetExpr with ExprSingle
is the same as
do insert ExprSingle before TargetExpr
do delete TargetExpr

Many more data-dependent ambiguities

insert as last = insert as first, if there are no children

insert as first = insert before on the first child, if that exists
insert as last = insert after on the last child, if that exists

XUpdate: Text node updates

Translated into, e.g., the XPath Accelerator representation, we see that
o Replacing text nodes by text nodes has local impact only on the
pre/post encoding of the updated tree.

XUpdate statement leads to local relational update

o 4 0 4

1 gl NULL = 1 1 NULL
2] foo - 2 0 foo

3 3 NULL 3 3 NULL
4 2 bar 4 2 foo

@ Similar observations can be made for updates on comment and
processing instruction nodes.

25 26
Challenges: Physical Updates XUpdate: Text node updates
Questions
Obwviously, the kind of ¢ determines the overall impact on the updated
- How to do updates on a DAG? . 7
tree and its encoding.
What will be different? - -
Are incremental updates possible? XUpdate: replacing text by text
<a>
<b id="0">foo
<b id="1">bar

<xupdate:update select="//bl[@id = 1]">
= <,-"xggda'_e:updam>
- Howto do updates ona PRE/POST-encoding? <azb 14="0">£00
. . <b id="1">foo
What will be different? <fa>
Are incremental updates possible?
@ New content c: a text node.
27

XUpdate: Structural updates

XUpdate: inserting a new subtree

<a>
<cr<d/><e/></c>
<fr<g/>
<h><i/><j/></h>
</f>

<xupdate:update select="/a/f/g">
i <k><]/><m/></k>
</xupdate:update>

<a2b}<c><df)ce/}<fc><fb>
<f><gr<k><l/><m/></k></g>
<h><i/><j/></h>
</f>

Question: What are the effects w.r.t. our structure encoding. .. ?

Mare H, Sehall (

XUpdate: Global impact on encoding

Global shifts in the pre/post Plane

pre+3;post+3

post post+3

XML and Databases

Updates and fixed-width encodings

Theoretical result [Milo et.al., PODS 2002]

There is a sequence of updates (subtree insertions) for any persistent®®
tree encoding scheme €, such that £ needs labels of length 2(N) to
encode the resulting tree of NV nodes.

@ Fixed-width tree encodings (like XPath Accelerator) are inherently
static.
= Non-solutions:

= Gaps in the encoding,
* encodings based on decimal fractions.

"4 node keeps its initial encoding label even if its tree is updated.
315, Und KN) XML and Databases Win

ORDPATH: Insertion between siblings (Example)

Insertion of (<1/>, <m/>) between <j/> and <k/>

XML and Databases

XUpdate: Global impact on pre/post plane

Insert a subtree of n nodes below parent element v
@ post(v) « post(v)+n
@ vV E v/following: :node():
pre(v') « pre(v') + m; post(v') + post(v')+n
@ YV E v/ancestor::node():
post(v') « post(v') +n

Cost (tree of N nodes)
O(N) + O(log N)
N S, —

Update cost

(@) is not so much a problem of
cost but of locking. Why?

XML and Databases

A variable-width tree encoding: ORDPATH

Here we look at a particular variant of a hierarchical numbering scheme,
optimized for updates.

@ The ORDPATH encoding (used in MS SQL Server™) assigns node
labels of variable length.

ORDPATH labels for an XML fragment
©Q The fragment root receives label 1.

@ The nth {(n=1,2,...) child of a parent node labelled p receives label
p.(2-n-1).

o Internally, ORDPATH labels are not stored as .-separated ordinals
but using a prefix-encoding (similarities with Unicode).

XML and Databases

ORDPATH: Insertion between siblings

ORDPATH: Insertions at arbitrary locations?

at
-
I.:/L\'.l 1.5
dn/le\'-fLs‘i{{lM’kl.!ﬁ.s
. 1.5.4.11/ \11.5.4.3
£ 1 H

Determine ORDPATH label of new node v inserted
@ to the right of <k/>,
© to the left of <i/>,
© between <j/> and <1/>,
Q between <1/> and <m/>.

XML and Databases

Impace: Yther Enco chermes

Processing XQuery and ORDPATH

Is ORDPATH a suitable encoding £7

Mapping core operations of the XQuery processing model to operations
on ORDPATH labels:

v/parent: :node()
@ Let p.m.n denote v's label (n is odd).
Q If the rightmost ordinal (m) is even, remove it. Goto ().

In other words: the carets (A) do not count for ancestry.

v/descendant: :node()
@ Let p.n denote v's label (n is odd).

@ Perform a lexicographic index range scan from p.n to
p. (n+ 1}—the virtual following sibling of v.

Marc H. Schall (DBIS, Uni KN! XML and Databases

Impac Yther E —

ORDPATH: Variable-length node encoding

@ Using (4 byte) integers for all numbers in the hierarchical numbering
scheme is an obvious waste of space!
o Fewer (and variable number of) bits are typically sufficient;
o they may bear the risk of running out of new numbers, though. In
that case, even ORDPATH cannot avoid renumbering.
= In principle, though, no bounded representation can absolutely avoid
the need for renumbering.
@ Several approaches have been proposed so as to alleviate the
problem, for instance:
= use a variable number of bits/bytes, akin to Unicode,
= apply some (order-preserving) hashing schemes to shorten the
numbers,

Mare H. Scholl (DB

XML snd Databases

ORDPATH: Variable-length node encoding

o For a 10 MB XML sample document, the authors of ORDPATH
observed label lenghts between 6 and 12 bytes (using Unicode-like
compact representations).

Since ORDPATH labels encode root-to-node paths, node labels
share common prefixes.

ORDPATH labels of <1/> and <m/>

1.5.4.1
1.6.4.3

= Label comparisons often need to inspect encoding bits at the far
right.
@ MS SQL Server™ employs further path encodings organized in
reverse (node-to-root) order.
Note: Fixed-length node IDs (such as, e.g., preorder ranks) typically
fit into CPU registers.

Mare H. Seholl (DBIS,

XML snd Databases

END
Lecture 13

40

