XML and Databases

Lecture 13
Update Languages for XML

Sebastian Maneth
NICTA and UNSW

CSE@UNSW -- Semester 1, 2010

Outline

1. Update Languages for XML

- XQuery Update Facility: delete,insert,replace,rename,remove
- type issues
- snapshot semantics

2. The physical site

- how to update a DAG?
- how to update PRE/POST encoding?
- other storage schemes?

XML Updates -- History

Updates = write operations, e.g., delete, insert, replace, rename, etc

Want to have Update Language, i.e., a formalism for “update programs”.

Currently, there is no accepted standard XML Update Language

- XUpdate (XML:DB, working draft from 9/2000)
= XQuery! (by the implementors of the Galax XQuery engine)

- XQuery Update Facility (W3C Candidate Recommendation,
09 June 2009)

plus lots of other smaller projects...

Note

XML Updates Every node has an
“identity” = a unique
Example updates for XML data identifier.

Also: there may be
attributes of type “ID”!

(1) delete subtree rooted at node x

delete “x”

—

XML Updates

Example updates for XML data

Use XPath to specify

the nodes x
(1) delete subtree rooted at node x to be deleted.

Explicit examples

Delete the last author of the first book in a given bibliography.

do delete fn:doc(bib.xml")/books/book[1]/author[last()]

Delete all email messages that are more than 365 days old.

do delete /email/message[fn:currentDate()-date >
xs:dayTimeDuration("'P365D")]

Note

XML Updates Every node has an
“identity” = a unique
Example updates for XML data identifier.

Also: there may be
attributes of type “ID”!

(2) insert subtree “t” as first of node x

insert t as first “x”

Note

XML Updates Every node has an
“identity” = a unique
Example updates for XML data identifier.

Also: there may be
attributes of type “ID”!

(2) insert subtree “t” as first of node x

insert t as first “x”

—

1 L A

Question Can t be arbitrary?
For which t should the insert fail?

Note

XML Updates Every node has an
“identity” = a unique
Example updates for XML data identifier.

Also: there may be
attributes of type “ID”!

(2) insert subtree “t” as first of node x

insert t as first “x”

—

1 L A

Question Can t be arbitrary? > non-unique values of
For which t should the insert fail? ID-attributes!

XML Updates

Example updates for XML data

(3) insert subtree “t” as last of node x

insert t as last “x”

XML Updates

Example updates for XML data

(4)

insert subtree “t”

before node X

insert t before “x”

—

10

XML Updates

Example updates for XML data

(5)

insert subtree “t”

after node x

insert t after “x”

—

11

XML Updates

Example updates for XML data

(5) insert subtree “t”

after node x

insert t after “x”

—

All insert operations:

“subtree t” can easily be generalized
to a sequence of subtrees (t 1,t 2,t 3,....t. n)

12

XML Updates

Example updates for XML data

(5) Iinsert subtree “t” after node x

Explicit examples

Insert a year element after the publisher of the first book.

do Insert <year>2005</year> after
fn:doc("bib.xml")/books/book[1]/publisher

Navigating by means of several bound variables, insert a new police report
into the list of police reports for a particular accident.

do insert $new-police-report
as last 1Into fn:doc('insurance.xml'™)/policies
/policy[id = $pid]
/driver[license = $license]
/accident[date = $accdate]
/police-reports

13

XML Updates

Example updates for XML data

(6)

rename node x as name

X

Rename x as ‘“‘PrAuthor”

—

same
node identity

Note
The rename operation
preserves node identity!

14

XML Updates

Note
The rename operation
preserves node identity!

Example updates for XML data

(6) rename node x as name

Explicit examples

Rename the first author element of the first book to principal-author.

do rename fn:doc("bib.xml")/books/book[1]/author[1]
as "'principal-author™

Rename the first author element of the first book to the QName that is
the value of the variable $newname.

do rename fn:doc("bib.xml")/books/book[1]/author[1]
as $newname

15

XML Updates

Example updates for XML data

(7)

replace nodex with (n.1 n 2 n 3 ..

replace x
with (n_.1 .. n_m)

—

nm)

16

XML Updates

Example updates for XML data

(7) replace nodex with (n.1 n2n3 ..n.m)

Explicit examples

Replace the publisher of the first book with the publisher of the second book.

do replace fn:doc(bib.xml")/books/book[1]/publisher

with Tfn:doc(bib.xml'")/books/book[2]/publisher

17

XML Updates

Note

Example updates for XML data The replace-value-of op.

preserves node identity!

(8) replace value of node x with “some string”

replace value of x
with “stringl”

stringl

- If xis a text-node, then text-content of x becomes *“stringl”
- If X is an attribute node, then attribute value becomes *“stringl”

18

XML Updates

Note

Example updates for XML data The replace-value-of op.
preserves node identity!

(8) replace value of node x with “some string”

Explicit examples
Increase the price of the first book by ten percent.
do replace value of

fn:doc("bib.xml")/books/book[1]/price

with fn:doc("'bib.xml")/books/book[1]/price * 1.1

XML Updates

Questions
- What about the different node types
Can | insert an attribute node at any position?

Can | replace an attribute node by an element node, or vice versa?
etc

- Do we really need so many different operations?
Which operation can be simulated by other ones?

- How to generalize the target, from a node to an XPath expression?
(bulk updates, using one operation)

Semantical issues: doc changes after first update,
this might affect the subsequent updates! How to deal with this?

20

Snapshot Semantics

for $e in //a insert as first <a>

L_/ Semantics of this

on the document <a> ??

iInsert <phone>02 83060405</phone>
as last into //address/name[text()="Jonny Pizzicato”]
for $e in //phone

rename $e as “telephone”

Snapshot Semantics

=» Each update operation is logically applied to a separate
snapshot of the original document.

= Updates are applied independently from each other
to the original document. They don't see each others' effects.

=» The order of the update operations is irrelevant.

21

Type Issues

must eval. to a sequence (n_1...n_m) of nodes.
do delete TargetExpr < Otherwise: Type Error!

Semantics for all n_i, append upd:delete(n_i) to pending update list

22

Type Issues

must eval. to a sequence of nodes.
do delete TargetExpr < Otherwise: Type Error!

do insert SourceExpr (as (first | last) into) | before | after TargetExpr

evaluates to ———» Otherwise: Type Error

nNiln2.. npjlulu?2.. up
$alist $clist

- TargetExpr must evaluate to single node (called $target)
- If before/after then $target must have a parent node ($parent)

as first/last upd: insertAttributes($target,$alist); append to
upd: insertintoAsLast($target,$clist) pending update list

before/after upd: insertAttributes($parent,$alist) append to
upd: insertBefore($target,$clist) pending update list

23

Type Issues

must eval. to a sequence of nodes.
do delete TargetExpr < Otherwise: Type Error!

must eval. to a sequence of attribute
nodes followed by non-att nodes

do insert SourceExpr (as (first | last) into) | before | after TargetExpr

do replace TargetExpr with ExprSingle

evaluates to ——— Otherwise: Type Error

nNl1n2.. npjlulu?2.. up

$alist $clist

- TargetExpr must evaluate to single node (called $target)
and must have a parent ($parent)

If $target is element, text, comment, or Pl node, then

upd: insertAttributes($parent,$alist);
upd: insertBefore($target,$clist)
upd:delete($target)

append to
pending update list

24

Type Issues

must eval. to a sequence of nodes.
do delete TargetExpr < Otherwise: Type Error!

must eval. to a sequence of attribute
nodes followed by non-att nodes

do insert SourceExpr (as (first | last) into) | before | after TargetExpr

do replace TargetExpr with ExprSingle

evaluates to ——— Otherwise: Type Error

nNl1n2.. npjlulu?2.. up

$alist $clist

- TargetExpr must evaluate to single node (called $target)
and must have a parent ($parent)

If $target is attribute node, then

upd: insertAttributes($parent,$alist);
upd: insertBefore($parent,$clist)
upd:delete($target)

append to
pending update list

25

Ambiguity
If $target is element, text, comment, or Pl node, then

do replace TargetExpr with ExprSingle

IS the same as

do insert ExprSingle before TargetExpr
do delete TargetExpr

Many more data-dependent ambiguities

Insert as last = insert as first, if there are no children
insert as first = insert before on the first child, if that exists
insert as last = insert after on the last child, if that exists

26

Challenges: Physical Updates

Questions
- How to do updates on a DAG?

What will be different?
Are incremental updates possible?

- How to do updates on a PRE/POST-encoding?

What will be different?
Are incremental updates possible?

27

XUpdate
XUpdate: Text node updates

Obviously, the kind of ¢ determines the overall impact on the updated
tree and its encoding.

XUpdate: replacing text by text

<a>
<b id="0">foo
<b id="1">bar

' <xupdate:update select="//bl[@id = 1]">
foo
</xupdate:update>
<a>

<b id="0">foo
<b id="1">foo

@ New content c¢: a text node.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 430

XUpdate: Text node updates

Translated into, e.qg., the XPath Accelerator representation, we see that

@ Replacing text nodes by text nodes has local impact only on the

pre/post encoding of the updated tree.

XUpdate statement leads to local relational update

pre post --- text
0 4 NULL
1 1 NULL
2 0 foo
3 3 NULL
4 2 bar

pre

B W NN - O

post --- text
4 NULL
1 NULL
0 foo
3 NULL
2 foo

@ Similar observations can be made for updates on comment and

processing instruction nodes.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

431

XUpdate: Structural updates

XUpdate: inserting a new subtree

<a>
a<c><d/><e/></c>
<f><g/>
<h><i/><j/></h>
</f>

<xupdate:update select="/a/f/g">

{3 <k><1/><m/></k>
</xupdate:update>

<aZb><c><d/><e/></c>
<E><g><k><1/><m/></k></g>
<h><i/><j/></h>
</f>

Question: \What are the effects w.r.t. our structure encoding...?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 432

XUpdate: Global impact on encoding

Global shifts in the pre/post Plane

post post post+3 pre+3;post+3
+ | Ia._... /i | Hﬁ
10 + | 10 + A Y o
-.—a ﬁ ——'-_. -_-l -'._- -."J
I ‘.. -+ - *j
+ "'-._:h — s — — .‘.g _____
T i] = T | ek
54 J» *7 5+ | el
o i ¢ -l + o1
€1 .b | 1 .b |
T %€ | T < |
11 . ee 1+ ~Tee
I | | l [1 1 | 1 | [[| | 1 1 | [| s\
(0,0) | '5' ! | I I I B R B (0,0) | |:1| || T T 1 17
1 5 10 pre 1 5 10 pre
4
Winter 2005/05 433

XUpdate: Global impact on pre/post plane

Insert a subtree of n nodes below parent element v
@ post(v) < post(v)+ n
@ VYV €v/following::node():
pre(V') < pre(V') + n; post(v') < post(V') + n

© Vv €v/ancestor: :node():
post(v') < post(v') + n

Cost (tree of N nodes) Update cost
O(N) + O(log N) @3 Is not so much a problem of
v W -
@ 3 cost but of locking. Why?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 434

Updates and fixed-width encodings

Theoretical result [Milo et.al., PODS 2002]

There is a sequence of updates (subtree insertions) for any persistent*®
tree encoding scheme &, such that £ needs labels of length Q(/N) to
encode the resulting tree of N nodes.

@ Fixed-width tree encodings (like XPath Accelerator) are inherently
static.

= Non-solutions:

» Gaps in the encoding,
» encodings based on decimal fractions.

*9A node keeps its initial encoding label even if its tree is updated.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 435

A variable-width tree encoding: ORDPATH

Here we look at a particular variant of a hierarchical numbering scheme,
optimized for updates.

@ The ORDPATH encoding (used in MS SQL Server™™) assigns node
labels of variable length.

ORDPATH labels for an XML fragment

©@ The fragment root receives label 1.

@ The nth (n=1,2,...) child of a parent node labelled p receives label
p.(2-n—1).

@ Internally, ORDPATH labels are not stored as .-separated ordinals
but using a prefix-encoding (similarities with Unicode).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 436

Impacts on Other Encoding Schemes

ORDPATH: Insertion between siblings (Example)

Insertion of (<1/>, <m/>) between <j/> and <k/>

1.5
/\ _/.\1.5.5
de ec eof ie o] ek
1.5.1 1.5.3
o
g
J
ai
o
de ec eof ie ®] Al.5.4~ek1.5.5
1.5.1 1.5.3 /
° 1.5.4.1¢e 1 .5.4.3
g m

o

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

439

ORDPATH: Insertion between siblings

ORDPATH: Insertions at arbitrary locations?

al
°
: /_(\\/I&{
° ec o ° @] Al1.5. ° D
d f1 511 1 5J3 / 1\5 k1.5.5
[1.5.4.1e e] .5.4.3
g 1 m

Determine ORDPATH label of new node v inserted
© to the right of <k/>,
© to the left of <i/>,
© between <j/> and <1/>,
©Q between <1/> and <m/>,

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

440

Processing XQuery and ORDPATH

s ORDPATH a suitable encoding £7

Mapping core operations of the XQuery processing model to operations
on ORDPATH labels:

v/parent: :node()

©Q Let p. m.n denote v's label (n is odd).

@ If the rightmost ordinal (m) is even, remove it. Goto ().

In other words: the carets (A) do not count for ancestry.

v/descendant: :node ()
© Let p.n denote v's label (nis odd).

@ Perform a lexicographic index range scan from p.n to
p . (n+ 1)—the virtual following sibling of v.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 441

ORDPATH: Variable-length node encoding

@ Using (4 byte) integers for all numbers in the hierarchical numbering
scheme Is an obvious waste of spacel

@ Fewer (and variable number of) bits are typically sufficient;

@ they may bear the risk of running out of new numbers, though. In
that case, even ORDPATH cannot avoid renumbering.

» In principle, though, no bounded representation can absolutely avoid
the need for renumbering.

@ Several approaches have been proposed so as to alleviate the
problem, for instance:

> use a variable number of bits/bytes, akin to Unicode,
» apply some (order-preserving) hashing schemes to shorten the

numbers,

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 442

ORDPATH: Variable-length node encoding

@ For a 10 MB XML sample document, the authors of ORDPATH
observed label lenghts between 6 and 12 bytes (using Unicode-like
compact representations).

@ Since ORDPATH labels encode root-to-node paths, node labels
share common prefixes.

ORDPATH labels of <1/> and <m/>

1.5.4.1
1.5.4.3

o

— Label comparisons often need to inspect encoding bits at the far
right.

@ MS SQL Server™ employs further path encodings organized in
reverse (node-to-root) order.

@ Note: Fixed-length node IDs (such as, e.g., preorder ranks) typically
fit into CPU registers.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 443

END
Lecture 13

