
XML and Databases

Sebastian Maneth
NICTA and UNSW

Lecture 13
Update Languages for XML

CSE@UNSW -- Semester 1, 2010

2

Outline

1. Update Languages for XML

XQuery Update Facility: delete,insert,replace,rename,remove
type issues
snapshot semantics

2. The physical site

how to update a DAG?
how to update PRE/POST encoding?
other storage schemes?

3

XML Updates -- History

Currently, there is no accepted standard XML Update Language

XUpdate (XML:DB, working draft from 9/2000)

XQuery! (by the implementors of the Galax XQuery engine)

XQuery Update Facility (W3C Candidate Recommendation,
09 June 2009)

plus lots of other smaller projects…

Updates = write operations, e.g., delete, insert, replace, rename, etc

Want to have Update Language, i.e., a formalism for “update programs”.

4

XML Updates

Example updates for XML data

(1) delete subtree rooted at node x

x

delete “x”

x

Note
Every node has an
“identity” = a unique
identifier.
Also: there may be
attributes of type “ID”!

5

XML Updates

Example updates for XML data

(1) delete subtree rooted at node x

Explicit examples

Delete the last author of the first book in a given bibliography.

Delete all email messages that are more than 365 days old.

do delete fn:doc("bib.xml")/books/book[1]/author[last()]

do delete /email/message[fn:currentDate()-date >
xs:dayTimeDuration("P365D")]

Use XPath to specify
the nodes x
to be deleted.

6

XML Updates

Example updates for XML data

(2) insert subtree “t” as first of node x

x

insert t as first “x”

x

Note
Every node has an
“identity” = a unique
identifier.
Also: there may be
attributes of type “ID”!

7

XML Updates

Example updates for XML data

(2) insert subtree “t” as first of node x

x

insert t as first “x”

x

Question Can t be arbitrary?
For which t should the insert fail?

Note
Every node has an
“identity” = a unique
identifier.
Also: there may be
attributes of type “ID”!

8

XML Updates

Example updates for XML data

(2) insert subtree “t” as first of node x

x

insert t as first “x”

x

Question Can t be arbitrary?
For which t should the insert fail?

non-unique values of
ID-attributes!

Note
Every node has an
“identity” = a unique
identifier.
Also: there may be
attributes of type “ID”!

9

XML Updates

Example updates for XML data

(3) insert subtree “t” as last of node x

x

insert t as last “x”

x

10

XML Updates

Example updates for XML data

(4) insert subtree “t” before node x

insert t before “x”

xu v xu v

11

XML Updates

Example updates for XML data

(5) insert subtree “t” after node x

insert t after “x”

xu v xu v

12

XML Updates

Example updates for XML data

(5) insert subtree “t” after node x

insert t after “x”

xu v xu v

All insert operations: “subtree t” can easily be generalized
to a sequence of subtrees (t_1, t_2, t_3, …. t_n)

13

XML Updates

Example updates for XML data

(5) insert subtree “t” after node x

Explicit examples

Insert a year element after the publisher of the first book.

Navigating by means of several bound variables, insert a new police report
into the list of police reports for a particular accident.

do insert <year>2005</year> after
fn:doc("bib.xml")/books/book[1]/publisher

do insert $new-police-report
as last into fn:doc("insurance.xml")/policies

/policy[id = $pid]
/driver[license = $license]
/accident[date = $accdate]
/police-reports

14

XML Updates

Example updates for XML data

(6) rename node x as name

Rename x as “PrAuthor”

author

x

PrAuthor

x

Note
The rename operation
preserves node identity!

same
node identity

15

XML Updates

Example updates for XML data

(6) rename node x as name

Note
The rename operation
preserves node identity!

Explicit examples

Rename the first author element of the first book to principal-author.

Rename the first author element of the first book to the QName that is
the value of the variable $newname.

do rename fn:doc("bib.xml")/books/book[1]/author[1]
as "principal-author"

do rename fn:doc("bib.xml")/books/book[1]/author[1]
as $newname

16

XML Updates

Example updates for XML data

(7) replace node x with (n_1 n_2 n_3 … n_m)

replace x
with (n_1 .. n_m)

xu v u v
…

17

XML Updates

Example updates for XML data

(7) replace node x with (n_1 n_2 n_3 … n_m)

Explicit examples

Replace the publisher of the first book with the publisher of the second book.

do replace fn:doc("bib.xml")/books/book[1]/publisher

with fn:doc("bib.xml")/books/book[2]/publisher

18

XML Updates

Example updates for XML data

(8) replace value of node x with “some string”

replace value of x
with “string1”

xu v u

…

x v

string1

Note
The replace-value-of op.
preserves node identity!

If x is a text-node, then text-content of x becomes “string1”
If x is an attribute node, then attribute value becomes “string1”

19

XML Updates

Example updates for XML data

(8) replace value of node x with “some string”

Note
The replace-value-of op.
preserves node identity!

Explicit examples

Increase the price of the first book by ten percent.

do replace value of

fn:doc("bib.xml")/books/book[1]/price

with fn:doc("bib.xml")/books/book[1]/price * 1.1

20

XML Updates
Questions

What about the different node types

Can I insert an attribute node at any position?
Can I replace an attribute node by an element node, or vice versa?
etc

Do we really need so many different operations?
Which operation can be simulated by other ones?

How to generalize the target, from a node to an XPath expression?
(bulk updates, using one operation)

Semantical issues: doc changes after first update,
this might affect the subsequent updates! How to deal with this?

21

Snapshot Semantics

insert <phone>02 83060405</phone>
as last into //address/name[text()=“Jonny Pizzicato”]
for $e in //phone
rename $e as “telephone”

for $e in //a insert as first <a>

Semantics of this
on the document <a> ??

Snapshot Semantics

Each update operation is logically applied to a separate
snapshot of the original document.
Updates are applied independently from each other
to the original document. They don't see each others' effects.

The order of the update operations is irrelevant.

22

Type Issues

do delete TargetExpr
must eval. to a sequence (n_1…n_m) of nodes.
Otherwise: Type Error!

Semantics for all n_i, append upd:delete(n_i) to pending update list

23

Type Issues

do delete TargetExpr

do insert SourceExpr (as (first | last) into) | before | after TargetExpr

must eval. to a sequence of nodes.
Otherwise: Type Error!

evaluates to

n_1 n_2 … n_p u_1 u_2 … u_p

$alist $clist

Otherwise: Type Error

TargetExpr must evaluate to single node (called $target)
If before/after then $target must have a parent node ($parent)

as first/last upd:insertAttributes($target,$alist);
upd:insertIntoAsLast($target,$clist)

before/after upd:insertAttributes($parent,$alist)
upd:insertBefore($target,$clist)

append to
pending update list

append to
pending update list

24

Type Issues

do delete TargetExpr

do insert SourceExpr (as (first | last) into) | before | after TargetExpr

do replace TargetExpr with ExprSingle

must eval. to a sequence of nodes.
Otherwise: Type Error! must eval. to a sequence of attribute

nodes followed by non-att nodes

evaluates to

n_1 n_2 … n_p u_1 u_2 … u_p

$alist $clist

Otherwise: Type Error

TargetExpr must evaluate to single node (called $target)
and must have a parent ($parent)

If $target is element, text, comment, or PI node, then

upd:insertAttributes($parent,$alist);
upd:insertBefore($target,$clist)
upd:delete($target)

append to
pending update list

25

Type Issues

do delete TargetExpr

do insert SourceExpr (as (first | last) into) | before | after TargetExpr

do replace TargetExpr with ExprSingle

must eval. to a sequence of nodes.
Otherwise: Type Error! must eval. to a sequence of attribute

nodes followed by non-att nodes

evaluates to

n_1 n_2 … n_p u_1 u_2 … u_p

$alist $clist

Otherwise: Type Error

TargetExpr must evaluate to single node (called $target)
and must have a parent ($parent)

If $target is attribute node, then

upd:insertAttributes($parent,$alist);
upd:insertBefore($parent,$clist)
upd:delete($target)

append to
pending update list

26

Ambiguity
If $target is element, text, comment, or PI node, then

do replace TargetExpr with ExprSingle

is the same as

do insert ExprSingle before TargetExpr
do delete TargetExpr

Many more data-dependent ambiguities

insert as last = insert as first, if there are no children
insert as first = insert before on the first child, if that exists
insert as last = insert after on the last child, if that exists
…

27

Challenges: Physical Updates

Questions

How to do updates on a DAG?

What will be different?
Are incremental updates possible?

How to do updates on a PRE/POST-encoding?

What will be different?
Are incremental updates possible?

28

29

30

31

32

33

34

35

36

37

38

39

40

END
Lecture 13

