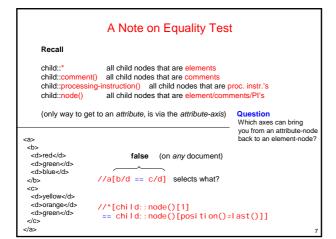
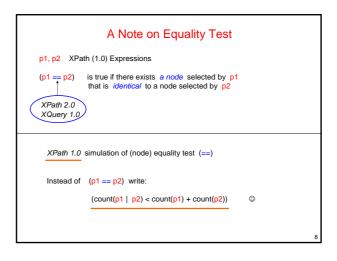
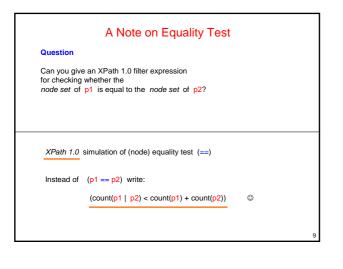
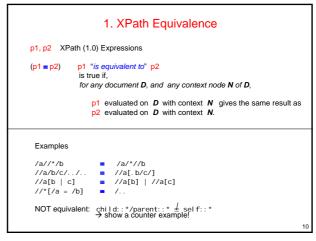
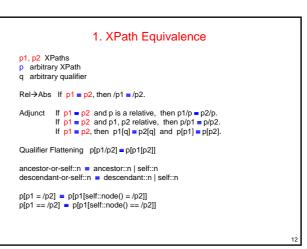

Outline

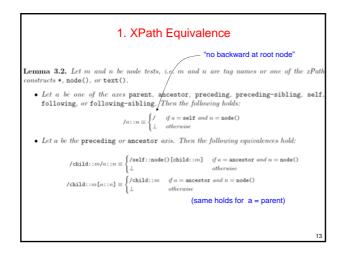

- 1. XPath Equivalence
- 2. No Looking Back: How to Remove Backward Axes
- 3. Containment Test for XPath Expressions

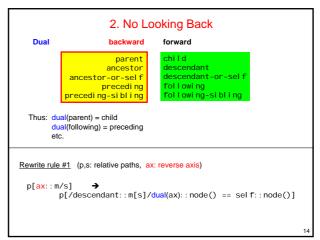

A Note on Equality Test in XPath

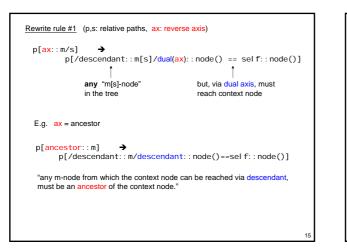


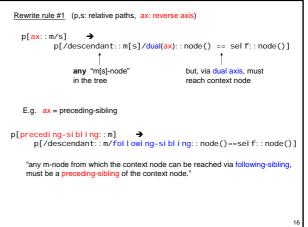


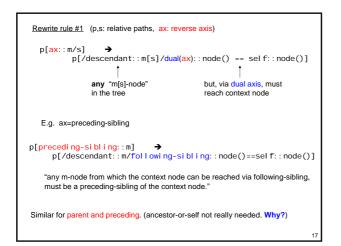


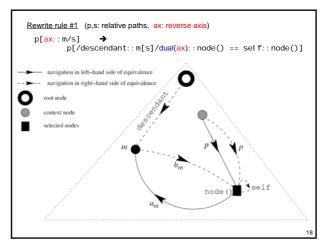


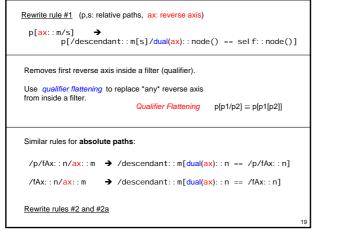

1. XPath Equivalence EBNF for XPaths that we want to consider now: path ::= path | path | path | path | path | path | qualif] | axis :: nodetest | ⊥ . qualif ::= qualif and qualif | qualif or qualif | (qualif) | path = path | path == path | path . axis ::= reverse_axis | forward_axis . reverse_axis ::= parent | ancestor | ancestor-or-self | preceding | preceding-sibling . forward_axis ::= self | child | descendant | descendant-or-self | following | following-sibling . nodetest ::= tagname | * | text() | node() .

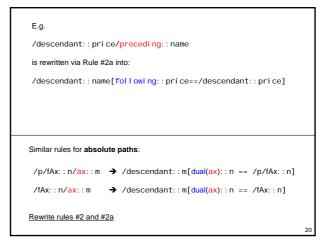

An XPath starting with "/" (root node) is called *absolute*, otherwise it is called *relative* (will be evaluated *relative* to a given context node).

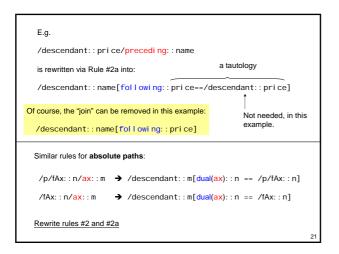

(Note: This is Core XPath wo negation, but with = and == operators)

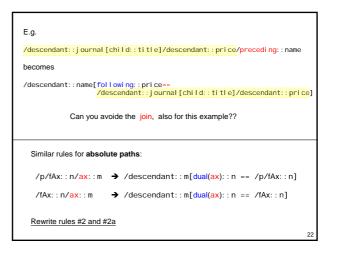


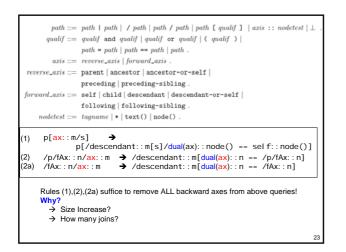


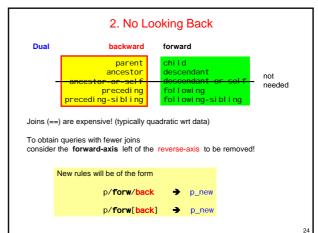












2. No Looking Back

Interaction of **back=parent** with forward axes:

 $descendant::n/parent::m \equiv descendant-or-self::m[child::n]$

(3)

2. No Looking Back

(3)

(4)

Interaction of back=parent with forward axes:

Description of back=parent with forward axes: #escendant::n/parent::m = descendant-or-self::m[child::n] (3) child::n/parent::m = self::m[child::n] (4) p/self::n/parent::m = p[self::n]/parent::m (5)

2. No Looking Back

Interaction of **back=parent** with forward axes:

$descendant::n/parent::m \equiv descendant-or-self::m[child::n]$	(3)
$child::n/parent::m \equiv self::m[child::n]$	(4)
p /self:: n /parent:: $m \equiv p$ [self:: n]/parent:: m	(5)
$p/following-sibling::n/parent::m \equiv p[following-sibling::n]/parent::m$	(6)

2. No Looking Back	
Interaction of back=parent with forward axes:	
$descendant::n/parent::m \equiv descendant-or-self::m[child::n]$	(3)
$child::n/parent::m \equiv self::m[child::n]$	(4)
$p/self::n/parent::m \equiv p[self::n]/parent::m$	(5)
p /following-sibling:: n /parent:: $m \equiv p$ [following-sibling:: n]/parent:: m	(6)
p /following:: n /parent:: $m \equiv p$ /following:: m [child:: n]	(7)
<pre>p/ancestor-or-self::*[following-sibling::///////////////////////////////////</pre>	1
/parent::m	

2. No Looking Back	
Interaction of back=parent with forward axes:	
$\texttt{descendant}::n/\texttt{parent}::m \equiv \texttt{descendant-or-self}::m[\texttt{child}::n]$	(3)
$child::n/parent::m \equiv self::m[child::n]$	(4)
p /self:: n /parent:: $m \equiv p$ [self:: n]/parent:: m	(5)
p /following-sibling:: n /parent:: $m \equiv p$ [following-sibling:: n]/parent:: m	(6)
p /following:: n /parent:: $m \equiv p$ /following:: m [child:: n]	(7)
<pre>//ancestor-or-self::*[following-siblin</pre>	g::n]
/parent::m	
$descendant::n$ [parent::m] $\equiv descendant-or-self::m/child::n$	(8)
$child::n[parent::m] \equiv self::m/child::n$	(9)
$p/self::n[parent::m] \equiv p[parent::m]/self::n$	(10)
p /following-sibling:: n [parent:: m] $\equiv p$ [parent:: m]/following-sibling:: n	(11)
p /following:: n [parent:: m] $\equiv p$ /following:: m /child:: n	(12)
p/ancestor-or-self::*[parent::m]	
/following-sibling::n	

2. No Looking Back

Interaction of back=ancestor with forward axes:

 $p/\texttt{descendant}::n/\texttt{ancestor}::m \equiv p[\texttt{descendant}::n]/\texttt{ancestor}::m \tag{13} \\ | p/\texttt{descendant-or-self}::m[\texttt{descendant}::n]$

2. No Looking Back

Interaction of back=ancestor with forward axes:

 $\begin{array}{ll} p/{\tt descendant::n/ancestor::m} & (13) \\ & & \mid p/{\tt descendant-or-self::m[\tt descendant::n]} \\ /{\tt descendant::n/ancestor::m} \equiv /{\tt descendant-or-self::m[\tt descendant::n]} & (13a) \end{array}$

2. No Looking Back

Interaction of back=ancestor with forward axes:

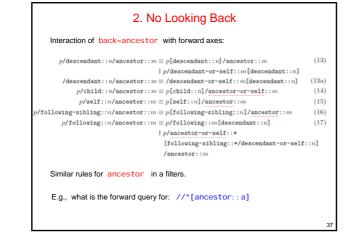
$p/descendant::n/ancestor::m \equiv p[descendant::n]/ancestor::m$	(13)
<pre>//descendant-or-self::m[descendant::n]</pre>	
$/descendant:: n/ancestor:: m \equiv /descendant-or-self:: m[descendant:: n]$	(13a)
p /child:: n /ancestor:: $m \equiv p$ [child:: n]/ancestor-or-self:: m	(14)

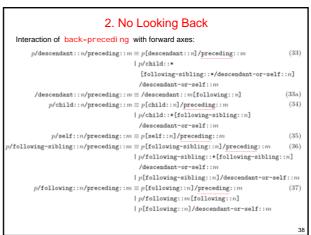
2. No Looking Back

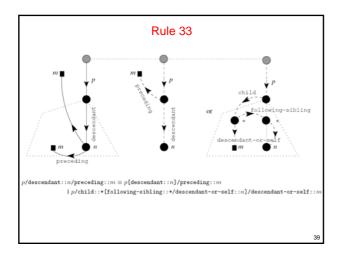
Interaction of back=ancestor with forward axes:

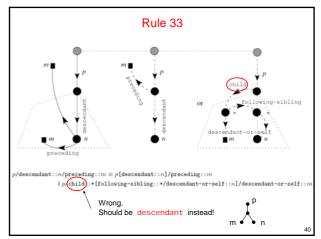
$p/\text{descendant}::n/\text{ancestor}::m \equiv p[\text{descendant}::n]/\text{ancestor}::m$	(13)
<pre> p/descendant-or-self::m[descendant::n]</pre>	
$/descendant::n/ancestor::m \equiv /descendant-or-self::m[descendant::n]$	(13a)
p /child:: n /ancestor:: $m \equiv p$ [child:: n]/ancestor-or-self:: m	(14)
$p/self::n/ancestor::m \equiv p[self::n]/ancestor::m$	(15)

2. No Looking Back

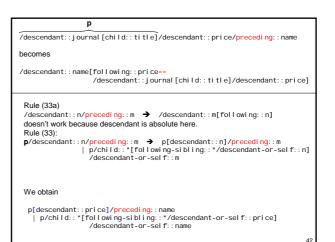

Interaction of back=ancestor with forward axes:

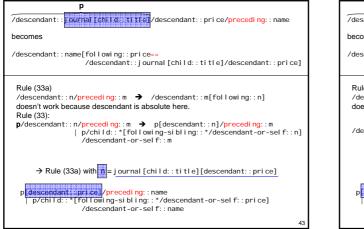

p /descendant:: n /ancestor:: $m \equiv p$ [descendant:: n]/ancestor:: m	(13)
<pre> p/descendant-or-self::m[descendant::n]</pre>	
$descendant:: n/ancestor:: m \equiv descendant-or-self:: m[descendant:: n]$	(13a)
p /child:: n /ancestor:: $m \equiv p$ [child:: n]/ancestor-or-self:: m	(14)
p /self:: n /ancestor:: $m \equiv p$ [self:: n]/ancestor:: m	(15)
p /following-sibling:: n /ancestor:: $m \equiv p$ [following-sibling:: n]/ancestor:: m	(16)

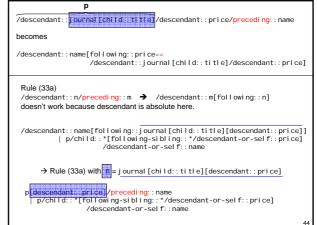

2. No Looking Back

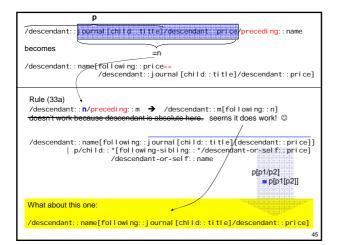

Interaction of back=ancestor with forward axes:

$p/descendant::n/ancestor::m \equiv p[descendant::n]/ancestor::m$	(13)
<pre> p/descendant-or-self::m[descendant::n]</pre>	
$descendant:: n/ancestor:: m \equiv descendant-or-self:: m[descendant:: n]$	(13a)
$p/child::n/ancestor::m \equiv p[child::n]/ancestor-or-self::m$	(14)
p /self:: n /ancestor:: $m \equiv p$ [self:: n]/ancestor:: m	(15)
following-sibling:: n /ancestor:: $m \equiv p$ [following-sibling:: n]/ancestor:: m	(16)
p /following:: n /ancestor:: $m \equiv p$ /following:: m [descendant:: n]	(17)
p/ancestor-or-self::*	
[following-sibling::*/descendant-or-self	::n]
/ancestor::m	
Similar rules for ancestor in a filters.	









Theorem

(from D. Olteanu, H. Meuss, T. Furche, F. Bry XPath: Looking Forward. EDBT Workshops 2002: 109-127)

Given an XPath expression p that has no joins of the form (p1 == p2) with both p1,p2 relative, an equivalent expression u without reverse axes can be computed.

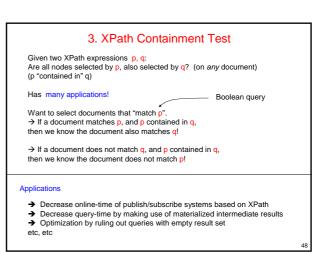
Time needed: at most **exponential** in length of p *Length* of u: at most **exponential** in length of p

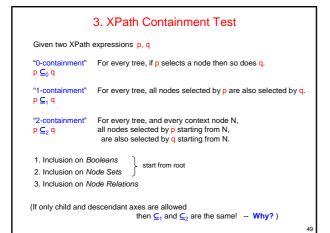
(moreover: no joins are introduced when computing u)

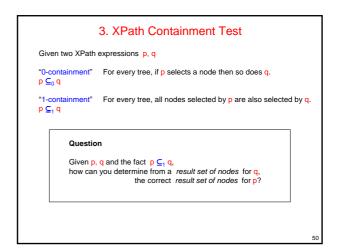
Questions

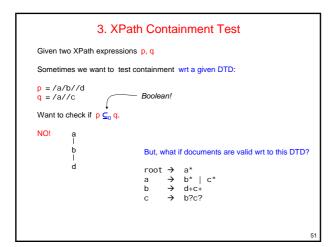
→ Why rewriting takes exponential time?

→ Can you find a subclass for which *Time* to compute u is linear or polynomial?
 → What is the problem with joins (p1 == p2) for removal of reverse axes?

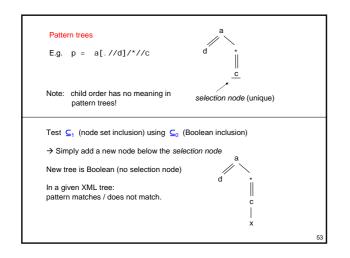

Theorem

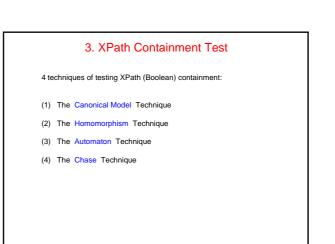

Given an XPath expression p that has no joins of the form (p1 == p2) with both p1,p2 relative, an equivalent expression u without reverse axes can be computed.

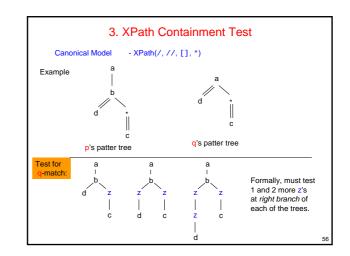

Time needed: at most **exponential** in length of p (moreover: *no joins* are introduced when computing u)

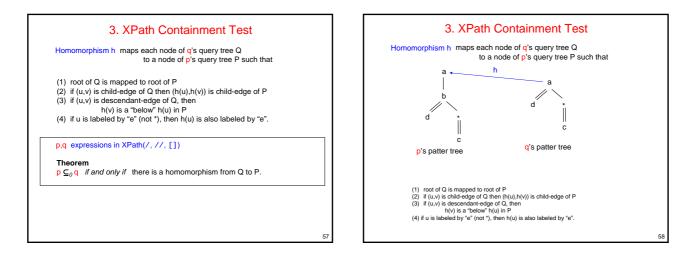

More Questions

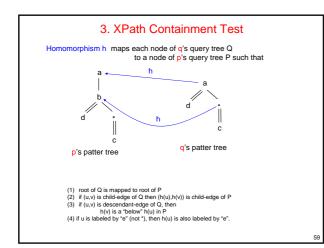
- $\rightarrow\,$ Give an example of Core backward XPath with $\,$ negation, for which there is no forward XPath query.
- → Give an example of Core backward XPath with **data values**, for which there is no forward XPath query.
- \rightarrow Give an example of a Core backward XPath with **counting**, for which there is no forward XPath query.

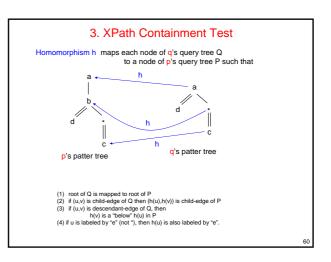


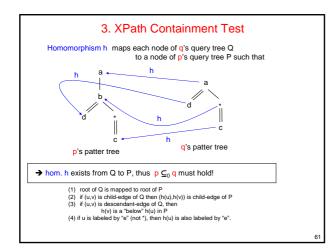





PTIME	XP(/, //, *) [21] XP(/, / , *) (see [19]) XP(/, / ,) [2], with fixed bounded SXICs [9] XP(/, //) + DTDs [22] XP(/,) + DTDs [22]	2. XPath Containment Test	
CONP	$\frac{\text{XP}(/, //, [], *) [19]}{\text{XP}(/, //, [], *, [], \text{XP}(/,]), \text{XP}(//, []) [22]}{\text{XP}(/, []) + \text{DTDs} [22]}{\text{XP}(//, []) + \text{DTDs} [22]}{\text{XP}(/, /, []) + \text{DTDs} [22]}$	from:	
-	+ path equality + ancestor-or-self axis + fixed bounded SXICs [9] XP(/,//,[],*,)) + existential variables + all backward axes + fixed bounded SXICs [9] XP(/,//,[],1) + existential variables with inequality [22]	T. Schwentick XPath query containment. SIGMOD Record 33(1): 101-109 (2004)	
PSPACE	XP(/, //, [], *,]) and $XP(/, //,])$ if the alphabet is finite [22] XP(/, //, [], *,]) + variables with XPath semantics [22]		
EXPTIME	XP(/, //, [], []) + existential variables +bounded SXICs [9] $XP(/, //, [], *,]) + DTDs [22]XP(/, //, [], *) + DTDs [22]XP(/, //, [], *) + DTDs [22]$		
Undecidable	$\begin{split} & XP(j, . ,) + existential variables + \\ & unbounded SXICs 9 \\ & XP(j, . ,) + existential variables + \\ & bounded SXICs + DTDs [9] \\ & XP(j, . ,],) + nodeset equality + \\ & simple DTDs [22] \\ & XP(j, . , .], *,) + existential variables \\ & with inequality(22) \end{split}$		52






3. XPath Containment Tes	st	
Canonical Model - XPath(/, //, [], *)		
Idea: if there exists a tree that matches ρ but not $q,$ then such a tree exists of size polynomial in the size of ρ an $q.$		
Simple: remember, if you know that the XML document is only of height 5, then <i>IIa/b/*/c</i> could be enumerated by /a/b/*/c /*/a/b/*/c /*/*/a/b/*/c /*/*/a		
Similarly, we try to construct a counter example tree, by replacing in p	A largeth of	
→ every * by some new symbol "z" → every // by $z/, z/z/, z/z/z/, z/z//z/$	N = length of longest *//* chain in q	
N+1 many z's		
		55

