XML and Databases

Lecture 9 Properties of XPath

Sebastian Maneth NICTA and UNSW

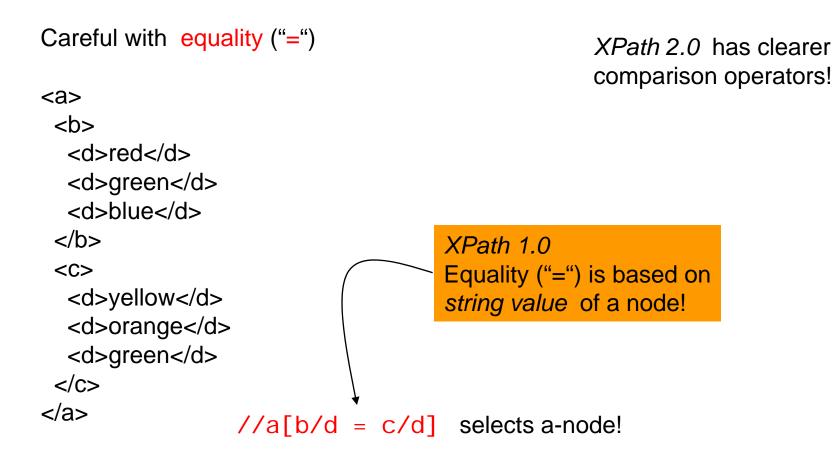
CSE@UNSW -- Semester 1, 2010

Outline

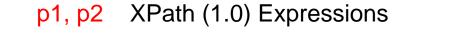
- 1. XPath Equivalence
- 2. No Looking Back: How to Remove Backward Axes
- 3. Containment Test for XPath Expressions

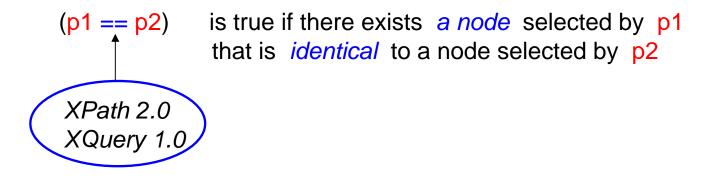
A Note on Equality Test in XPath

Useful Functions (on Node Sets)

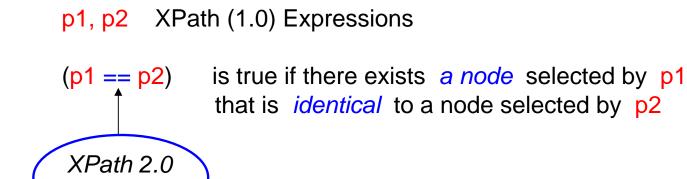


there is a node in the node set for b/d with same string value as a node in node set c/d

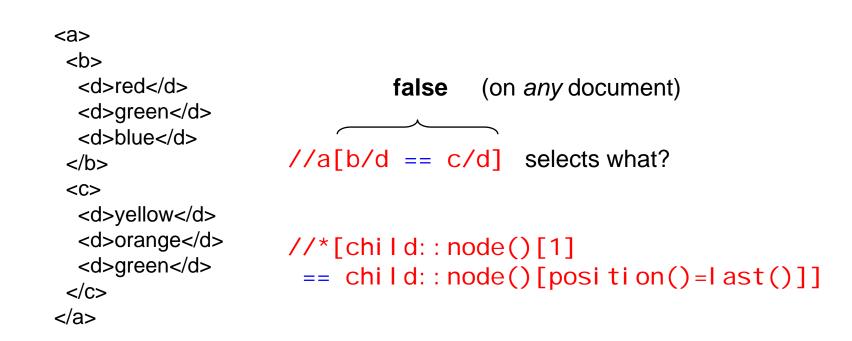




<a> <d>red</d> <d>green</d> <d>green</d> <c> <d>yellow</d> <d>orange</d> <d>green</d> </c>	//a[b/d == c/d]	selects what?



XQuery 1.0



Recall

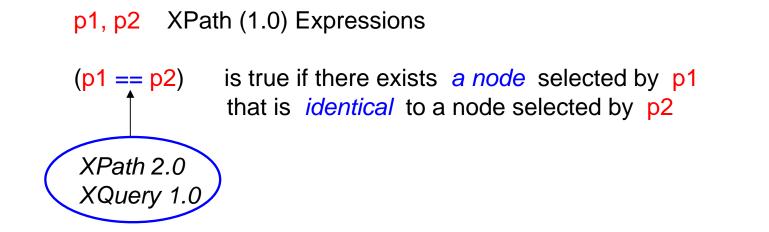
child::* all child nodes that are elements child::comment() all child nodes that are comments child::processing-instruction() all child nodes that are proc. instr.'s child::node() all child nodes that are element/comments/PI's

(only way to get to an *attribute*, is via the *attribute-axis*)

Question

Which axes can bring you from an attribute-node back to an element-node?

```
<a>
 < h >
 <d>red</d>
                             false
                                     (on any document)
  <d>green</d>
  <d>blue</d>
                    //a[b/d == c/d] selects what?
</b>
 <C>
  <d>yellow</d>
  <d>orange</d>
                    //*[chi l d: : node()[1]
  <d>green</d>
                     == child::node()[position()=last()]]
</c>
</a>
```



XPath 1.0 simulation of (node) equality test (==)

Instead of (p1 == p2) write:

(count(p1 | p2) < count(p1) + count(p2))

Question

Can you give an XPath 1.0 filter expression for checking whether the *node set* of p1 is equal to the *node set* of p2?

XPath 1.0 simulation of (node) equality test (==)

Instead of (p1 == p2) write:

(count(p1 | p2) < count(p1) + count(p2))

- p1, p2 XPath (1.0) Expressions
- $(p1 \equiv p2) \qquad p1 "is equivalent to" p2 \\ is true if, \\ for any document$ **D**, and any context node**N**of**D**,

p1 evaluated on D with context N gives the same result as

*

p2 evaluated on **D** with context **N**.

Examples

/a//*/b	≡	/a/*//b
//a/b/c//	≡	//a[.b/c/]
//a[b c]	=	//a[b] //a[c]
//*[/a = /b]	≡	1
	- 1- 1 1	
NOT equivalent:	çni l	d: : */parent: : * \neq sel f: :

 \rightarrow show a counter example!

EBNF for XPaths that we want to consider now:

path ::= path | path | / path | path | path | path [qualif] | axis :: nodetest | ⊥ .
qualif ::= qualif and qualif | qualif or qualif | (qualif) |
path = path | path == path | path .
axis ::= reverse_axis | forward_axis .
reverse_axis ::= parent | ancestor | ancestor-or-self |
preceding | preceding-sibling .
forward_axis ::= self | child | descendant | descendant-or-self |
following | following-sibling .
nodetest ::= tagname | * | text() | node() .

An XPath starting with "/" (root node) is called *absolute*, otherwise it is called *relative* (will be evaluated *relative* to a given context node).

(Note: This is Core XPath wo negation, but with = and == operators)

p1, p2 XPaths

- p arbitrary XPath
- q arbitrary qualifier

Rel \rightarrow Abs If p1 = p2, then /p1 = /p2.

Adjunct If $p1 \equiv p2$ and p is a relative, then $p1/p \equiv p2/p$. If $p1 \equiv p2$ and p1, p2 relative, then $p/p1 \equiv p/p2$. If $p1 \equiv p2$, then $p1[q] \equiv p2[q]$ and $p[p1] \equiv p[p2]$.

Qualifier Flattening $p[p1/p2] \equiv p[p1[p2]]$

ancestor-or-self::n = ancestor::n | self::n descendant-or-self::n = descendant::n | self::n

 $p[p1 = /p2] \equiv p[p1[self::node() = /p2]]$ $p[p1 == /p2] \equiv p[p1[self::node() == /p2]]$

— "no backward at root node"

Lemma 3.2. Let m and n be node tests, i.e. m and n are tag names or one of the xPath constructs *, node(), or text().

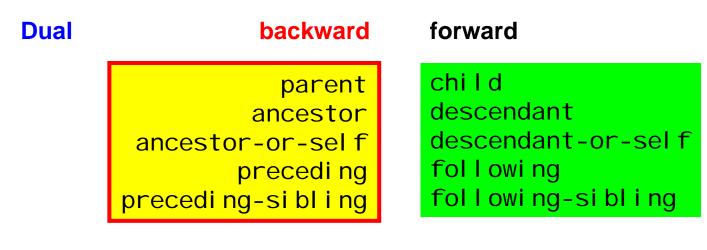
• Let a be one of the axes parent, ancestor, preceding, preceding-sibling, self, following, or following-sibling. Then the following holds:

$$/a::n \equiv \begin{cases} / & \text{if } a = \texttt{self} \ and \ n = \texttt{node()} \\ \bot & otherwise \end{cases}$$

• Let a be the preceding or ancestor axis. Then the following equivalences hold:

$$/child::m/a::n \equiv \begin{cases} /self::node()[child::m] & if a = ancestor and n = node() \\ \bot & otherwise \end{cases}$$
$$/child::m[a::n] \equiv \begin{cases} /child::m & if a = ancestor and n = node() \\ \bot & otherwise \end{cases}$$

(same holds for a = parent)



Thus: dual(parent) = child dual(following) = preceding etc.

<u>Rewrite rule #1</u> (p,s: relative paths, ax: reverse axis)

p[ax::m/s] →
p[/descendant::m[s]/dual(ax)::node() == sel f::node()]

<u>Rewrite rule #1</u> (p,s: relative paths, ax: reverse axis)

E.g. **ax** = ancestor

p[ancestor::m] →
 p[/descendant::m/descendant::node()==sel f::node()]

"any m-node from which the context node can be reached via descendant, must be an ancestor of the context node." <u>Rewrite rule #1</u> (p,s: relative paths, ax: reverse axis)

E.g. **ax** = preceding-sibling

p[preceding-sibling::m] →
p[/descendant::m/following-sibling::node()==self::node()]

"any m-node from which the context node can be reached via following-sibling, must be a preceding-sibling of the context node." <u>Rewrite rule #1</u> (p,s: relative paths, ax: reverse axis)

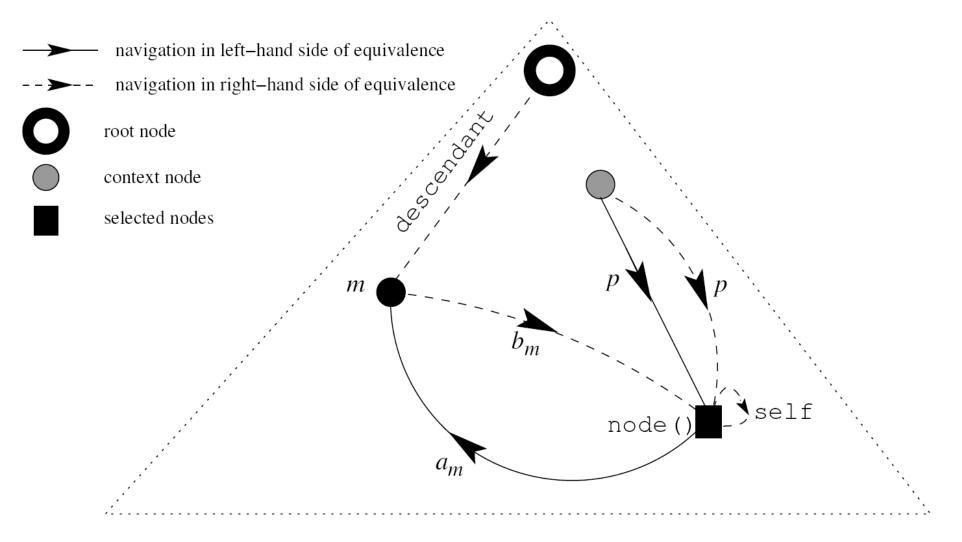
E.g. ax=preceding-sibling

p[preceding-sibling::m] →
p[/descendant::m/following-sibling::node()==self::node()]

"any m-node from which the context node can be reached via following-sibling, must be a preceding-sibling of the context node."

Similar for parent and preceding. (ancestor-or-self not really needed. Why?)

Rewrite rule #1 (p,s: relative paths, ax: reverse axis) p[ax::m/s] → p[/descendant::m[s]/dual(ax)::node() == sel f::node()]



Rewrite rule #1 (p,s: relative paths, ax: reverse axis)
p[ax::m/s] →
p[/descendant::m[s]/dual(ax)::node() == sel f::node()]

Removes first reverse axis inside a filter (qualifier).

Use *qualifier flattening* to replace *any* reverse axis from inside a filter.

Qualifier Flattening $p[p1/p2] \equiv p[p1[p2]]$

Similar rules for **absolute paths**:

/p/fAx::n/ax::m → /descendant::m[dual(ax)::n == /p/fAx::n] /fAx::n/ax::m → /descendant::m[dual(ax)::n == /fAx::n]

E.g.

/descendant::price/preceding::name

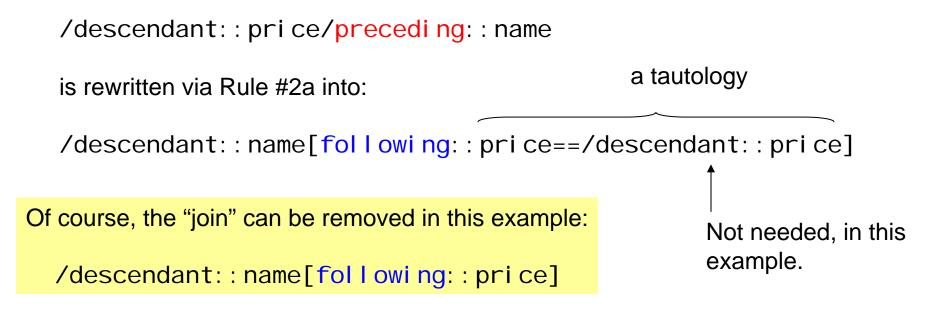
is rewritten via Rule #2a into:

/descendant::name[following::price==/descendant::price]

Similar rules for **absolute paths**:

/p/fAx::n/ax::m → /descendant::m[dual(ax)::n == /p/fAx::n]
/fAx::n/ax::m → /descendant::m[dual(ax)::n == /fAx::n]

E.g.



Similar rules for **absolute paths**:

/p/fAx::n/ax::m → /descendant::m[dual(ax)::n == /p/fAx::n]
/fAx::n/ax::m → /descendant::m[dual(ax)::n == /fAx::n]

/descendant::journal[child::title]/descendant::price/preceding::name

becomes

/descendant: : name[following: : price==
 /descendant: : j ournal [child: : title]/descendant: : price]

Can you avoide the join, also for this example??

Similar rules for **absolute paths**:

 $/p/fAx::n/ax::m \rightarrow /descendant::m[dual(ax)::n == /p/fAx::n]$

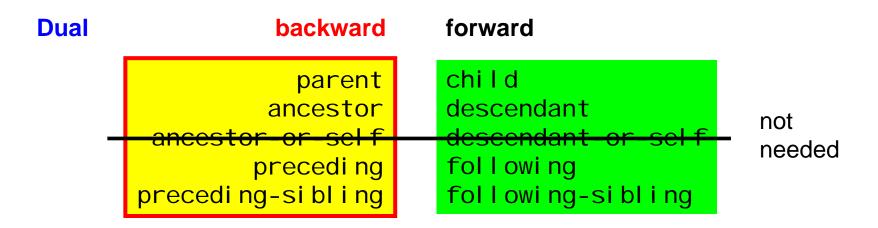
/fAx::n/ax::m → /descendant::m[dual(ax)::n == /fAx::n]

```
path ::= path | path | / path | path | path | path [ qualif ] | axis :: nodetest | ⊥ .
qualif ::= qualif and qualif | qualif or qualif | ( qualif ) |
path = path | path == path | path .
axis ::= reverse_axis | forward_axis .
reverse_axis ::= parent | ancestor | ancestor-or-self |
preceding | preceding-sibling .
forward_axis ::= self | child | descendant | descendant-or-self |
following | following-sibling .
nodetest ::= tagname | * | text() | node() .
```

(1)	p[<mark>ax</mark> ::m/s] →		
<pre>p[/descendant::m[s]/dual(ax)::node() == sel f::node()]</pre>			
(2)	/p/fAx::n/ <mark>ax</mark> ::m	/descendant::m[dual(ax)::n == /p/fAx::n]	
(2a)	/fAx::n/ <mark>ax</mark> ::m	/descendant::m[dual(ax)::n == /fAx::n]	

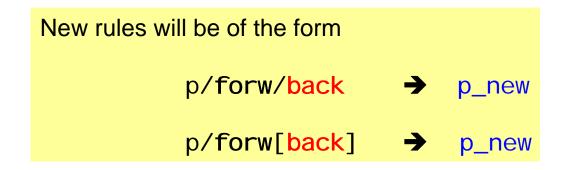
Rules (1),(2),(2a) suffice to remove ALL backward axes from above queries! Why?

- → Size Increase?
- \rightarrow How many joins?



Joins (==) are expensive! (typically quadratic wrt data)

To obtain queries with fewer joins consider the **forward-axis** left of the **reverse-axis** to be removed!



Interaction of **back=parent** with forward axes:

 $descendant::n/parent::m \equiv descendant-or-self::m[child::n]$ (3)

$$descendant::n/parent::m \equiv descendant-or-self::m[child::n]$$
(3)

$$\texttt{child}::n/\texttt{parent}::m \equiv \texttt{self}::m[\texttt{child}::n] \tag{4}$$

$$descendant::n/parent::m \equiv descendant-or-self::m[child::n]$$
(3)

$$\texttt{child}::n/\texttt{parent}::m \equiv \texttt{self}::m[\texttt{child}::n] \tag{4}$$

$$p/self::n/parent::m \equiv p[self::n]/parent::m$$
 (5)

$$descendant::n/parent::m \equiv descendant-or-self::m[child::n]$$
(3)

$$\texttt{child}::n/\texttt{parent}::m \equiv \texttt{self}::m[\texttt{child}::n] \tag{4}$$

$$p/self::n/parent::m \equiv p[self::n]/parent::m$$
 (5)

$$p$$
/following-sibling:: n /parent:: $m \equiv p$ [following-sibling:: n]/parent:: m (6)

Interaction of **back=parent** with forward axes:

$$\texttt{descendant::} n/\texttt{parent::} m \equiv \texttt{descendant-or-self::} m[\texttt{child::} n] \tag{3}$$

 $\texttt{child}::n/\texttt{parent}::m \equiv \texttt{self}::m[\texttt{child}::n] \tag{4}$

$$p/self::n/parent::m \equiv p[self::n]/parent::m$$
 (5)

$$p$$
/following-sibling:: n /parent:: $m \equiv p$ [following-sibling:: n]/parent:: m (6)

$$p/following::n/parent::m \equiv p/following::m[child::n]$$
 (7)

| p/ancestor-or-self::*[following-sibling::n]

/parent::m

Interaction of **back=parent** with forward axes:

$$\texttt{descendant}::n/\texttt{parent}::m \equiv \texttt{descendant-or-self}::m[\texttt{child}::n] \tag{3}$$

$$child::n/parent::m \equiv self::m[child::n]$$
(4)

$$p/self::n/parent::m \equiv p[self::n]/parent::m$$
 (5)

$$p$$
/following-sibling:: n /parent:: $m \equiv p$ [following-sibling:: n]/parent:: m (6)

$$p$$
/following:: n /parent:: $m \equiv p$ /following:: m [child:: n] (7)

| p/ancestor-or-self::*[following-sibling::n]

/parent::m

$$descendant::n \ [parent::m] \equiv descendant-or-self::m/child::n \ (8)$$

$$child::n[parent::m] \equiv self::m/child::n \tag{9}$$

$$p/self::n[parent::m] \equiv p[parent::m]/self::n$$
 (10)

$$p$$
/following-sibling:: n [parent:: m] $\equiv p$ [parent:: m]/following-sibling:: n (11)

$$p$$
/following:: n [parent:: m] $\equiv p$ /following:: m /child:: n (12)

/following-sibling::n

```
p/\text{descendant}::n/\text{ancestor}::m \equiv p[\text{descendant}::n]/\text{ancestor}::m (13)
\mid p/\text{descendant-or-self}::m[\text{descendant}::n]
```

Interaction of **back**=ancestor with forward axes:

$$p/\text{descendant}::n/\text{ancestor}::m \equiv p[\text{descendant}::n]/\text{ancestor}::m$$
 (13)
 $\mid p/\text{descendant-or-self}::m[\text{descendant}::n]$

 $/descendant:: n/ancestor:: m \equiv /descendant-or-self:: m[descendant:: n]$ (13a)

$$p/\text{descendant}::n/\text{ancestor}::m \equiv p[\text{descendant}::n]/\text{ancestor}::m \qquad (13)$$

$$\mid p/\text{descendant-or-self}::m[\text{descendant}::n]$$

$$/\text{descendant}::n/\text{ancestor}::m \equiv /\text{descendant-or-self}::m[\text{descendant}::n] \qquad (13a)$$

$$p/\text{child}::n/\text{ancestor}::m \equiv p[\text{child}::n]/\text{ancestor-or-self}::m \qquad (14)$$

$$p/\text{descendant}::n/\text{ancestor}::m \equiv p[\text{descendant}::n]/\text{ancestor}::m \qquad (13)$$

$$\mid p/\text{descendant-or-self}::m[\text{descendant}::n]$$

$$/\text{descendant}::n/\text{ancestor}::m \equiv /\text{descendant-or-self}::m[\text{descendant}::n] \qquad (13a)$$

$$p/\text{child}::n/\text{ancestor}::m \equiv p[\text{child}::n]/\text{ancestor-or-self}::m \qquad (14)$$

$$p/\text{self}::n/\text{ancestor}::m \equiv p[\text{self}::n]/\text{ancestor}::m \qquad (15)$$

$$p/\text{descendant}::n/\text{ancestor}::m \equiv p[\text{descendant}::n]/\text{ancestor}::m \qquad (13)$$

$$\mid p/\text{descendant-or-self}::m[\text{descendant}::n]$$

$$/\text{descendant}::n/\text{ancestor}::m \equiv /\text{descendant-or-self}::m[\text{descendant}::n] \qquad (13a)$$

$$p/\text{child}::n/\text{ancestor}::m \equiv p[\text{child}::n]/\text{ancestor-or-self}::m \qquad (14)$$

$$p/\text{self}::n/\text{ancestor}::m \equiv p[\text{self}::n]/\text{ancestor}::m \qquad (15)$$

$$p/\text{following-sibling}::n/\text{ancestor}::m \equiv p[\text{following-sibling}::n]/\text{ancestor}::m \qquad (16)$$

Interaction of back=ancestor with forward axes:

$$p/\text{descendant}::n/\text{ancestor}::m \equiv p[\text{descendant}::n]/\text{ancestor}::m \qquad (13)$$

$$\mid p/\text{descendant-or-self}::m[\text{descendant}::n]$$

$$/\text{descendant}::n/\text{ancestor}::m \equiv /\text{descendant-or-self}::m[\text{descendant}::n] \qquad (13a)$$

$$p/\text{child}::n/\text{ancestor}::m \equiv p[\text{child}::n]/\text{ancestor-or-self}::m \qquad (14)$$

$$p/\text{self}::n/\text{ancestor}::m \equiv p[\text{self}::n]/\text{ancestor}::m \qquad (15)$$

$$p/\text{following-sibling}::n/\text{ancestor}::m \equiv p[\text{following-sibling}::n]/\text{ancestor}::m \qquad (16)$$

$$p/\text{following}::n/\text{ancestor}::m \equiv p/\text{following}::m[\text{descendant}::n] \qquad (17)$$

$$\mid p/\text{ancestor-or-self}::* \qquad [following::*/\text{descendant-or-self}::n]/\text{ancestor}::m$$

Similar rules for ancestor in a filters.

2. No Looking Back

Interaction of **back=ancestor** with forward axes:

$$p/\text{descendant}::n/\text{ancestor}::m \equiv p[\text{descendant}::n]/\text{ancestor}::m \qquad (13)$$

$$| p/\text{descendant-or-self}::m[\text{descendant}::n]$$

$$/\text{descendant}::n/\text{ancestor}::m \equiv /\text{descendant-or-self}::m[\text{descendant}::n] \qquad (13a)$$

$$p/\text{child}::n/\text{ancestor}::m \equiv p[\text{child}::n]/\text{ancestor-or-self}::m \qquad (14)$$

$$p/\text{self}::n/\text{ancestor}::m \equiv p[\text{self}::n]/\text{ancestor}::m \qquad (15)$$

$$p/\text{following-sibling}::n/\text{ancestor}::m \equiv p[\text{following-sibling}::n]/\text{ancestor}::m \qquad (16)$$

$$p/\text{following}::n/\text{ancestor}::m \equiv p/\text{following}::m[\text{descendant}::n] \qquad (17)$$

$$| p/\text{ancestor-or-self}::* \qquad [following::*/\text{descendant-or-self}::n]/\text{ancestor}::m \qquad (17)$$

Similar rules for ancestor in a filters.

E.g., what is the forward query for: //*[ancestor::a]

2. No Looking Back

Interaction of back=preceding with forward axes:

$$p/\text{descendant}::n/\text{preceding}::m \equiv p[\text{descendant}::n]/\text{preceding}::m \tag{33}$$

$$| p/\text{child}::*$$

$$[following-sibling::*/\text{descendant-or-self}:n]$$

$$/\text{descendant}::n/\text{preceding}::m \equiv /\text{descendant}::m[following::n] \tag{33a}$$

$$p/\text{child}::n/\text{preceding}::m \equiv p[\text{child}::n]/\text{preceding}::m \tag{34}$$

$$| p/\text{child}::*[following-sibling::n]$$

$$/\text{descendant-or-self}:m$$

$$p/\text{self}::n/\text{preceding}::m \equiv p[\text{self}::n]/\text{preceding}::m \tag{35}$$

$$p/\text{following-sibling}::n/\text{preceding}::m \equiv p[\text{following-sibling}::n] / \text{descendant-or-self}:m$$

$$p/\text{following-sibling}::n/\text{preceding}::m \equiv p[\text{following-sibling}::n]/\text{preceding}::m (36)$$

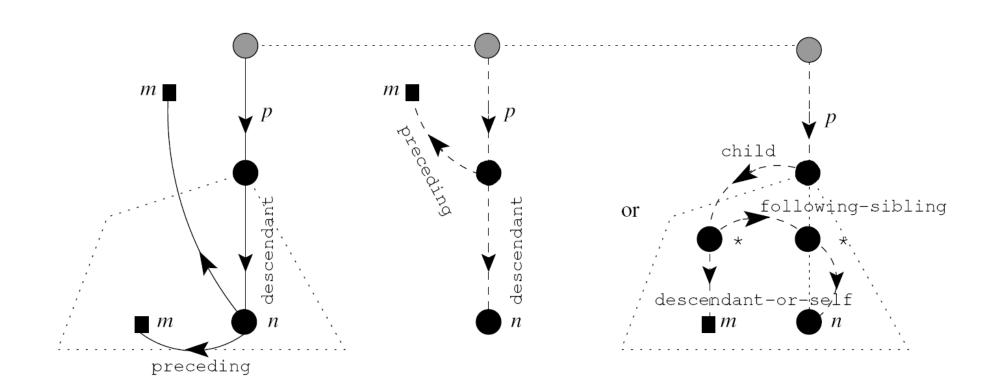
$$| p/\text{following-sibling}::n]/\text{descendant-or-self}::m$$

$$p/\text{following}::n/\text{preceding}::m \equiv p[\text{following}::n]/\text{descendant-or-self}::m (37)$$

$$| p/\text{following}::m[\text{following}::n] / \text{preceding}::m (37)$$

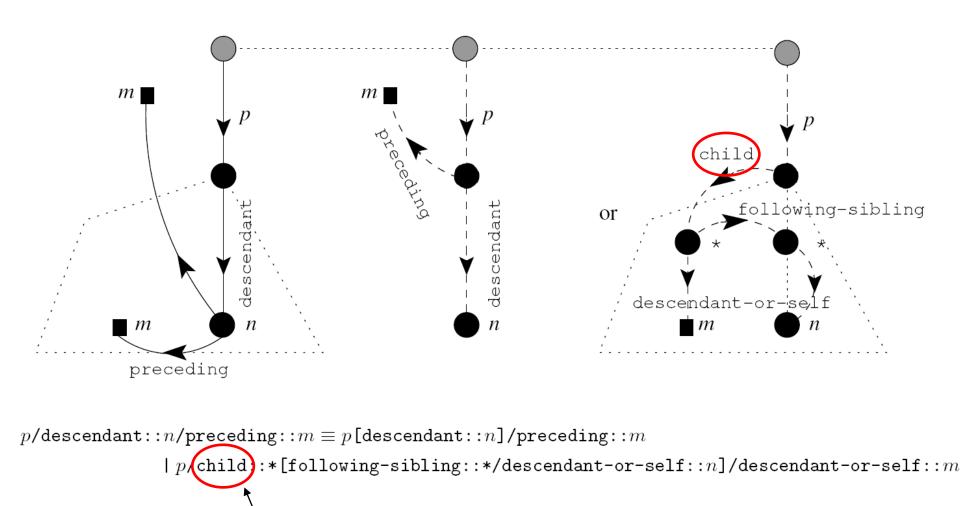
$$| p/\text{following}::m[\text{following}::n]$$

Rule 33

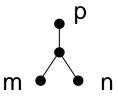


 $p/descendant::n/preceding::m \equiv p[descendant::n]/preceding::m$ | p/child::*[following-sibling::*/descendant-or-self::n]/descendant-or-self::m

Rule 33



Wrong. Should be descendant instead!



40

2. No Looking Back

/descendant: : pri ce/precedi ng: : name

is rewritten via Rule #2a into:

/descendant::name[following::price==/descendant::price]

Now, let us use Rule (33a)

/descendant::n/preceding::m → /descendant::m[following::n]

We obtain

/descendant: : name[following: : price]

р

/descendant::journal[child::title]/descendant::price/preceding::name

becomes

```
/descendant: : name[following: : price==
    /descendant: : j ournal [child: : title]/descendant: : price]
```

We obtain

/descendant::journal[child::title]/descendant::price/preceding::name

becomes

р

/descendant: : name[following: : price==
 /descendant: : journal[child: : title]/descendant: : price]

→ Rule (33a) with n = j ournal [chi l d: : ti tl e] [descendant: : pri ce]

p[descendant::price]/preceding::name | p/child::*[following-sibling::*/descendant-or-self::price] /descendant-or-self::name /descendant::journal[child::title]/descendant::price/preceding::name

becomes

р

/descendant: : name[following: : price==
 /descendant: : journal[child: : title]/descendant: : price]

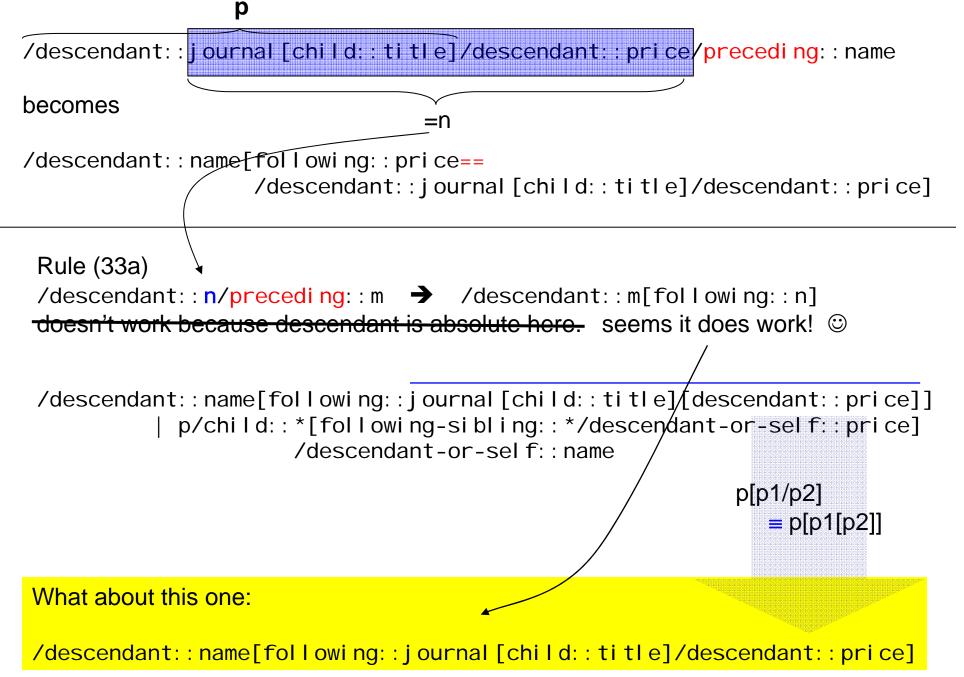
Rule (33a)

/descendant: : n/precedi ng: : m → /descendant: : m[fol | owi ng: : n]
doesn't work because descendant is absolute here.

/descendant::name[following::journal[child::title][descendant::price]] | p/child::*[following-sibling::*/descendant-or-self::price] /descendant-or-self::name

→ Rule (33a) with n = j ournal [chi l d: : ti tl e] [descendant: : pri ce]

p[descendant::price]/preceding::name | p/child::*[following-sibling::*/descendant-or-self::price] /descendant-or-self::name



Theorem

(from D. Olteanu, H. Meuss, T. Furche, F. Bry XPath: Looking Forward. <u>EDBT Workshops 2002</u>: 109-127)

Given an XPath expression p that has no joins of the form (p1 == p2) with both p1,p2 relative, an equivalent expression u without reverse axes can be computed.

Time needed: at most **exponential** in length of p *Length* of u: at most **exponential** in length of p

(moreover: *no joins* are introduced when computing **u**)

Questions

- \rightarrow Why rewriting takes exponential time?
- \rightarrow Can you find a subclass for which *Time* to compute **u** is linear or polynomial?
- \rightarrow What is the problem with joins (p1 == p2) for removal of reverse axes?

Theorem

Given an XPath expression p that has no joins of the form (p1 == p2) with both p1,p2 relative, an equivalent expression u without reverse axes can be computed.

Time needed: at most **exponential** in length of **p** (moreover: *no joins* are introduced when computing **u**)

More Questions

 \rightarrow Give an example of Core backward XPath with **negation**, for which there is no forward XPath query.

 \rightarrow Give an example of Core backward XPath with **data values**, for which there is no forward XPath query.

 \rightarrow Give an example of a Core backward XPath with **counting**, for which there is no forward XPath query.

Given two XPath expressions p, q: Are all nodes selected by p, also selected by q? (on *any* document) (p "contained in" q) Has many applications! Want to select documents that "match p".

 \rightarrow If a document matches p, and p contained in q,

then we know the document also matches **q**!

 \rightarrow If a document does not match q, and p contained in q, then we know the document does not match p!

Applications

- ➔ Decrease online-time of publish/subscribe systems based on XPath
- ➔ Decrease query-time by making use of materialized intermediate results
- ➔ Optimization by ruling out queries with empty result set etc, etc

Given two XPath expressions p, q

"0-containment" For every tree, if p selects a node then so does q. $p \subseteq_0 q$

"1-containment" For every tree, all nodes selected by p are also selected by q. $p\subseteq_1 q$

"2-containment" For every tree, and every context node N, $p \subseteq_2 q$ all nodes selected by p starting from N, are also selected by q starting from N.

1. Inclusion on *Booleans*

2. Inclusion on Node Sets

start from root

3. Inclusion on Node Relations

(If only child and descendant axes are allowed

then \subseteq_1 and \subseteq_2 are the same! -- Why?)

Given two XPath expressions p, q

"0-containment" For every tree, if p selects a node then so does q. $p \subseteq_0 q$

"1-containment" For every tree, all nodes selected by p are also selected by q. $p\subseteq_1 q$

Question

Given p, q and the fact $p \subseteq_1 q$, how can you determine from a *result set of nodes* for q, the correct *result set of nodes* for p?

Given two XPath expressions p, q

Sometimes we want to test containment wrt a given DTD:

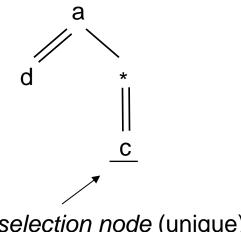
p = /a/b//d q = /a//cWant to check if $p \subseteq_0 q$.
NO! a b b dBut, what if documents are valid wrt to this DTD? $root \rightarrow a^*$ $a \rightarrow b^* \mid c^*$ $b \rightarrow d+c+$ $c \rightarrow b?c?$

PTIME	XP(/, //, *) [21]
	XP(/,[],*) (see [19])
	XP(/, //, []) [2], with fixed bounded
	SXICs [9]
	XP(/, //) + DTDs [22]
	XP[/,[]] + DTDs [22]
CONP	XP(/, //, [], *) [19]
	XP(/, //, [], *,]), XP(/,]), XP(//,]) [22]
	XP(/,[]) + DTDs [22]
	XP(//,[]) + DTDs[22]
Π_2^p	XP(/, //, [],) + existential variables
	+ path equality + ancestor-or-self
	axis $+$ fixed bounded SXICs [9]
	XP(/, //, [], *,) + existential variables
	+ all backward axes $+$ fixed bounded
	SXICs [9]
	XP(/, //, [],) + existential variables
	with inequality [22]
PSPACE	XP(/, //, [], *,) and $XP(/, //,)$ if the
	alphabet is finite [22]
	XP(/, //, [], *,) + variables with
	XPath semantics [22]
EXPTIME	XP(/, //, [],) + existential variables +
	bounded SXICs [9]
	XP(/, //, [], *,) + DTDs [22]
	XP(/, //,) + DTDs [22]
	XP(/, //, [], *) + DTDs [22]
Undecidable	XP(/, //, [],) + existential variables +
	unbounded SXICs [9] XD(///[1]) = grintential mariables = 1
	XP(/, //, [],) + existential variables + bounded SXICs + DTDs [9]
	XP(/, //, [], *,]) + nodeset equality +
	simple DTDs $[22]$
	XP(/, //, [], *,]) + existential variables
	with inequality[22]
L	with modulity [==]

from:

T. Schwentick XPath query containment. <u>SIGMOD Record 33(1)</u>: 101-109 (2004) Pattern trees

E.g. p = a[.//d]/*//c



Note: child order has no meaning in pattern trees!

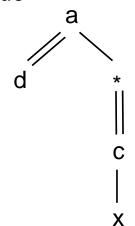
selection node (unique)

Test \subseteq_1 (node set inclusion) using \subseteq_0 (Boolean inclusion)

 \rightarrow Simply add a new node below the selection node

New tree is Boolean (no selection node)

In a given XML tree: pattern matches / does not match.



4 techniques of testing XPath (Boolean) containment:

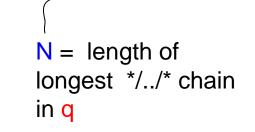
- (1) The Canonical Model Technique
- (2) The Homomorphism Technique
- (3) The Automaton Technique
- (4) The Chase Technique

Canonical Model - XPath(/, //, [], *)

Idea: if there exists a tree that matches p but not q, then such a tree exists of **size polynomial in the size** of p an q.

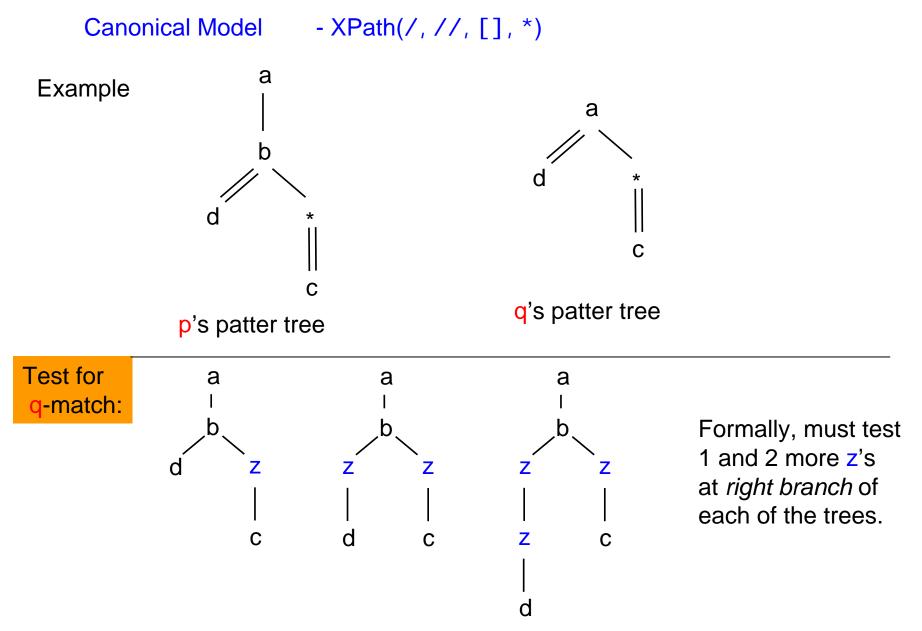
Simple: remember, if you know that the XML document is only of height 5, then *II*a/b/*/c could be enumerated by /a/b/*/c | /*/a/b/*/c | /*/a/b/*/c | /*/*/a...

Similarly, we try to construct a counter example tree, by replacing in p



→ every * by some new symbol "z" → every // by z/, z/z/, z/z/z/, ... z/z/../z/

N+1 many z's



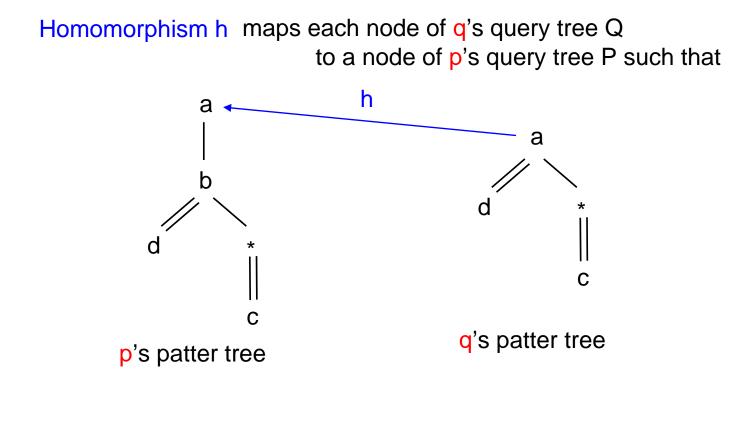
Homomorphism h maps each node of q's query tree Q to a node of p's query tree P such that

 root of Q is mapped to root of P
 if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
 if (u,v) is descendant-edge of Q, then h(v) is a "below" h(u) in P
 if u is labeled by "e" (not *), then h(u) is also labeled by "e".

p,q expressions in XPath(/, //, [])

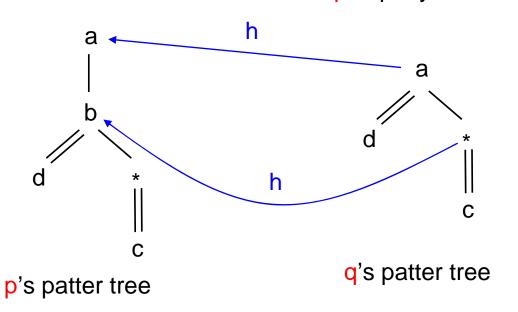
Theorem

 $\mathbf{p} \subseteq_0 \mathbf{q}$ if and only if there is a homomorphism from Q to P.



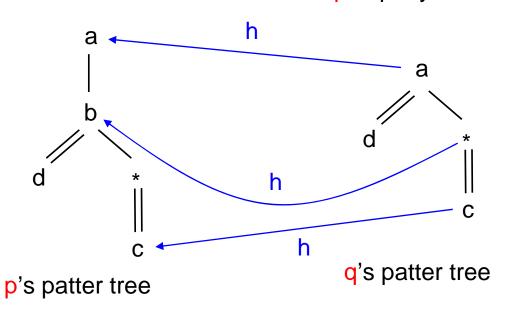
- (1) root of Q is mapped to root of P
- (2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
- (3) if (u,v) is descendant-edge of Q, then
 - h(v) is a "below" h(u) in P
- (4) if u is labeled by "e" (not *), then h(u) is also labeled by "e".

Homomorphism h maps each node of q's query tree Q to a node of p's query tree P such that



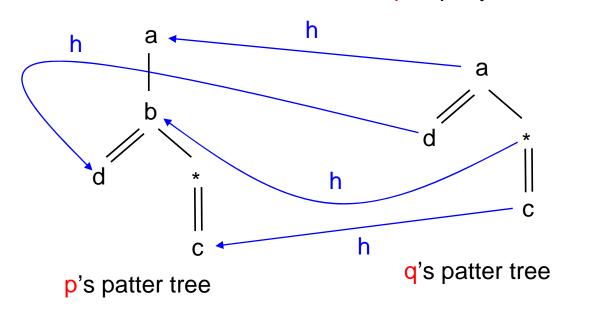
- (1) root of Q is mapped to root of P
- (2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
- (3) if (u,v) is descendant-edge of Q, then
 - h(v) is a "below" h(u) in P
- (4) if u is labeled by "e" (not *), then h(u) is also labeled by "e".

Homomorphism h maps each node of q's query tree Q to a node of p's query tree P such that



- (1) root of Q is mapped to root of P
- (2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
- (3) if (u,v) is descendant-edge of Q, then
 - h(v) is a "below" h(u) in P
- (4) if u is labeled by "e" (not *), then h(u) is also labeled by "e".

Homomorphism h maps each node of q's query tree Q to a node of p's query tree P such that



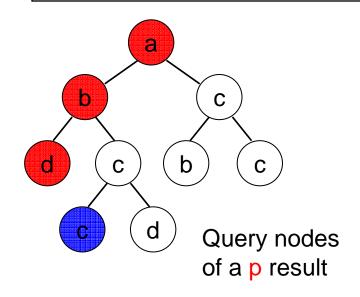
→ hom. h exists from Q to P, thus $p \subseteq_0 q$ must hold!

- (1) root of Q is mapped to root of P
- (2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
- (3) if (u,v) is descendant-edge of Q, then
 - h(v) is a "below" h(u) in P
- (4) if u is labeled by "e" (not *), then h(u) is also labeled by "e".

"1-containment" For every tree, all nodes selected by p are also selected by q. $p \subseteq_1 q$

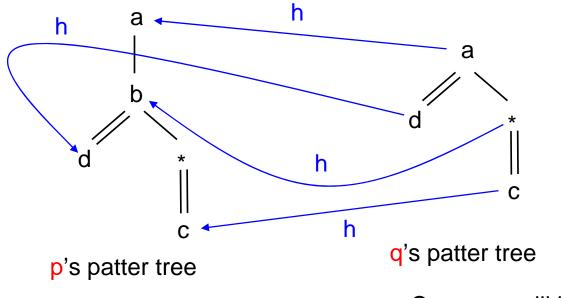
Question

Given p, q and the fact $p \subseteq_1 q$, how can you determine from a *result set of nodes* for q, the correct *result set of nodes* for p?



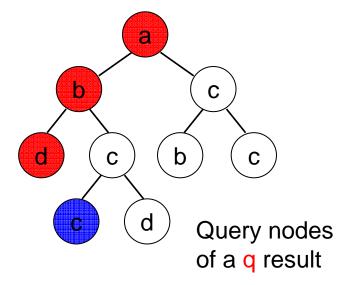
 \rightarrow With homomorphism technique:

Use a result node of q together with run-time info on pattern nodes. Enables to search "inside", only on paths between pattern nodes.



- 1. x := parent of q's c-node
- 2. Check if q's *-node is
 - (a) ancestor of x
 - (b) labeled b
 - (c) has a-parent
 - (d) is ancestor of q's d-node

Cave: we will have to try all homomorphisms ...



 \rightarrow With homomorphism technique:

Use a result node of q together with run-time info on pattern nodes. Enables to search "inside", only on paths between pattern nodes.

Homomorphism h maps each node of q's query tree Q to a node of p's query tree P such that

(1) root of Q is mapped to root of P
(2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
(3) if (u,v) is descendant-edge of Q, then h(v) is a "below" h(u) in P
(4) if u is labeled by "e" (not *), then h(u) is also labeled by "e".

p,q expressions in XPath(/, //, [])

Theorem

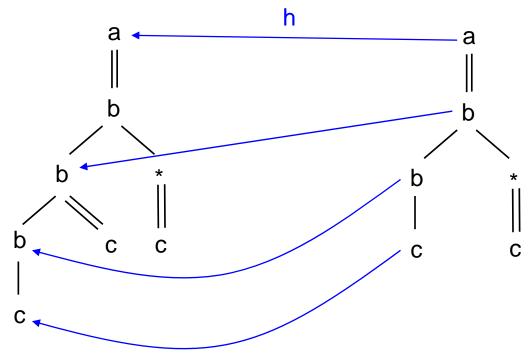
 $\mathbf{p} \subseteq_{O} \mathbf{q}$ if and only if there is a homomorphism from Q to P.

Cave If we add the star (*) then homomorphism need not exist!

→ there are $p,q \in XPath(/, //, [], *)$ such that $p \subseteq_0 q$ and there is **no** homomorphism from Q to P \otimes

[/a//b[./b[./b/c]//c]/*/c]

[/a//b[./b/c]/*//c]

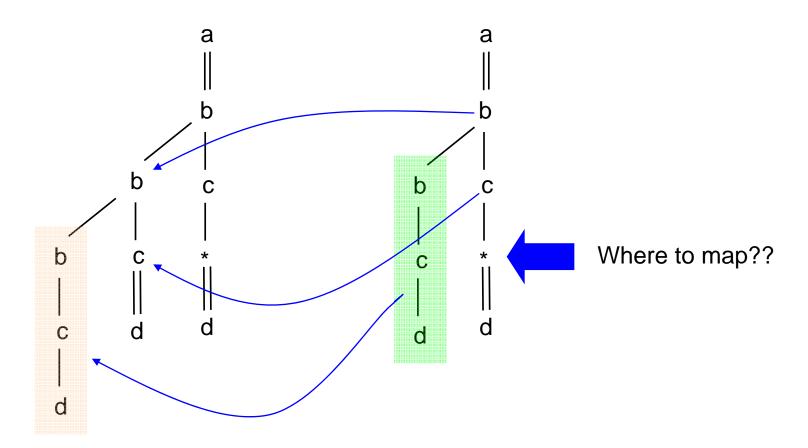


IS there a homomorphism??

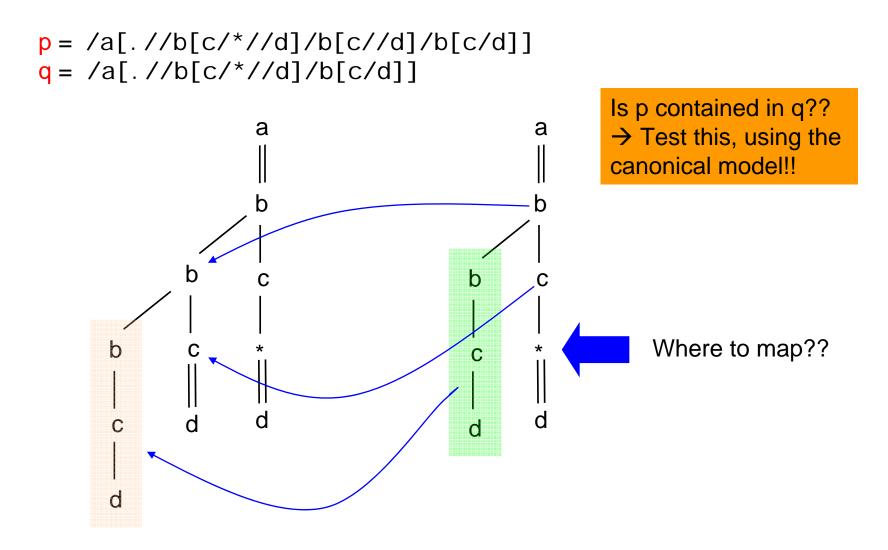
Cave If we add the star (*) then homomorphism need not exist!

→ there are $p,q \in XPath(/, //, [], *)$ such that $p \subseteq_0 q$ and there is **no** homomorphism from Q to P \otimes

p = /a[.//b[c/*//d]/b[c//d]/b[c/d]] q = /a[.//b[c/*//d]/b[c/d]]



Cave If we add the star (*) then homomorphism need not exist! \rightarrow there are $p,q \in XPath(/, //, [], *)$ such that $p \subseteq_0 q$ and there is **no** homomorphism from Q to P \otimes



Cave If we add the star (*) then homomorphism need not exist! \rightarrow there are $p,q \in XPath(/, //, [], *)$ such that $p \subseteq_0 q$ and there is **no** homomorphism from Q to P \otimes

Let's check the web...

→ YES p contained in q!

XPath Containment and Equivalence Implementation - Mozilla Firefox File Edit View Go Bookmarks Tools Help		🎑 'I
💠 🔹 🖉 🛞 🏠 🗋 http://www.ifis.uni-luebeck.de/projects/XPathContainment/containmentFrame.htm		✓ Ø 60 C.
University of Lübeck, Institute of Information Systems, www.ifis.uni-luebeck.de		
XPath-Containment Checker	Query $p = /q[a[.//b[c/*//d]/b[c//d]/b[c/d]]]$	
	Ouerv a	= /q[a[.//b[c/*//d]/b[c/d]]]

Implemented by Khaled Haj-Yahya (khaled.h at gmx.de) Supervised by B.C.Hammerschmidt (former)

This is a Java implementation of the theoretical work of Gerome Miklau and Dan Suciu (<u>Containment and Equivalence</u> for a Fragment of XPath. J. ACM 51(1): 2-45 (2004) and <u>Containment</u> and Equivalence for a Fragment of XPath. PODS 2002)

Instructions:

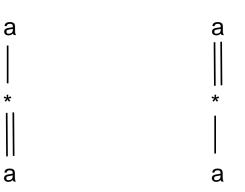
Enter two XPath expressions in the abbreviated syntax and press the button. For instance: if p = /a[b] and p' = /a[*]the algorithm will detect that p is a subset of p'.

Or if p = /a//*/b and p' = /a/*//bthe algorithm will detect that p is equal to p' because the subset equation holds in both directions.

Download the Java Source Code

Download Khaled's bachelor thesis (in German)

If there is no application on the right side please contact our system administrator: webmaster at ifis.uni-luebeck.de. Query $p \neq /q[a[.//b[c/*//d]/b[c/d]/b[c/d]]]$ Query q = /q[a[.//b[c/*//d]/b[c/d]]] $p \subseteq q$ XPath-Query p: /q[a[.//b[c/*//d]/b[c/d]]]



Clearly, p is equivalent to q. (containment holds in both directions)

But, no homomorphisms exist.

Cave If we add the star (*) then homomorphism need not exist! \rightarrow there are $p,q \in XPath(/, //, [], *)$ such that $p \subseteq_0 q$ and there is **no** homomorphism from Q to P \otimes

Automaton Technique

Recall: for any DTD there is a tree automaton which recognized the corresponding trees.

Similarly, for any XPath(/, //, [], *, |) expression ex we can construct a (*non-deterministic* bottom-up) tree automaton A which accepts a tree if and only if ex matches the tree.

Theorem Containment test of XPath(/, //, [], *, |) in the presence of DTDs can be solved in EXPTIME.

Exponential (deterministic) time

Blow-up due to non-determinism of tree automaton.

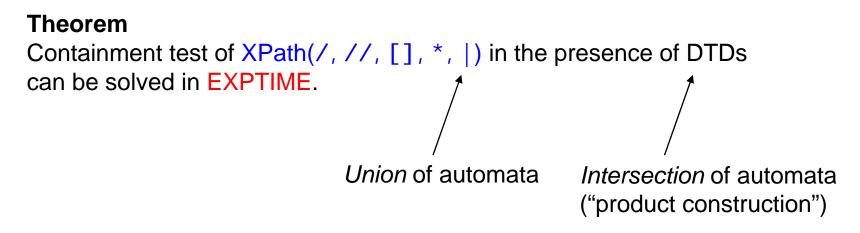
BUT: no hope for improvement:

The problem is actually *complete* for EXPTIME.

Automaton Technique

Recall: for any DTD there is a tree automaton which recognized the corresponding trees.

Similarly, for any XPath(/, //, [], *, |) expression ex we can construct a (*non-deterministic* bottom-up) tree automaton A which accepts a tree if and only if ex matches the tree.

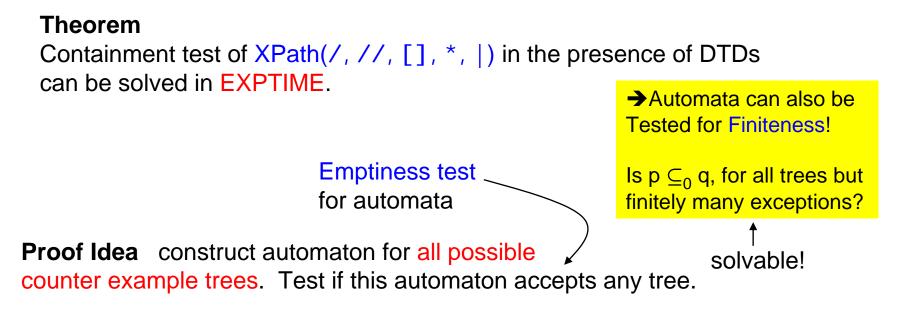


Proof Idea construct automaton for all possible counter example trees. Test if this automaton accepts any tree.

Automaton Technique

Recall: for any DTD there is a tree automaton which recognized the corresponding trees.

Similarly, for any XPath(/, //, [], *, |) expression ex we can construct a (*non-deterministic* bottom-up) tree automaton A which accepts a tree if and only if ex matches the tree.



Chase Technique -- 1979 relational DB's to check query containment in the presence of *integrity constraints*.

Example

DTD E = $\begin{array}{ccc} \operatorname{root} \rightarrow & a^* \\ a & \rightarrow & b^* \mid c^* \\ b & \rightarrow & d+c+ \\ c & \rightarrow & b?c? \end{array}$

("the chase" extends the relational homomorphsim technique)

p = /a/b//d q = /a//c

Is p contained in q for E-conform documents?

First Possibility: use tree automata

- \rightarrow Construct automata Ap, Aq, AE
- \rightarrow Construct Bq for the complement of Aq (=not q)
- \rightarrow Intersect Bq with Ap with AE (gives automaton A)
- \rightarrow Check if A accepts any tree.

Chase Technique -- 1979 relational DB's to check query containment in the presence of *integrity constraints*.

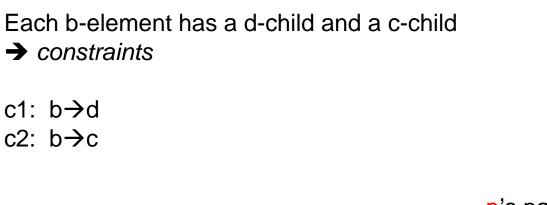
Example

DTD E = $\begin{array}{c} \operatorname{root} \rightarrow & a^* \\ a & \rightarrow & b^* \mid c^* \\ b & \rightarrow & d+c+ \\ c & \rightarrow & b?c? \end{array}$

("the chase" extends the relational homomorphsim technique)

p = /a/b//d q = /a//c

Is p contained in q for E-conform documents?



p's pattern tree

d

а

b

Chase Technique -- 1979 relational DB's to check query containment in the presence of *integrity constraints*.

Example

DTD E = $\begin{array}{ccc} root \rightarrow a^* \\ a \rightarrow b^* \mid c^* \\ b \rightarrow d+c+ \\ c \rightarrow b?c? \end{array}$

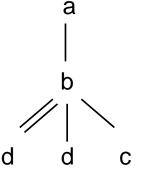
("the chase" extends the relational homomorphsim technique)

p = /a/b//d q = /a//c

Is p contained in q for E-conform documents?

Each b-element has a d-child and a c-child → constraints

c1: b→d c2: b→c

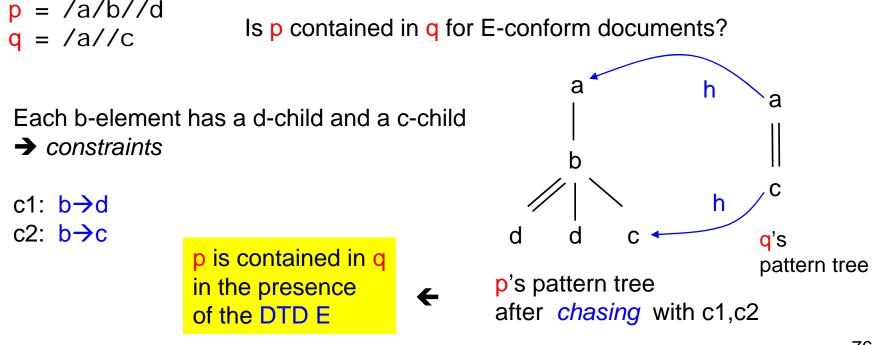


p's pattern tree after *chasing* with c1,c2

Chase Technique -- 1979 relational DB's to check query containment in the presence of *integrity constraints*.

Example

DTD E = $a \rightarrow b^* | c^*$ b $\rightarrow d+c+$ c $\rightarrow b^2c^2$ ("the chase" extends the relational homomorphsim technique)



END Lecture 8