XML and Databases

Lecture 8
Streaming Evaluation: how much memory do you need?

Sebastian Maneth
NICTA and UNSW

CSE@UNSW -- Semester 1, 2010

Small XPath Quiz

Can you give an expression that returns the last / first occurrence

of each distinct price element?

<h>
<price>3</price>
<price>1</price>
<price>3</price>
<price>1</price>
<price>3</price>
<price>4</price>
<price>1</price>
<price>7</price>

Should return

<price>3</price>
<price>4</price>
<price>1</price>
<price>7</price>

Should return

<price>3</price>
<price>1</price>
<price>4</price>
<price>7</price>

Small XPath Quiz

Can you give an expression that returns the last / first occurrence
of each distinct price element?

<h>

<price>3</price>

<price>1</price> Should return Should return
<price>3</price>

<price>1</price> <price>3</price> <price>3</price>
<price>3</price> <price>4</price> <price>1</price>
<price>4</price> <price>1</price> <price>4</price>
<prlce>1</prlce> <pl‘ice>7</price> <pl’ice>7</pl‘ice>
<price>7</price>

What's the result for this query: /descendant::price[.=preceding::price][2]

Small XPath Quiz

Can you give an expression that returns the last / first occurrence

of each distinct price element?

<h>
<price>3.0</price>
<price>1</price>
<price>3.00</price>
<price>1</price>
<price>3</price>
<price>4</price>
<price>1.000</price>
<price>7</price>

Should return

<price>3</price>
<price>4</price>
<price>1.000</price>
<price>7</price>

Should return

<price>3.0</price>
<price>1</price>
<price>4</price>
<price>7</price>

What if we mean number-distinctness (not strings)?

Small XPath Quiz

Can you give an expression that returns the smallest (last) price element?

<h>

<price>3</price>

<price>1</price> Should return
<price>3</price>

<price>1</price> <price>1</price>

<price>3</price>
<price>4</price>
<price>1</price>
<price>7</price>

Small XPath Quiz

Can you give an expression that returns the smallest (last) price element?

<price>3.0</price>

<price>1</price> Should return
<price>3.00</price>

<price>1</price> <price>1.000</price>

<price>3</price>
<price>4</price>
<price>1.000</price>
<price>7</price>

Recall

- Koch’s CVT-algorithm for full XPath 1.0
- Evaluation of Simple Paths //a/b/c
- Arbitrary Queries over //,/,*

Outline

1. Automaton Approach

2. Parallel Evaluation of Multiple Queries

3. Sizes of Automata

4. How to deal with Filters

5. Existing Systems for Streaming XPath Evaluation

Recall: Koch's CVT-algorithm for full XPath 1.0

Question Which subsets of nodes need to appear in the CVTSs?

Answer (1) Compute top-down for filter-less query-part the exact node set,
until a filter appears. (2) Build CVT (bu) for the respective sets.

Example //*[sum(preceding: :*/@a)>sum(following: :*/0a)]

(1) simply use Core-XPath algorithm here to
1 compute in linear time the correct node set.

11 (2) Now build Context-Value-Tables for this node set

ﬂ / only, going bottom-up through the filter.

11
11
11
11
11
11
11
11 11 11

©CoO~NOOUA~WNE
©CO~NOOOUTDA~,WNLPE

=
o
=
o

Recall: Koch's CVT-algorithm for full XPath 1.0

Question Which subsets of nodes need to appear in the CVTSs?

Answer (1) Compute top-down for filter-less query-part the exact node set,
until a filter appears. (2) Build CVT (bu) for the respective sets.

Example //*[sum(preceding: :*/@a)>sum(following: :*/0a)]

N

(1) simply use Core-XPath algorithm here to

1 L compute in linear time the correct node set.
1
Context-Value Tables
1 111 - - - - - - Talse
2 211 - 7-11 - 8.a - 1 Tfalse
3 311 - 4-11 - 5.a,8.a - 2 Talse
4 4 11 3 7-11 3.a 8.a 1 1 Tfalse
5 511 3 6-11 3.a 8.a 1 1 false
6 6 11 3,5 7-11 3.a,5.a 8.a 2 1 true
7 7 11 2-6 - 3.a,5.a - 2 0 true
8 811 2-6 9-11 3.a,b.a - 2 0 true
9 911 2-6,8 - 3.a,5.a,8.a - 3 0 true
10 10 11 2-6,8 11 3.a,5.a,8.a - 3 0 true
11 11 11 2-6,8,10 - 3.a,5.a,8.a - 3 0 true

Recall: Top-Down Evaluation of Simple Paths

—> evaluate in one single pre-order traversal (using a stack)

(2)

v

AN | N

—_

™

T
oko

B
o
&

[endElement(b)]

P =pop() = 2

//a/b =Q

4

guery match position: p =2

NEE

[startElement(a)]

[startElement(b)] «(ummmmmm result node
[startElement(a)]

[endElement(a)]

[startElement(a)]

[startElement(c)]

[endElement(c)]

[startElement(b) <@ result node
[startElement(c)] push(1)
[endElement(c)] p=pop()=1
[startElement(a)] push(1)
[endElement(a)] p=pop()=1 10

Recall:

—> evaluate in one single pre-order traversal

(2)

—_

Ty

AN | N

"

oko

Simple Path

-
o
&

//a 1/a 2/a 3/ .

//a/b =

4

(using a stack)

Q

Top-Down Evaluation of Simple Paths

NEE

guery match position: p =2

Streaming Algorithm!

=» No need to store the document!!
Can evaluate on SAX event stream.

. /an

TIME one pass through document tree.

SPACE stack of query positions.

height is bounded by depth of document tree.

BUT

Need output buffers,
If subtrees of match
nodes should be

printed!
11

Recall: Top-Down Evaluation of Simple Paths

—> evaluate in one single pre-order traversal

If we print node-IDs, then no
output buffers are needed!

=>» True Streaming, with
memory need proportional to height.

Simple Path //a _1/a 2/a 3/ .

//a/b =

4

(using a stack)

Q

NEE

guery match position: p =2

Streaming Algorithm!

=» No need to store the document!!
Can evaluate on SAX event stream.

. /an

TIME one pass through document tree.

SPACE stack of query positions.

height is bounded by depth of document tree.

BUT

Need output buffers,
If subtrees of match
nodes should be

printed!
12

Recall: Top-Down Evaluation of Simple Paths

—> evaluate in one single pre-order traversal (using a stack)

If we print node-IDs, then no
output buffers are needed!

=» any good implementation of this
algorithm should work for documents
with depth up to a couple of millions,
and

NO restriction on document size!

Simple Path //a _1/a 2/a 3/ .

TIME one pass through document tree.

SPACE stack of query positions.

height is bounded by depth of document tree.

//a/b =Q

4

guery match position: p =2

NEE

Streaming Algorithm!

=» No need to store the document!!
Can evaluate on SAX event stream.

. /an

1 Byte/pos is enough
for small queries!

13

Arbitrary Slash+Slashslash

—> evaluate in one single pre-order traversal (using a stack)

Arbitrary queries with 7,7/ ,* //a/b//c
3
T A 2
multiple //’s query match position: p = 3

no match
e stay in p=3!
TN
@ e [startElement(a)] push(3)
/@ e Q \@ [endElement(a)] p=pop() =3

14

Arbitrary Slash+Slashslash

—> evaluate in one single pre-order traversal (using a stack)

Arbitrary queries with 7,77 ,* //a/b//c
T 4
multiple 7//’s

guery match position: p=3

NEE

no match
stay in p=3!

Result node!
G e Mark it, and stay in p=3.

@ G t.s.tartEIement(a)]l push(3)
N\ [endElement(a)] p=pop()=3
Q @ [startElement(a)] push(3)

N

[startElement(c)] push(3)

Arbitrary Slash+Slashslash

—> evaluate in one single pre-order traversal (using a stack)

Arbitrary queries with 7,7/ ,* //a/b//c 3

3

T A 2
multiple //’s query match position: p = 3

no match
e stay in p=3!
G /\ N
N [startElement(a)] push(3)
N\ [endElement(a)] p=pop()=3
Q @ [startElement(a)] push(3)
i Q [startElement(c)] push(3)
Result node!
G e Mark it, and stay in p=3.

Output Node-ID Start copying to Output Buffer
16

Arbitrary Slash+Slashslash

—> evaluate in one single pre-order traversal

Arbitrary queries with 7,77 ,*

T

multiple /7/’s

(2,
i
@ (0 @ @
®

® -

//a/b//c

4

(using a stack)

|I\3000000

guery match position: p=3

[startElement(a)]
[endElement(a)]

[startElement(a)]
[startElement(¢)]
[endElement(¢)]

[startElement(b)]
[startElement(c)]

7N

no match
stay in p=3!

push(3)
p =pop() =3
push(3)
push(3)
p =pop() =3
push(3)
push(3)

17

Arbitrary Slash+Slashslash

—> evaluate in one single pre-order traversal (using a stack)

3

Arbitrary queries with 7,7/ ,* //a/b//c 3

3

T A 2
multiple //’s query match position: p = 3

@ e Stay at position 3,
/ \ for the complete subtree!
/@ @ Q @ Never go back to pos. 1 or pos. 2!

18

Arbitrary Slash+Slashslash

—> evaluate in one single pre-order traversal (using a stack)

Arbitrary queries with 7,77 ,* //a/b//c

| '

multiple //’s query match position: p = 3

e Optimizations (for Output Buffers)
@ e (1) If inside a matched subtree, record
. N\ position (or range within buffer), instead
@ @ Q @ of creating a new output buffer.

‘ (2) If subtree is finished (we are not inside
a match), then we can write its buffer out
and can start with empty buffer again.
[Worst Case:

root node selected. size of doc. Needed.]

19

|I\3000000

Arbitrary Slash+Slashslash

—> evaluate in one single pre-order traversal (using a stack)

Arbitrary queries with 7,77 ,* //a/b//c

| '

multiple 7//’s query match position: p = 3

| |
//a/b//c/d/*/e//f/9//h

=» Same as before

jump back within /-sequence.
AT MOST to the beginning of the last //.

Use KMP within /-sequence.

For *'s: build several KMP-tables.

|I\3000000

20

Arbitrary Slash+Slashslash

—> evaluate in one single pre-order traversal (using a stack)

3

Arbitrary queries with /7,77 ,* //a/b//c >

3

T A 2
multiple 7//’s query match position: p = 3

//a/b//c/d/*/e//f/9//h

/\ If Node-IDs are printed, then

Query Problem is solved! no output buffers are needed.

Leave optimizations of Then:

Memory proportional to height.
>cat file.xml [1.2.7,1.3,1.3.1.1, .] Should run for arbitrary large
docs!

To OS/UNIX hackers.. ©

1. Automaton Approach

OO0 0O OO-OOOMO

| |
//a/b//c/d/*/e//¥/9//7h

=» Same as before

jump back within /-sequence.
AT MOST to the beginning of the last //.

Use KMP within /-sequence.

For *'s: build several KMP-tables.

Recall
Deterministic Automaton runs in

- linear time and
- constant space

(plus stack of states, if we run
on paths of a tree)

N

1. Automaton Approach

a

. . :
QOO0 OOSOMC

not a
and not b

| |
//a/b//c/d/*/e//¥/9//7h

Recall
=» Same as before

, . Deterministic Automaton runs in
jump back within /-sequence.

AT MOST to the beginning of the last /7. > linear time and

o - constant space
Use KMP within /-sequence.
(plus stack of states, if we run

For *'s: build several KMP-tables. on paths of a tree)

N

1. Automaton Approach

a C

\/ \/
b@%@%%%%%%

not a
and not b

| |
//a/b//c/d/*/e//¥/9//7h

Recall
=» Same as before

, . Deterministic Automaton runs in
jump back within /-sequence.

AT MOST to the beginning of the last /7. > linear time and

o - constant space
Use KMP within /-sequence.
(plus stack of states, if we run

For *'s: build several KMP-tables. on paths of a tree)

N

1. Automaton Approach

a C

\/ \/
hﬁ%@%%%%%%

not a
and not b

| |
//a/vb//c/d/*/e//f/9//7h

Problem

E.q If it is NOT an e here, then what to do??

abcdcd

N\

We should be in state X!

25

ﬁa,—lb
H_J
not a
and not b

1. Automaton Approach

| |
//a/vb//c/d/*/e//f/9//7h

Problem

E.q If it is NOT an e here, then what to do??

abcdggad \ =» Need to know what the * was!!

We should be in state X!

26

ﬁa,—lb
H_J
not a
and not b

1. Automaton Approach

ﬂC,—|d,—|e

| |
//a/vb//c/d/*/e//f/g9//7h

*=? Which other letters need to be considered?

cdxy

™

e

27

ﬁa,ﬁb
H_J
not a
and not b

—|C,—|d,—|e

| |
//a/b//c/d/*/e//¥/9//7h

*=? Which other letters need to be considered?

cdxy
\ —> for x#c, not important what X is

#e = only x=c/x#c matters

28

“splitting” — can be at most
#different symbols many
e
a c \
*Q ﬁ{@@ OO0
_/
nota —C,~d,—e
and not b

| |
//a/b//c/d/*/e//¥/9//7h

*=? Which other letters need to be considered?

cdxy
\ —> for x#c, not important what X is

#e = only x=c/x#c matters

29

To
begin+1

*=? Which other letters need to be considered?

cdxy
\ —> for x#c, not important what X is

#e = only x=c/x#c matters

30

Advantage of automata:
- can be combined to evaluate MANY queries “in parallel”.

To
begin+1

31

Advantage of automata:

- can be combined to evaluate MANY queries “in parallel”.

e e
L e

—-a,—b,—C

To
begin+1

32

Advantage of automata:
- can be combined to evaluate MANY queries “in parallel”.

e
L e

—-a,—b,—C

Questions

To
begin+1

1. Which transition is WRONG?

33

To
begin+1

Advantage of automata:
- can be combined to evaluate MANY queries “in parallel”.

—a

Q1=//a/blc m Questions
Q2=/laje % 1. Which transition is WRONG?
@@H‘ 2. How many transitions are

missing?
—a,—b,~C

34

To
begin+1

Advantage of automata:
- can be combined to evaluate MANY queries “in parallel”.

Q1=//a/blc fa\‘ Questions
2=
Q2=llalc W 1. Which transition is WRONG?
4.‘ 2. How many transitions are
b missing?

To
begin+1

Advantage of automata:
- can be combined to evaluate MANY queries “in parallel”.

—a

Q1=//a/blc m a Questions
2=
Q2=llalc a W 1. Which transition is WRONG?
4.‘ 2. How many transitions are
b missing?
Qbﬁ i

—ad,—C 36

To
begin+1

Advantage of automata:
- can be combined to evaluate MANY queries “in parallel”.

—a

Q1l=//alblc .4 a Questions

a
2=[lalc f\‘ a . o
< a % c 1. Which transition is WRONG?
Qﬁ - 2. How many transitions are
Qbﬁ i

missing?
—ad,—C

37

To
begin+1

Advantage of automata:
- can be combined to evaluate MANY queries “in parallel”.

Q1=//a/blc e m a

Q2=/lalc a
(AL
Qbﬁ

Questions

1. Which transition is WRONG?
2. How many transitions are
missing?

a —d,—C

38

To
begin+1

Advantage of automata:
- can be combined to evaluate MANY queries “in parallel”.

Q1l1=//al/blc o m a

Q2=/lalc a
“”‘Q@ b
Qbﬁ

Questions

1. Which transition is WRONG?
2. How many transitions are
missing?

a —d,—C

39

To
begin+1

Advantage of automata:
- can be combined to evaluate MANY queries “in parallel”.

Q1l1=//al/blc o m a

Q2=/lalc a
“”‘Q@ b
Qbﬁ

Questions

1. Which transition is WRONG?
2. How many transitions are
>5 missing?

a —d,—C

40

To
begin+1

Advantage of automata:
- can be combined to evaluate MANY queries “in parallel”.
—a —a ONE look-up

Combined automaton:
SIZE < SIZE(A1) x SIZE(A2)

Q1=//a/blc m a
= a per node!
Q2=//alc %
a C
ﬁaDQﬁ 5
Qbﬁ

a —a,C

41

What is SIZE(A1) wrt size of Q17

~f,—g match
state
for Q1
Question Take

(1) SIZE(A) = #states
(2) SIZE(A) = #transitions

Advantage of automata:
- can be combined to evaluate MANY queries| “in parallel”.
—a —a

Qli//a/b/c o a @ a_
Q2=//alc Q
—a () _/’() b

_Ia’_lb,_l a —a,C

ONE look-up
per node!

Combined automaton:
SIZE < SIZE(A1) x SIZE(A2)

42

3. The Size of the DFA

[fal*I*I*Ib l

[other]

/Size of DFA = h
. . other
exponential in *'s a | a other]
o) m) (@) o)
(not a real concern) | a other] . other]

@2@ 0234 0134 @
v b b X b v b
012345 0345 0245 @

NEA DFA (fragment, and without back edges)

3. The Size of the DFA

Theorem [GMOS’02] The number of states in the
DFA for one linear XPath expression P is at

MOSt:
k+|P| k sm |
k = number of //

s = size of the alphabet (hnumber of tags)
m = max number of * between two consecutive //

How to deal with filters?

//a[./d/e]/b//c

O
é@%
®

When we meet the c-nodes
(in pre order traversal)

we do not know yet if the
filter will evaluate to true.

45

How to deal with filters?

//a[./d/e]/b//c

When we meet the c-nodes
(in pre order traversal)

}ék\ we do not know yet if the
é @ filter will evaluate to true.

®
A® ©

Must be stored in memory

=» We have to use buffers, as before.

However, now buffers may be deleted
without being used.

Question

If we output node ID’s, then how much
memory is needed in the worst case for
gueries with filters?

46

How to deal with filters?

//a[./d/e]/b//c

=>» Size of largest documents that

/‘ \\ can be streamed in this way depends
Q e @ on - #ilters,
f N\ - sizes of (pre) selected trees,

- quality of (1), (2), etc..

' e a Optimizations

(1) Store potential match trees as DAGsS
(2) Release potential match trees
as early as possible!

Must be stored in memory

47

How to deal with filters?

//a[./d/e]/b//c

é:@

=>» Size of largest documents that
can be streamed in this way depends
on - #ilters,
- sizes of (pre) selected trees,
- quality of (1), (2), etc..

as early as possible!

' E E = Release potential match trees

Find earliest point at which we know
the filter is true.

Must be stored in memory

48

How to deal with filters?

//af ./d/e]/b//c
A =>» Size of largest documents that
\ can be streamed in this way depends
@ Q e @ on - #ilters,
N\ - sizes of (pre) selected trees,
‘ e Q @ @ - quality of (1), (2), etc..

= Release potential match trees
as early as possible!

Find earliest point at which we know
the filter is true.

No need to store. Stream! ©

49

How to deal with filters?

//a[./d/e]/b//c

A =>» Size of largest documents that
can be streamed in this way depends
on - #ilters,
- sizes of (pre) selected trees,
@ @ @ - quality of (1), (2), etc..

Find earliest point at which we know
the filter is true.

Harder for Boolean combinations:

[not(./d/e) and (./c/d or //b/c)]

Question where is the earliest point for this filter?

No need to store. Stream! ©

50

How to deal with filters?
//al ./d/e]/b//c
A =>» Size of largest documents that
can be streamed in this way depends
on - #ilters,
- sizes of (pre) selected trees,
@ @ @ . quality of (1), (2), etc..
Find earliest point at which we know

E E the filter is true.

Harder for Boolean combinations:

[not&e7d7€) and (./c/d or //b/c)]

Question where is the earliest point for this filter?
- and now?

No need to store. Stream! ©

51

How to deal with filters?

//a[./d/e]/b//c

=>» Size of largest documents that

/‘ \\ can be streamed in this way depends
Q e @ on - #ilters,
f N\ - sizes of (pre) selected trees,

-Jo
A® &

- quality of (1), (2), etc..

We can also construct automata for
filter expressions!

Use a push-down for potential candidates.
Push-Down Automaton

can probably be designed so that it pops/outputs
candidates as early as possible.

52

How to deal with filters?

//a[./d/e]/b//c

Another Idea

Use 2-pass algorithm: first (bottom-up) phase to mark subtrees with
filter information.

Second (top-down) phase to determine match nodes.
Why is this interesting?

- Fast main memory evaluation
- Use disk as intermediate store (stream twice)

53

5. Streaming XPath Algorithms

XFilter and YFilter [Altinel and Franklin 00] [Diao et al 02]
X-scan [lves, Levy, and Weld 00]

XMLTK [Avila-Campillo et al 02]

XTrie [Chan et al 02]

SPEX [Olteanu, Kiesling, and Bry 03]

Lazy DFAs [Green et al 03]

The XPush Machine [Gupta and Suciu 03]

XSQ [Peng and Chawathe 03]

TurboXPath [Josifovski, Fontoura, and Barta 04]

54

5. Streaming XPath Algorithms

Some following slides are by T. Amagasa and M Onizuka (Japan)
See http://www.dasfaa07.ait.ac.th/ DASFAA2007 tutorial3_1.pdf

Most of the following slides are by Dan Suciu (the above slides are
Actually also based on Suciu’s slides ©)

See

http://www.cs.washington.edu/homes/suciu/talk-spire2002.ppt

55

Duality -> XML databases -> XML streams

Overviews (cont.)

St e e s e
A‘l-"_‘:_- |
RIS TE B P S T B W4
T i}

1 {2l
P
e B

T

XSM [VLDB02] [— =T
" dErEi TN znimans ;

g ==\ XML broker [VLDB'03]
XQUEW B asiEsaagssa: ' a0

Ly

i

L

HhEs JN E ..: i s
E(SQ [ToDsos] | |

T, L Lazy DFA [TODS'04]
- : b e XPush machine [SIGMOD'03]

Prefix Filters [ICDE'05]

S Ridin
.) Gl
o

iR T ERan)
EEEE :
i
i 3

i

G S
I
i
o I,. =
‘ﬁ' & TS

it i

e 2 =
SmAEREe : \ e i i s A T
T R R SR B Y 6 B

5 L

1| bitparallel (IPSIDPEEE >
e) XFilter [VLDB'0O]
e eaitiitsg e 2 XTrie [ICDE'02]
YFilter [TODS'03]
RDB-base[SIGMOD'04]
AFilter [VLDB'06]

=

o

g

(D

~

]

=] e
X [\
/

Overview of XML stream
-

. ""\.': / i
o .
\Hﬁrﬁ matched queries Stream processing
phase

data stream‘ filtered stream

evaluation compensation

Shared structure
(views) '
Construction

containment phase

Duality -> XML databases -> XML streams
»DI: Selective Dissemination of Information

Input XML |——| Filtered XMLO £

& AN
< | [y

v

Producer

Filtering Engine

//hihlln:u_)k /publisher [text() =" 7]

ﬁ/hih/h(mk [@category=" *Vitle [text() =*
/bib/book /faddress//*/zip [text() =*12.7]
bib/book //address//*[text()=" o

. /bib/book /category[text()="]

ﬁ/hih/hmk /address [text() =*1257]

/bib/book /address /field [text() =

"

Profiles (XPath expressions)

Duality -> XML databases -> XML streams

XML stream applications

@ SDI system/alert system
stock, real estates, news feeds, flight departure/arrival

@ Incremental transformation
XTim [WWW’05], XPath maintenance [SIGMOD’05]

matched queries/

data stream :
filtered stream

Queries

Duality -> XML databases -> XML streams

i XFilter (cont.)

NFA, view class: //tag

Decomposing XPath Query
/a/bl/c

Query ID /b l \C
\'

QO

1 Q1

Q1

Position
o ;

Relative Position —— 1

Level B i

= O |+

3
-1
-1
A

Every Path Node

represents a state
in the FSM

M@

Duality -> XML databases -> XML streams

_ i XFilter (cont.)

NFA, view class: //tag

node-test hash table

Qi=/albi/lc oL o Tos1
ey \ 3 n 1-1 § 03-1

X

[ordlor2 o]

\ ol
h Too1]
Q2= //b/*/c/d o
— .~ | > ||
WL

CL
———| 01-3 | Q2-2

— | X
Q3= /*/alc//d g

Losidlos2[e3] Q2-3 | Qi-2

Duality -> XML databases -> XML streams

YFilter
i NFA, view class: XP{/,//,*}
e prefix sharing
@ Predicates are processed by labels

{Ql}

1=/a'b g
87_ 0= : Q3. Q8}
LT K | L

Q3~/alkie /© Q2!

€ b
Q5=/a/*/c : .
. Qw

Q7@ /*/c
Q8= 11

C

Q7

(a) XPath queries (b) A corresponding NFA (YFilter)

i Shared data structure

- Sharing identical structures among query trees
What to share? node-test, simple path, branch, etc.

What to share?

View class

Algorithms

node-test

/Itag

XFilter [vLDB00]

simple sub-path

/[tagl/.../tagN

XTrie [ICDE02]

simple path XP{/,//,*} YFilter [ToDs'03], Lazy DFA [TODS'04],
Prefix Filters [ICDE05], AFilter [VLDB06]
branch XP{[1,/./],*} | XPush machine [siGMOD03]

XPath Processing with FA
-- From XPath (XP{[1,/,//,*) to NFA --

!

/catalog/product[category="tools"|/quantity

/catalog//product[category="kitchen"]/quality

//price
[S
_— catal
catalog catalog . price
product product

s N
7/
Sz‘/ S\\ E/ 8\\

i Ay X
category Iqu ality category Iquantity

“tool" “kitchen"

Duality -> XML databases -> XML streams

NFA-based XPE Processing

XPath
ﬁihfln ok /publisher="

Ibib/book [calegory=" “itle
feibibook Maddressli®fzip="
fhibvbook HaddressiiE="
feibibook Jeategory="
Ibibfbook faddress="
Ibibfbook faddress Mield="
Ibibibook flag=" il
Ihibibook [cate gory=" “itle
Ibibibook addressii+=" .
Ibib/book ffaddress/i+="
Ibibdbook fcategory="
Ihib/hook faddress="
fhibfbook faddress fheld="

fbibfbook/publisher=*
Ibibvbook [calegory=" "Jitle
fbibibook Maddressif+="1 21
fbibvbook Maddressif+="
[bibdibook fea (="new"
[bibfbook faddress="
fbibfbook faddress ffield =
feibibook/cate zory =*

Current states

3.66,102,4534....

2.3.543.43.254

<bib>

<hook> SAX 1,55,99.

<title> > >

<ftitle> eVentS

Basic NFA Evaluation

Properties:
© Space = linear
® Throughput = decreases linearly

Systems:
o XFilter [Altinel&Franklin’99], YFilter.
e XTrie [Chan et al.’02]

Duality

-> XML databases -> XML streams

DFA-based XPE Processing

XPath

nil\fhm ik fpublisher=*

fhibibook [category=
fhibvbook Haddre H\-’f*n'lp—
Mhibibook Faddressif#=
fhibfhoak /i
/bib'hook faddress="1 7
Jbibbook fmddress Mield="
fhib/book ftap= i
fhibvbook [category:
fhibfbook Faddressff+==*
fbibfbook Faddressii+="
Mhibvbook feate gory="
fhibfbook faddress="
fbibfhook faddress /field=*

fhib/boo Kpublisher="
fhibfhook [L e Iﬂ—

.l"hlhl"h L8 kf|L| || gE=""
fbib'hook faddress feld =+
Mhibibookicategory ="l "

<bib>
<hook>

. _.

</bib>

Ytk

Pk

SAX
events

Current state '

399

552

1

Y

STACK

DFA
i

4
o I
TN

g

Basic DFA Evaluation

Properties:
© Throughput = constant !
® Space = GOOD QUESTION

System:

o XML Toolkit [University of Washington]
http://xmltk.sourceforge.net

The Size of the DFA

Theorem [GMOS’02] The number of states in the
DFA for one linear XPath expression P is at

MOSt:
k+|P| k sm |
k = number of //

s = size of the alphabet (hnumber of tags)
m = max number of * between two consecutive //

Size of DFA:
Multiple Expressions

///section//footnote
/[table//footnote
[/figure//footnote

> 100 expressions

[labstract//footnote

_

> | 2100 states ! l

There Is a theorem here too, but it’s not useful...

Solution:
Compute the DFA Lazily

Also used In text searching
But will it work for 10° XPath expressions ?

YES !

For XPath it is provably effective, for two
reasons:

— XML data Is not very deep

— The nesting structure in XML data tends to be
predictable

Duality -> XML databases -> XML streams

Lazy DFA
i DFA, view class: XP{/,//,*}

Features
@ Sharing the process of / and //, * and tag
e DFA-based
¢ Compute DFA lazily (on demand)

e # of DFA states

* Independent from # of XPath exprs.
* Depends on DataGuide size (schema)

Issue
@ Predicates: XPush machine [SIGMOD’03]

Lazy DFA and “Simple” DTDs

 Document Type Definition (DTD)
— Part of the XML standard
— Will be replaced by XML Schema

« Example DTD:

(<IE

<IE
<IE

_EMENT
_EMEN

" document (section*)>
" section ((section|abstract|table[figure)*)>

L EMEN]

" figure (table?,footnote*)>

Definition A DTD is simple if all cycles are loops

Lazy DFA and “Simple” DTDs

Simple DTD: XPath expressions

///section//footnote
[ftable//footnote
//figure//footnote
[labstract//footnote

Eager DFA “remembers” 24 sets
j> Lazy DFA “remembers” only 4 sets

Lazy DFA and “Simple” DTDs

Theorem [GMOS’02] If the XML data has a
“simple” DTD, then lazy DFA has at most:

1+D(1+n)¢ |

States.

n = max depths of XPath expressions
D = size of the “unfolded” DTD
d = max depths of self-loops in the DTD

/

Fact of life:
“Data-like” XML
has simple

DTDs

Lazy DFA and Data Guides

* “Non-simple” DTDs are useless for the
lazy DFA

» “Everything may contain everything”

/<!ELEMENT document (section*)>
<IELEMENT section ((section|table|figure|abstract|footnote)*)>
<IELEMENT table ((section|table|figure|abstract|footnote)*)>
<IELEMENT figure ((section|table[figure|abstract|footnote)*)>
<IELEMENT abstract ((section|table|figure|abstract|footnote)*)>

Fact of life: “Text’-like XML has non-simple DTDs \

Lazy DFA and Data Guides

Definition [Goldman&Widom’97]

The data guide for an XML data instance Is
the Trie of all its root-to-leaf paths

Lazy DFA and Data Guides

XMLData o
Ceoton 5 Coeston D Csecion > Csecton)

/Fact of life: real XML data has “small” data guide
[Lietke&S.’00]

Lazy DFA and “Simple” DTDs

Theorem [GMOS’02] If the XML data has a
data guide with G nodes, then the
number of states In the lazy DFA is at
most:

1+G

G = number of nodes in the data guide

Number of Lazy DFA States - SYNTHETIC Data

100000 4000
3
[10° XPath Kstates 2

10000/ W 10* XPath N\
1105 XPath

1000

100

10

simple prov ebBPSS protein nasa treebank

100000y

10000y,

1000y,

100

10

Number of Lazy DFA States - REAL Da

[103 XPath

M 10* XPath

[110° XPath

40000 states
G =350000

protein

V
95 states
nasa treebank

Throughput for 103, 104, 10°, 10°% XPath expressions

[prob(*)=10%, prob(//)=10% |

Parser:
10MB/s

100MBs y Lazy DFA:
10MB/s — /\5.4M B/s
1MB/s S —= parser

% |azyDFA (103 XPath)

0.1MB/s —o —* lazyDFA (10* XPath)

lazyDFA (10° XPath)

0.01MB/s — — lazyDFA (10° XPath)
—~>= Xfilter (10° XPath)
0.001MB/s ~&- xfilter (10* XPath)
— xfilter(10° XPath)
0.0001MB/s xfilter(10% XPath)

SMB 10MB 15MB 20MB 25MB

Total input size

END
| ecture 9

