Kim.Nguyen®@nicta.com.au

Week 7

1/17

XPath

To handle XPath expressions correctly:
1) Rewrite your XPath expression in the concrete syntax, as per:
http://www.w3.org/TR/xpath

: ~» self::node()
// ~» /descendant-or-self::node()/
.../foo ~ .../child::foo

2/17

http://www.w3.org/TR/xpath

XPath

To handle XPath expressions correctly:
1) Rewrite your XPath expression in the concrete syntax, as per:
http://www.w3.org/TR/xpath

: ~» self::node()
// ~» /descendant-or-self::node()/
.../foo ~ .../child::foo

2) Use a data-structure for XPath expressions
p == boolx [(az,l1,p1);---;(an In pPn)]

a = child|descendant|...
| = x|tagname|text () |node ()

2/17

http://www.w3.org/TR/xpath

XPath

To handle XPath expressions correctly:
1) Rewrite your XPath expression in the concrete syntax, as per:
http://www.w3.org/TR/xpath

: ~» self::node()
// ~» /descendant-or-self::node()/
.../foo ~ .../child::foo

2) Use a data-structure for XPath expressions

p == boolx [(az,l1,p1);---;(an In pPn)]
a = child|descendant|...
| = x|tagname|text () |node ()

A path is a sequence of steps and a boolean, which indicates whether
the path is “global” (starts with "/") or relative (starts without "/",
e.g. ./a/Db).

2/17

http://www.w3.org/TR/xpath

XPath

To handle XPath expressions correctly:
1) Rewrite your XPath expression in the concrete syntax, as per:
http://www.w3.org/TR/xpath

: ~» self::node()
// ~» /descendant-or-self::node()/
.../foo ~ .../child::foo

2) Use a data-structure for XPath expressions

p == boolx [(az,l1,p1);---;(an In pPn)]
a = child|descendant|...
| = x|tagname|text () |node ()

A path is a sequence of steps and a boolean, which indicates whether
the path is “global” (starts with "/") or relative (starts without "/",
e.g. ./a/Db).

2/17

http://www.w3.org/TR/xpath

XPath (example)

The expression:
//al./b]l//following-sibling: :a
becomes:

/descendant-or-self::node()/child::al[self::node()/child::b]/descendant-or-self::node()/following-sibling::a

And is represented by:

true, [

(descendant-or-self,node(),[]);

(child,"a", (false,[(self,node(),[]1); (child,"b",[1)1));
(descendant-or-self,node(),[1);

(following-sibling,"a", [1)

]

3/17

Compilation of XPath

The general algorithm now is:

1. rewrite the XPath expression;

2. transform it into a sequence of steps;

3. traverse the sequence step by step and build an SQL query
Represent each node of the document by an SQL table containing:

» pre-order, post-order, level of the node

» its tag in the tag field if the node is an element, NULL otherwise

» its text value if the node is a text node, NULL otherwise
Represent each attribue of the document by an SQL table containing:

» pre-order of the element containing the attribute

» the name of the attribute

» the text value of the attribute

you can use the same table/code as in Assignment 3

4/17

Logical encoding of axes

We think of the way to encode the XPath expression.
We use propositional formulae:

f o= v|fAf|fVFE]=f|P(f,....f) formulae
= x|ylz]| ... node variables
P = pre| post|level| < | > | ... predicates

The idea is to write new predicates which represent a particular axis.
For instance:

descendant(x,y) = pre(x) < pre(y) A post(x) > post(y)

We reads: “node y is a descendant of node x if the pre-order of x is less
than the preorder of y and if the post-order of x is larger than the
post-order of y"

5/17

Logical encoding of axes

Most axes are straightforward. By using formulae, it is also easy to
simplify some formulae by using logical rules:

ancestor(x, y) A level(x) = level(y) + 1
pre(x) > pre(y) A post(x) > post(y)
pre(x) < pre()

parent(x, y)
preceding(x, y)

following(x, y)

self(x, y) = pre(x) = pre(y)

descendant(x,y) = pre(x) < pre(y) A post(x) > post(y)

descendant-or-self(x,y) = pre(x) < pre(y) A post(x) > post(y)

child(x, y) = descendant(x, y) A level(x) = level(y) —
ancestor(x, y) = pre(x) > pre(y) A post(x) < post(y)

y) A post(x) < post(y

It is also handy to have a predicate to say “x is the root of the
document (the DOCUMENT NODE)™
root(x) = pre(x) =0

6/17

Logical encoding of tests

There are only a few tests. T(x) is true if the test T is true for the
node x:

is _node(x) = is always true
is_text(x) = s trueif x is a text node
is_star(x) = s true if x is an element node

We also define the predicate tag(x) which returns the tag of x and
text(x) which returns the text of x.
Example: If we are on a context node x and want to take the step
child: :a then, we want to select all nodes y such that:
child(x, y) A tag(y) ="a"
which is equivalent to:
pre(x) < pre(y) A post(x) > post(y) A level(x) = level(y) + 1 A tag(y) ="a"

7/17

Example of logical encoding

Consider the path /*//b/text ()
1) Rewrite it into the expanded syntax:

/child: :*/descendant-or-self::node()/child: :b/child: :text ()
2) Compute the formula step by step:

root(r;) Starts at the document root
A child(ry, r2) N is_star(rs)
A descendant-or-self(r2, r3) The node () test is always

true so we don't put anything
A child(rs, ry) A tag(ry) ="b"
A child(ry, rs) N is_text(rs)

8/17

From formulae to SQL

The SQL syntax is close to the one used for the formulae.
The previous query: /*//b/text (), which is:

/child: :*/descendant-or-self::node()/child::b/child: :text ()

is written in SQL:

SELECT DISTINCT rb5.pre
FROM table rl, table r2, table r3, table r4, table rb
WHERE ril.pre = 0 /* root(rl) =/
AND rl.pre < r2.pre AND rl.post > r2.post
AND ri1.level = r2.level + 1 /% child(rl,r2) */
AND r2.tag != NULL /* is_star(r2) */
AND r2.pre <= r3.pre AND r2.post >= r3.post
AND r3.pre < r4d.pre AND ré4.post > r4.post
AND r3.level = rd.level + 1 /* child(r3,r4) */
AND r4.tag = "a"
AND r4.pre < r5.pre AND r4.post > r5.post
AND r4.level = r5.level + 1 /% child(r4,r5) */
AND r5.text != NULL /* is_text(r5) */
ORDER BY rb5.pre

9/17

SQL syntax

SELECT DISTINCT rb.pre
FROM table rl1, table r2, table r3, table r4, table rb
WHERE rl.pre = 0

ORDER BY r5.pre

» SELECT DISTINCT x.pre: returns the set (DISTINCT removes
duplicates) of pre-order numbers for the nodes specified by x. x
must correspond to the /ast step of the toplevel query (i.e. not in a
filter).

» FROM table rl,...: binds n variable to the element table.

» ORDER BY x.pre ensures that the results are in document order.
ORDER BY and SELECT DISTINCT reference the same variable.

10/17

following-sibling axis

This axis is a bit trickier. First let's try to express (logically) the set of
siblings y of a node x. The siblings of x are the nodes with the same
parent as x. We would formally write:

sibling(x,y) = 3z, parent(x, z) N parent(y, z)

If we want following or preceding siblings, we just have to add a
condition on the pre-order:

preceding-sibling(x,y) = 3z, parent(x, z) A parent(y, z) A pre(x) > pre(y)
following-sibling(x,y) = 3z, parent(x, z) A parent(y, z) A pre(x) < pre(y)

Thus in SQL, for a step following-sibling: :t we must introduce 2
variables and not one.

11/17

following-sibling axis

The query:

//a/following-sibling: :b

is rewritten into:
/descendant-or-self::node()/child::a/following-sibling::b
which gives the SQL query:
SELECT DISTINCT r5.pre

FROM table rl, table r2, table r3, table r4, table rb

WHERE rl.pre = 0
AND ril.pre <= r2.pre AND rl.post >= r2.post

AND

AND

ORDER

r2.pre < r3.pre AND r2.post
AND r2.level = r3.level - 1
r3.pre > r4.pre AND r3.post
AND r3.level = rd4.level + 1
r5.pre > r4.pre AND r5.post
AND r5.level = r4.level + 1
AND r3.pre < rb.pre

AND r5.tag = "b"

BY r5.pre

> r3.post
AND r3.tag = "a"
< r4.post
/* parent(r3,rd) */
< r4.post

/* parent(r5,rd) */

12/17

Filters

Consider: //al./preceding: :b]
Rewrite as:
/descendant-or-self::node()/child::a[self: :node()/preceding: :b]
We have two paths:
/descendant-or-self::node()/child::a (1)
self::node()/preceding: :b (2)
SELECT DISTINCT r3.pre
FROM table rl, table r2, table r3, table r4, table rb
WHERE rl.pre = 0
AND rl.pre <= r2.pre AND rl.post >= r2.post
AND r2.pre < r3.pre AND r2.post > r3.post
AND r2.level = r3.level-1
AND r3.tag = "a" /* This is exactly like before */
AND r3.pre = r4.pre /* self::node() */
AND r4.pre > r5.pre AND r4.post > r5.post /* preceding::b */
AND r5.tag = "b"
ORDER BY r3.pre

The filter is relative (does not start with /) so we link it to the previous
step (here r3)

13/17

Filters

Consider: /a[//b]
Rewrite as:
/child::a[/descendant-or-self: :node/child: :b]

SELECT DISTINCT r2.pre
FROM table rl, table r2, table r3, table r4, table rb
WHERE rl.pre = 0
AND ril.pre < r2.pre AND rl.post > r2.post
AND ri1.level = r2.level-1
AND r2.tag = "a"
AND rl.pre = r3.pre /* Start at the root */
AND r3.pre <= rd4.pre AND r3.post >= r4.post
AND r4.pre < r5.pre AND r4.post > r5.post
AND r4.level = rb5.level-1
AND r5.tag = "b"
ORDER BY r2.pre

The filter is absolute (starts with /) so we link it to root (r1).

14/17

Multiple filters
//al./bl[./cl: a must have a child "b" and a child "c"

SELECT DISTINCT r3.pre
FROM table rl1, table r2, table r3,
table r4, table r5,
table r6, table r7,
WHERE rl.pre = 0
AND rl.pre <= r2.pre AND rl.post >= r2.post
AND r2.pre < r3.pre AND r2.post > r3.post
AND r2.level = r3.level-1
AND r3.tag = "a"
AND r3.pre = r4.pre
AND r4.pre < rb5.pre AND r4.post > r5.post
AND r4.level = rb.level-1
AND r5.tag = "b"
AND r3.pre = r6.pre
AND r6.pre < r7.pre AND r6.post > r7.post
AND r6.level = r7.level-1
AND r7.tag = "c"
ORDER BY r2.pre

15/17

Attributes

Attribute only appear in filters. We use the .pre of the previous step
and the attribute name as a key in the attribute table:
//al@x]/b[Cy="fo0"]

becomes:

/descendant-or-self::node()/child::alattribute::x]/child::b[attribute::y="fo0"]

SELECT DISTINCT r5.pre
FROM table rl1, table r2, table r3, attr_table r4,

WHERE
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

ORDER

rl
rl

r5
r6
BY

pre < r3.pre AND
level = r3.level
tag = "a"

pre = r4.pre AND
pre < r5.pre AND
level = rb5.level
tag = "b"

.pre = r6.pre AND
.text = "foo"
r5.pre

table r5, attr_table r6
.pre = 0
.pre <= r2.pre AND rl.post >= r2.post
r2.
r2.
r3.
r3.
r3.
r3.
r5.

r2.post > r3.post

-1

r4.name = "x"
r3.post > rb5.post
-1

r6.name = "y"

16 /17

Summary

1. Rewrite the XPath query using the extended syntax. This way you
don't have to wonder how to do //preceding: :a,
//following-sibling: :b or .//@x. Once the query is
expanded, just use the formulae step by step!

2. Filters are not more difficult. Consider two cases: the filter starts
with a “/" (absolute), you must link the path in the filter to the
root node. If the filter is relative then just link it to the previous
step.

Reminder for assignment 5, you only need to implement:
1. /, //, following-sibling, preceding, *, tag, text() and filters
2. for the bonus part, attributes in filters and test on attributes value.

17 /17

