Kim.Nguyen®@nicta.com.au

Week 3

1/18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,...).

2/18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,...).
= Using the proper data-structure for a task matters!

2/18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,...).
= Using the proper data-structure for a task matters!

Abstract specification

(Interfaces)

» Collection

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,...).
= Using the proper data-structure for a task matters!

Abstract specification
(Interfaces)

» Collection
» Stack

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,...).
= Using the proper data-structure for a task matters!

Abstract specification
(Interfaces)

» Collection
» Stack
> Set

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,...).
= Using the proper data-structure for a task matters!

Abstract specification
(Interfaces)

Collection
Stack
Set

Map

v

vV v v

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,...).
= Using the proper data-structure for a task matters!

Abstract specification Concrete types
(Interfaces) (Classes)

» Collection » (Pair)

» Stack

» Set

» Map

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,...).
= Using the proper data-structure for a task matters!

Abstract specification Concrete types
(Interfaces) (Classes)

» Collection » (Pair)

» Stack » List

» Set

» Map

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,...).
= Using the proper data-structure for a task matters!

Abstract specification Concrete types
(Interfaces) (Classes)
» Collection » (Pair)
» Stack » List
» Set » Ordered Tree
» Map

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,...).
= Using the proper data-structure for a task matters!

Abstract specification Concrete types
(Interfaces) (Classes)
» Collection » (Pair)
» Stack » List
» Set » Ordered Tree
» Map » Hashtable

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,...).
= Using the proper data-structure for a task matters!

Abstract specification Concrete types
(Interfaces) (Classes)
» Collection » (Pair)
» Stack » List
» Set » Ordered Tree
» Map » Hashtable

Collection

Simplest abstract data-strcuture, allows to group several objects (called
elements) in the same structure. Operations:

» isEmpty (), test for emptyness

Collection

Simplest abstract data-strcuture, allows to group several objects (called
elements) in the same structure. Operations:

» isEmpty (), test for emptyness
» add(E), adds an object to the collection

Collection

Simplest abstract data-strcuture, allows to group several objects (called

elements) in the same structure. Operations:
» isEmpty (), test for emptyness
» add(E), adds an object to the collection

» remove (E), removes an object from the collection

Collection

Simplest abstract data-strcuture, allows to group several objects (called

elements) in the same structure. Operations:
» isEmpty (), test for emptyness
» add(E), adds an object to the collection
» remove (E), removes an object from the collection

» contains(E), tests if an objects is in the collection

Collection

Simplest abstract data-strcuture, allows to group several objects (called
elements) in the same structure. Operations:

|

vV v. v v

isEmpty (), test for emptyness

add (E), adds an object to the collection

remove (E), removes an object from the collection
contains (E), tests if an objects is in the collection

iterator (), returns an iterator over the elements

Collection

Simplest abstract data-strcuture, allows to group several objects (called

elements) in the same structure. Operations:
» isEmpty (), test for emptyness
» add(E), adds an object to the collection
» remove (E), removes an object from the collection
» contains(E), tests if an objects is in the collection
» iterator(), returns an iterator over the elements

All the datastructures presented here support this!

Stack

LIFO data-strcuture, elements are ordered in reverse order of insertion.
Operations:

» push(E), puts an element on the top of the stack

4/18

Stack

LIFO data-strcuture, elements are ordered in reverse order of insertion.
Operations:

» push(E), puts an element on the top of the stack
» pop(), removes the topmost element and returns it

4/18

Stack

LIFO data-strcuture, elements are ordered in reverse order of insertion.
Operations:

» push(E), puts an element on the top of the stack
» pop(), removes the topmost element and returns it

» peek (), returns the topmost element without returning it

Stack

LIFO data-strcuture, elements are ordered in reverse order of insertion.
Operations:

» push(E), puts an element on the top of the stack
» pop(), removes the topmost element and returns it

» peek (), returns the topmost element without returning it

Set

Collection of unique elements.
Operations are the same as for the collection:

5/18

Set

Collection of unique elements.
Operations are the same as for the collection:

» add(E) adds an element to the set, returns true if the set was
modified, else false

Set

Collection of unique elements.
Operations are the same as for the collection:
» add(E) adds an element to the set, returns true if the set was
modified, else false
» remove (E), removes an element from the set, returns true if the
set was modified, else false

Set

Collection of unique elements.
Operations are the same as for the collection:
» add(E) adds an element to the set, returns true if the set was
modified, else false
» remove (E), removes an element from the set, returns true if the
set was modified, else false

Map (or Dictionary)

Collection of pairs of elements (key,data).
Associates any data with a key, e.g.:

{

"www.google.com" —| 209 [85[171[100]
"www.unsw.edu.au" —>‘ 149 ‘ 171 ‘ 96 ‘ 58 ‘

6/18

Map (or Dictionary)

Collection of pairs of elements (key,data).
Associates any data with a key, e.g.:

{

"www.google.com" —| 209 [85[171[100]
"www.unsw.edu.au" —>‘ 149 ‘ 171 ‘ 96 ‘ 58 ‘

» put (K,E) adds an element to the map with the specidied key,
returns the previous mapping for X or null

6/18

Map (or Dictionary)

Collection of pairs of elements (key,data).
Associates any data with a key, e.g.:

{

"www.google.com" —| 209 [85[171[100]
"www.unsw.edu.au" —>‘ 149 ‘ 171 ‘ 96 ‘ 58 ‘

» put (K,E) adds an element to the map with the specidied key,
returns the previous mapping for X or null

» get (K), returns the element associated with K or null

Map (or Dictionary)

Collection of pairs of elements (key,data).
Associates any data with a key, e.g.:

{

"www.google.com" —| 209 [85[171[100]
"www.unsw.edu.au" —>‘ 149 ‘ 171 ‘ 96 ‘ 58 ‘

» put (K,E) adds an element to the map with the specidied key,
returns the previous mapping for X or null

» get (K), returns the element associated with K or null

All the keys form a Set (keys are unique)
The add and remove methods take the key as argument

Pair (1/2)

Not provided in Java but extremely useful (exists in the C++ STL)
Encapsulates exactly 2 objects.

» get/setFirst() returns/sets the first component

» get/setSecond() returns/setsthe second component

Implement it in java:

Pair (1/2)

Not provided in Java but extremely useful (exists in the C++ STL)
Encapsulates exactly 2 objects.

» get/setFirst() returns/sets the first component

» get/setSecond() returns/setsthe second component

Implement it in java:

class Pair {
private Object first;
private Object second;
Pair (Object x, Object y){
first = x;
second = y;
¥
public Object getFirst(){ return first; }
public Object getSecond(){ return second; }
public void setFirst(Object e){ first=e; }
public void setSecond(Object e){ second=e; }

Pair (2/2)

Implement it in java with generics:

8/18

Pair (2/2)
Implement it in java with generics:

class Pair<X,Y> {
private X first ;
private Y second;
Pair (X x, Y y){
first = x;
second = vy;
¥
public X getFirst(){ return first; }
public Y getSecond(){ return second; }
public void setFirst(X x){ first=x; }
public void setSecond(Y y){ second=y; }

Pair (2/2)
Implement it in java with generics:

class Pair<X,Y> {
private X first ;
private Y second;
Pair (X x, Y y){
first = x;
second = vy;
¥
public X getFirst(){ return first; }
public Y getSecond(){ return second; }
public void setFirst(X x){ first=x; }
public void setSecond(Y y){ second=y; }

» less error-prone
» more efficient

(Linked)List (1/3)

Implement sequences of elements, as a chain of cells.
The following operations can be done in constant time
(“superhypermegafastlolroflmacomgwtfbbq"):
» addFirst(E), adds an element at the begining of the list
» getFirst (), returns the first element of the list
» removeFirst (), removes the first element of the list

Does it look like something you know?

(Linked)List (1/3)

Implement sequences of elements, as a chain of cells.
The following operations can be done in constant time
(“superhypermegafastlolroflmacomgwtfbbq"):
» addFirst(E), adds an element at the begining of the list
» getFirst (), returns the first element of the list
» removeFirst (), removes the first element of the list
Does it look like something you know?
Implement it in Java (with generics)

class LinkedList<E> {
private E content;
private LinkedList<E> next;
LinkedList (E e, LinkedList<E> 1) {
content = e;
next = |;

(Linked)List (2/3)

LinkedList (E e) { LinkedList(e,null) };
LinkedList () { LinkedList(null,null) };

public E getFirst(){ returns content;}

(Linked)List (2/3)

LinkedList (E e) { LinkedList(e,null) };
LinkedList () { LinkedList(null,null) };

public E getFirst(){ returns content;}
public void addFirst(E e) {

if (content = null)

content = ¢;
else {
LinkedList<E> tail =
new LinkedList<E>(content, next);

next = tail;

content = e;

}

(Linked)List (3/3)

public void removeFirst() {

if (content = null)
return;
else {
content = next.content;
next = next.next;

11/18

(Linked)List (3/3)

public void removeFirst() {

if (content = null)
return;
else {
content = next.content;
next = next.next;

}
}

Can you implement this using only pairs 7

11/18

(Linked)List (3/3)

public void removeFirst() {

if (content = null)
return;
else {
content = next.content;
next = next.next;

}
}

Can you implement this using only pairs 7
Write a List class which allows null elements

(Linked)List (3/3)

public void removeFirst() {

if (content = null)
return;
else {
content = next.content;
next = next.next;

}
}

Can you implement this using only pairs 7
Write a List class which allows null elements

One fits all data-structure?

» Can you implement a Stack with a List? Is it efficient?

12/18

One fits all data-structure?

» Can you implement a Stack with a List? Is it efficient?

» Can you implement a Set with a List? Is it efficient?

12/18

One fits all data-structure?

» Can you implement a Stack with a List? Is it efficient?
» Can you implement a Set with a List? Is it efficient?

» Can you implement a Map with a List? Is it efficient?

12/18

One fits all data-structure?

» Can you implement a Stack with a List? Is it efficient?
» Can you implement a Set with a List? Is it efficient?

» Can you implement a Map with a List? Is it efficient?

12/18

Balanced Binary Tree (1/3)

Relies on a total oredering of elements (must implement the
Comparable interface):
int compareTo(0): ol.compareTo(02) returns an integer i:

» i< 0if ol <02

» i=0if ol =02

» i > 0if ol > 02
BFW: (Big Fat Warning) o1 == 02 = compareTo(02) but the
converse IS NOT TRUE! in general. It is only true for immediate
values int, char, bool, null, not for pointers (i.e. Integers,
Chars,...).

1

3/18

Balanced Binary Tree (2/3)

Two types of Tree object:
» EmptyTree
» Node(E elem, Tree left, Tree right)

14/18

Balanced Binary Tree (2/3)

Two types of Tree object:

» EmptyTree

» Node(E elem, Tree left, Tree right)
Properties:

» Vx € left,x.compareTo(elem) < 0

» Vx € right,x.compareTo(elem) > 0

> |height(left) — height(right)| = 1

14/18

Balanced Binary Tree (2/3)

Two types of Tree object:

» EmptyTree

» Node(E elem, Tree left, Tree right)
Properties:

» Vx € left,x.compareTo(elem) < 0

» Vx € right,x.compareTo(elem) > 0

> |height(left) — height(right)| = 1
Complexity:

» add, remove, contains: log,(n) (aka “fast enough”).
Other nice property:

» lterating in increasing order is a left right depth first traversal

» lIterating in decreasing oreder is a right left depth first traversal

14/18

Balanced Binary Tree (3/3)

» Can you implement a Set using a BBT? Is it efficient?

15/18

Balanced Binary Tree (3/3)

» Can you implement a Set using a BBT? Is it efficient?
= TreeSet in Java.

Draw the tree created after inserting 5,3,6,7,8,2,4 in the empty tree.
Do the same after inserting 1,2,3,4,5,6,7,8. What's the problem?

15/18

Balanced Binary Tree (3/3)

» Can you implement a Set using a BBT? Is it efficient?
= TreeSet in Java.

Draw the tree created after inserting 5,3,6,7,8,2,4 in the empty tree.

Do the same after inserting 1,2,3,4,5,6,7,8. What's the problem?
= rebalancing is important!

15/18

Balanced Binary Tree (3/3)

» Can you implement a Set using a BBT? Is it efficient?
= TreeSet in Java.

Draw the tree created after inserting 5,3,6,7,8,2,4 in the empty tree.

Do the same after inserting 1,2,3,4,5,6,7,8. What's the problem?
= rebalancing is important!

» Can you implement a Map using a BBT? Is it efficient?

15/18

Balanced Binary Tree (3/3)

» Can you implement a Set using a BBT? Is it efficient?
= TreeSet in Java.

Draw the tree created after inserting 5,3,6,7,8,2,4 in the empty tree.

Do the same after inserting 1,2,3,4,5,6,7,8. What's the problem?
= rebalancing is important!

» Can you implement a Map using a BBT? Is it efficient?
= TreeMap in Java.
Cons:
» log,(n) is acceptable in many cases but still not “super mega fast”

» need a total ordering over objects

15/18

Hashtable (1/3)

Implements Map, i.e. stores associations of keys and values. Needs:

» a hash function for keys

16/18

Hashtable (1/3)

Implements Map, i.e. stores associations of keys and values. Needs:
» a hash function for keys

» an equality function between keys

16 /18

Hashtable (1/3)

Implements Map, i.e. stores associations of keys and values. Needs:
» a hash function for keys
» an equality function between keys

BFW: The whole behaviour depends on the hash function, its VERY

tricky to get a correct hash function!
Basic data structure: Array of LinkedList (the cells of the array are

often called slots and the lists bucket).

16 /18

Hashtable (1/3)

Implements Map, i.e. stores associations of keys and values. Needs:
» a hash function for keys
» an equality function between keys

BFW: The whole behaviour depends on the hash function, its VERY

tricky to get a correct hash function!
Basic data structure: Array of LinkedList (the cells of the array are

often called slots and the lists bucket).
How does it work ?

16 /18

Hashtable (2/3)

Suppose we want to associate strings with |P addresses (stored as
arrays of integers).

Suppose 10 slots, initially filled with empty buckets.

We want to insert ("www.google.com",| 209 |85 | 171]100 |):

1. compute the hash of the key, hash("www.google.com") = 2810

2. maps the hash (2810) to a value between 0 and 10: 2810 mod
10=0

3. get the linked list at position 0 in the Hashtable

4. insert the pair (key,data) at the begining of the list

17 /18

Hashtable (3/3)

What happens if two keys go into the same slot?

18/18

Hashtable (3/3)

What happens if two keys go into the same slot?
What happens if a lot of keys go into the same slot?

18/18

Hashtable (3/3)

What happens if two keys go into the same slot?
What happens if a lot of keys go into the same slot?
What happens if two keys have the same hash?

18/18

Hashtable (3/3)

What happens if two keys go into the same slot?
What happens if a lot of keys go into the same slot?
What happens if two keys have the same hash?

Good properties of a hash function:
» Good distribution: all keys are hashed to different integers

» Fast

18/18

Hashtable (3/3)

What happens if two keys go into the same slot?
What happens if a lot of keys go into the same slot?
What happens if two keys have the same hash?

Good properties of a hash function:
» Good distribution: all keys are hashed to different integers
» Fast

As for the BBT, we need to resize (rebalance) the Hashtable if the
buckets are too large. Rebalancing needs to be fast/not too often.
Only if we have these properties, we get constant time for delete,add,
exists

Can you implement Map using Hashtable? Is it efficient?

18/18

Hashtable (3/3)

What happens if two keys go into the same slot?
What happens if a lot of keys go into the same slot?
What happens if two keys have the same hash?

Good properties of a hash function:
» Good distribution: all keys are hashed to different integers
» Fast

As for the BBT, we need to resize (rebalance) the Hashtable if the
buckets are too large. Rebalancing needs to be fast/not too often.
Only if we have these properties, we get constant time for delete,add,
exists

Can you implement Map using Hashtable? Is it efficient?

Can you implement Set using Hashtable? Is it efficient?

18/18

Hashtable (3/3)

What happens if two keys go into the same slot?
What happens if a lot of keys go into the same slot?
What happens if two keys have the same hash?

Good properties of a hash function:
» Good distribution: all keys are hashed to different integers
» Fast

As for the BBT, we need to resize (rebalance) the Hashtable if the
buckets are too large. Rebalancing needs to be fast/not too often.
Only if we have these properties, we get constant time for delete,add,
exists

Can you implement Map using Hashtable? Is it efficient?

Can you implement Set using Hashtable? Is it efficient?

= See HashSet and HashMap in Java. Cons:

The iterators are in unsepcified order

18/18

