
XML and Databases

Tutorial session 2: Basic datastructures

Kim.Nguyen@nicta.com.au

Week 3

1 / 18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,. . .).

⇒ Using the proper data-structure for a task matters!

Abstract speci�cation
(Interfaces)

I Collection

I Stack

I Set

I Map

Concrete types
(Classes)

I (Pair)

I List

I Ordered Tree

I Hashtable

2 / 18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,. . .).
⇒ Using the proper data-structure for a task matters!

Abstract speci�cation
(Interfaces)

I Collection

I Stack

I Set

I Map

Concrete types
(Classes)

I (Pair)

I List

I Ordered Tree

I Hashtable

2 / 18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,. . .).
⇒ Using the proper data-structure for a task matters!

Abstract speci�cation
(Interfaces)

I Collection

I Stack

I Set

I Map

Concrete types
(Classes)

I (Pair)

I List

I Ordered Tree

I Hashtable

2 / 18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,. . .).
⇒ Using the proper data-structure for a task matters!

Abstract speci�cation
(Interfaces)

I Collection

I Stack

I Set

I Map

Concrete types
(Classes)

I (Pair)

I List

I Ordered Tree

I Hashtable

2 / 18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,. . .).
⇒ Using the proper data-structure for a task matters!

Abstract speci�cation
(Interfaces)

I Collection

I Stack

I Set

I Map

Concrete types
(Classes)

I (Pair)

I List

I Ordered Tree

I Hashtable

2 / 18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,. . .).
⇒ Using the proper data-structure for a task matters!

Abstract speci�cation
(Interfaces)

I Collection

I Stack

I Set

I Map

Concrete types
(Classes)

I (Pair)

I List

I Ordered Tree

I Hashtable

2 / 18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,. . .).
⇒ Using the proper data-structure for a task matters!

Abstract speci�cation
(Interfaces)

I Collection

I Stack

I Set

I Map

Concrete types
(Classes)

I (Pair)

I List

I Ordered Tree

I Hashtable

2 / 18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,. . .).
⇒ Using the proper data-structure for a task matters!

Abstract speci�cation
(Interfaces)

I Collection

I Stack

I Set

I Map

Concrete types
(Classes)

I (Pair)

I List

I Ordered Tree

I Hashtable

2 / 18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,. . .).
⇒ Using the proper data-structure for a task matters!

Abstract speci�cation
(Interfaces)

I Collection

I Stack

I Set

I Map

Concrete types
(Classes)

I (Pair)

I List

I Ordered Tree

I Hashtable

2 / 18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,. . .).
⇒ Using the proper data-structure for a task matters!

Abstract speci�cation
(Interfaces)

I Collection

I Stack

I Set

I Map

Concrete types
(Classes)

I (Pair)

I List

I Ordered Tree

I Hashtable

2 / 18

Datastructure ?

Various operations in XML are expensive (retrieve all the elements
below a node, retrieve all the text nodes, retrieve all the tags,. . .).
⇒ Using the proper data-structure for a task matters!

Abstract speci�cation
(Interfaces)

I Collection

I Stack

I Set

I Map

Concrete types
(Classes)

I (Pair)

I List

I Ordered Tree

I Hashtable

2 / 18

Collection

Simplest abstract data-strcuture, allows to group several objects (called
elements) in the same structure. Operations:

I isEmpty(), test for emptyness

I add(E), adds an object to the collection

I remove(E), removes an object from the collection

I contains(E), tests if an objects is in the collection

I iterator(), returns an iterator over the elements

All the datastructures presented here support this!

3 / 18

Collection

Simplest abstract data-strcuture, allows to group several objects (called
elements) in the same structure. Operations:

I isEmpty(), test for emptyness

I add(E), adds an object to the collection

I remove(E), removes an object from the collection

I contains(E), tests if an objects is in the collection

I iterator(), returns an iterator over the elements

All the datastructures presented here support this!

3 / 18

Collection

Simplest abstract data-strcuture, allows to group several objects (called
elements) in the same structure. Operations:

I isEmpty(), test for emptyness

I add(E), adds an object to the collection

I remove(E), removes an object from the collection

I contains(E), tests if an objects is in the collection

I iterator(), returns an iterator over the elements

All the datastructures presented here support this!

3 / 18

Collection

Simplest abstract data-strcuture, allows to group several objects (called
elements) in the same structure. Operations:

I isEmpty(), test for emptyness

I add(E), adds an object to the collection

I remove(E), removes an object from the collection

I contains(E), tests if an objects is in the collection

I iterator(), returns an iterator over the elements

All the datastructures presented here support this!

3 / 18

Collection

Simplest abstract data-strcuture, allows to group several objects (called
elements) in the same structure. Operations:

I isEmpty(), test for emptyness

I add(E), adds an object to the collection

I remove(E), removes an object from the collection

I contains(E), tests if an objects is in the collection

I iterator(), returns an iterator over the elements

All the datastructures presented here support this!

3 / 18

Collection

Simplest abstract data-strcuture, allows to group several objects (called
elements) in the same structure. Operations:

I isEmpty(), test for emptyness

I add(E), adds an object to the collection

I remove(E), removes an object from the collection

I contains(E), tests if an objects is in the collection

I iterator(), returns an iterator over the elements

All the datastructures presented here support this!

3 / 18

Stack

LIFO data-strcuture, elements are ordered in reverse order of insertion.
Operations:

I push(E), puts an element on the top of the stack

I pop(), removes the topmost element and returns it

I peek(), returns the topmost element without returning it

4 / 18

Stack

LIFO data-strcuture, elements are ordered in reverse order of insertion.
Operations:

I push(E), puts an element on the top of the stack

I pop(), removes the topmost element and returns it

I peek(), returns the topmost element without returning it

4 / 18

Stack

LIFO data-strcuture, elements are ordered in reverse order of insertion.
Operations:

I push(E), puts an element on the top of the stack

I pop(), removes the topmost element and returns it

I peek(), returns the topmost element without returning it

4 / 18

Stack

LIFO data-strcuture, elements are ordered in reverse order of insertion.
Operations:

I push(E), puts an element on the top of the stack

I pop(), removes the topmost element and returns it

I peek(), returns the topmost element without returning it

4 / 18

Set

Collection of unique elements.
Operations are the same as for the collection:

I add(E) adds an element to the set, returns true if the set was
modi�ed, else false

I remove(E), removes an element from the set, returns true if the
set was modi�ed, else false

5 / 18

Set

Collection of unique elements.
Operations are the same as for the collection:

I add(E) adds an element to the set, returns true if the set was
modi�ed, else false

I remove(E), removes an element from the set, returns true if the
set was modi�ed, else false

5 / 18

Set

Collection of unique elements.
Operations are the same as for the collection:

I add(E) adds an element to the set, returns true if the set was
modi�ed, else false

I remove(E), removes an element from the set, returns true if the
set was modi�ed, else false

5 / 18

Set

Collection of unique elements.
Operations are the same as for the collection:

I add(E) adds an element to the set, returns true if the set was
modi�ed, else false

I remove(E), removes an element from the set, returns true if the
set was modi�ed, else false

5 / 18

Map (or Dictionary)

Collection of pairs of elements (key,data).
Associates any data with a key, e.g.:

{
"www.google.com"→ 209 85 171 100

"www.unsw.edu.au"→ 149 171 96 58
. . .
}

I put(K,E) adds an element to the map with the specidied key,
returns the previous mapping for K or null

I get(K), returns the element associated with K or null

All the keys form a Set (keys are unique)
The add and remove methods take the key as argument

6 / 18

Map (or Dictionary)

Collection of pairs of elements (key,data).
Associates any data with a key, e.g.:

{
"www.google.com"→ 209 85 171 100

"www.unsw.edu.au"→ 149 171 96 58
. . .
}

I put(K,E) adds an element to the map with the specidied key,
returns the previous mapping for K or null

I get(K), returns the element associated with K or null

All the keys form a Set (keys are unique)
The add and remove methods take the key as argument

6 / 18

Map (or Dictionary)

Collection of pairs of elements (key,data).
Associates any data with a key, e.g.:

{
"www.google.com"→ 209 85 171 100

"www.unsw.edu.au"→ 149 171 96 58
. . .
}

I put(K,E) adds an element to the map with the specidied key,
returns the previous mapping for K or null

I get(K), returns the element associated with K or null

All the keys form a Set (keys are unique)
The add and remove methods take the key as argument

6 / 18

Map (or Dictionary)

Collection of pairs of elements (key,data).
Associates any data with a key, e.g.:

{
"www.google.com"→ 209 85 171 100

"www.unsw.edu.au"→ 149 171 96 58
. . .
}

I put(K,E) adds an element to the map with the specidied key,
returns the previous mapping for K or null

I get(K), returns the element associated with K or null

All the keys form a Set (keys are unique)
The add and remove methods take the key as argument

6 / 18

Pair (1/2)

Not provided in Java but extremely useful (exists in the C++ STL)
Encapsulates exactly 2 objects.

I get/setFirst() returns/sets the �rst component
I get/setSecond() returns/setsthe second component

Implement it in java:

c lass Pa i r {
pr ivate Object f i r s t ;
pr ivate Object second ;
Pa i r (Ob jec t x , Ob jec t y){

f i r s t = x ;
second = y ;
}

publ ic Object g e t F i r s t (){ return f i r s t ; }
publ ic Object getSecond (){ return second ; }
publ ic void s e t F i r s t (Objec t e){ f i r s t=e ; }
publ ic void se tSecond (Objec t e){ second=e ; }

}

7 / 18

Pair (1/2)

Not provided in Java but extremely useful (exists in the C++ STL)
Encapsulates exactly 2 objects.

I get/setFirst() returns/sets the �rst component
I get/setSecond() returns/setsthe second component

Implement it in java:

c lass Pa i r {
pr ivate Object f i r s t ;
pr ivate Object second ;
Pa i r (Ob jec t x , Ob jec t y){

f i r s t = x ;
second = y ;
}

publ ic Object g e t F i r s t (){ return f i r s t ; }
publ ic Object getSecond (){ return second ; }
publ ic void s e t F i r s t (Objec t e){ f i r s t=e ; }
publ ic void se tSecond (Objec t e){ second=e ; }

}
7 / 18

Pair (2/2)

Implement it in java with generics:

c lass Pai r<X,Y> {
pr ivate X f i r s t ;
pr ivate Y second ;
Pa i r (X x , Y y){

f i r s t = x ;
second = y ;
}

publ ic X g e t F i r s t (){ return f i r s t ; }
publ ic Y getSecond (){ return second ; }
publ ic void s e t F i r s t (X x){ f i r s t=x ; }
publ ic void se tSecond (Y y){ second=y ; }

}

I less error-prone
I more e�cient

8 / 18

Pair (2/2)

Implement it in java with generics:

c lass Pai r<X,Y> {
pr ivate X f i r s t ;
pr ivate Y second ;
Pa i r (X x , Y y){

f i r s t = x ;
second = y ;
}

publ ic X g e t F i r s t (){ return f i r s t ; }
publ ic Y getSecond (){ return second ; }
publ ic void s e t F i r s t (X x){ f i r s t=x ; }
publ ic void se tSecond (Y y){ second=y ; }

}

I less error-prone
I more e�cient

8 / 18

Pair (2/2)

Implement it in java with generics:

c lass Pai r<X,Y> {
pr ivate X f i r s t ;
pr ivate Y second ;
Pa i r (X x , Y y){

f i r s t = x ;
second = y ;
}

publ ic X g e t F i r s t (){ return f i r s t ; }
publ ic Y getSecond (){ return second ; }
publ ic void s e t F i r s t (X x){ f i r s t=x ; }
publ ic void se tSecond (Y y){ second=y ; }

}

I less error-prone
I more e�cient

8 / 18

(Linked)List (1/3)

Implement sequences of elements, as a chain of cells.
The following operations can be done in constant time
(�superhypermegafastlolro�maoomgwtfbbq�):

I addFirst(E), adds an element at the begining of the list
I getFirst(), returns the �rst element of the list
I removeFirst(), removes the �rst element of the list

Does it look like something you know?

Implement it in Java (with generics)

c lass L i n k e dL i s t <E> {
pr ivate E con t en t ;
pr ivate L i n k e dL i s t <E> next ;
L i n k e d L i s t (E e , L i n k e dL i s t <E> l) {

con t en t = e ;
nex t = l ;

}
. . .

9 / 18

(Linked)List (1/3)

Implement sequences of elements, as a chain of cells.
The following operations can be done in constant time
(�superhypermegafastlolro�maoomgwtfbbq�):

I addFirst(E), adds an element at the begining of the list
I getFirst(), returns the �rst element of the list
I removeFirst(), removes the �rst element of the list

Does it look like something you know?
Implement it in Java (with generics)

c lass L i n k e dL i s t <E> {
pr ivate E con t en t ;
pr ivate L i n k e dL i s t <E> next ;
L i n k e d L i s t (E e , L i n k e dL i s t <E> l) {

con t en t = e ;
nex t = l ;

}
. . . 9 / 18

(Linked)List (2/3)

L i n k e d L i s t (E e) { L i n k e d L i s t (e , nu l l) } ;
L i n k e d L i s t () { L i n k e d L i s t (nul l , nu l l) } ;

publ ic E g e t F i r s t (){ r e t u r n s con t en t ; }

publ ic void a d dF i r s t (E e) {
i f (con t en t == nu l l)

con t en t = e ;
e l se {
L i n k e dL i s t <E> t a i l =

new L i n k e dL i s t <E>(content , nex t) ;
nex t = t a i l ;
c on t en t = e ;
}

}
. . .

10 / 18

(Linked)List (2/3)

L i n k e d L i s t (E e) { L i n k e d L i s t (e , nu l l) } ;
L i n k e d L i s t () { L i n k e d L i s t (nul l , nu l l) } ;

publ ic E g e t F i r s t (){ r e t u r n s con t en t ; }
publ ic void a d dF i r s t (E e) {

i f (con t en t == nu l l)
con t en t = e ;

e l se {
L i n k e dL i s t <E> t a i l =

new L i n k e dL i s t <E>(content , nex t) ;
nex t = t a i l ;
c on t en t = e ;
}

}
. . .

10 / 18

(Linked)List (3/3)

publ ic void r emov eF i r s t () {
i f (con t en t == nu l l)

return ;
e l se {

con t en t = next . con t en t ;
nex t = next . nex t ;

}
}

Can you implement this using only pairs ?
Write a List class which allows null elements

11 / 18

(Linked)List (3/3)

publ ic void r emov eF i r s t () {
i f (con t en t == nu l l)

return ;
e l se {

con t en t = next . con t en t ;
nex t = next . nex t ;

}
}

Can you implement this using only pairs ?

Write a List class which allows null elements

11 / 18

(Linked)List (3/3)

publ ic void r emov eF i r s t () {
i f (con t en t == nu l l)

return ;
e l se {

con t en t = next . con t en t ;
nex t = next . nex t ;

}
}

Can you implement this using only pairs ?
Write a List class which allows null elements

11 / 18

(Linked)List (3/3)

publ ic void r emov eF i r s t () {
i f (con t en t == nu l l)

return ;
e l se {

con t en t = next . con t en t ;
nex t = next . nex t ;

}
}

Can you implement this using only pairs ?
Write a List class which allows null elements

11 / 18

One �ts all data-structure?

I Can you implement a Stack with a List? Is it e�cient?

I Can you implement a Set with a List? Is it e�cient?

I Can you implement a Map with a List? Is it e�cient?

12 / 18

One �ts all data-structure?

I Can you implement a Stack with a List? Is it e�cient?

I Can you implement a Set with a List? Is it e�cient?

I Can you implement a Map with a List? Is it e�cient?

12 / 18

One �ts all data-structure?

I Can you implement a Stack with a List? Is it e�cient?

I Can you implement a Set with a List? Is it e�cient?

I Can you implement a Map with a List? Is it e�cient?

12 / 18

One �ts all data-structure?

I Can you implement a Stack with a List? Is it e�cient?

I Can you implement a Set with a List? Is it e�cient?

I Can you implement a Map with a List? Is it e�cient?

12 / 18

Balanced Binary Tree (1/3)

Relies on a total oredering of elements (must implement the
Comparable interface):
int compareTo(O): o1.compareTo(o2) returns an integer i :

I i < 0 if o1 < o2

I i = 0 if o1 = o2

I i > 0 if o1 > o2

BFW: (Big Fat Warning) o1 == o2 ⇒ compareTo(o2) but the
converse IS NOT TRUE! in general. It is only true for immediate
values int, char, bool, null, not for pointers (i.e. Integers,
Chars,. . .).

13 / 18

Balanced Binary Tree (2/3)

Two types of Tree object:

I EmptyTree

I Node(E elem, Tree left, Tree right)

Properties:

I ∀x ∈ lef t, x.compareTo(elem) < 0

I ∀x ∈ r ight, x.compareTo(elem) > 0

I |height(left)− height(right)| = 1

Complexity:

I add, remove, contains: log2 (n) (aka �fast enough�).

Other nice property:

I Iterating in increasing order is a left right depth �rst traversal

I Iterating in decreasing oreder is a right left depth �rst traversal

14 / 18

Balanced Binary Tree (2/3)

Two types of Tree object:

I EmptyTree

I Node(E elem, Tree left, Tree right)

Properties:

I ∀x ∈ lef t, x.compareTo(elem) < 0

I ∀x ∈ r ight, x.compareTo(elem) > 0

I |height(left)− height(right)| = 1

Complexity:

I add, remove, contains: log2 (n) (aka �fast enough�).

Other nice property:

I Iterating in increasing order is a left right depth �rst traversal

I Iterating in decreasing oreder is a right left depth �rst traversal

14 / 18

Balanced Binary Tree (2/3)

Two types of Tree object:

I EmptyTree

I Node(E elem, Tree left, Tree right)

Properties:

I ∀x ∈ lef t, x.compareTo(elem) < 0

I ∀x ∈ r ight, x.compareTo(elem) > 0

I |height(left)− height(right)| = 1

Complexity:

I add, remove, contains: log2 (n) (aka �fast enough�).

Other nice property:

I Iterating in increasing order is a left right depth �rst traversal

I Iterating in decreasing oreder is a right left depth �rst traversal

14 / 18

Balanced Binary Tree (3/3)

I Can you implement a Set using a BBT? Is it e�cient?

⇒ TreeSet in Java.

Draw the tree created after inserting 5,3,6,7,8,2,4 in the empty tree.

Do the same after inserting 1,2,3,4,5,6,7,8. What's the problem?
⇒ rebalancing is important!

I Can you implement a Map using a BBT? Is it e�cient?

⇒ TreeMap in Java.

Cons:

I log2 (n) is acceptable in many cases but still not �super mega fast�

I need a total ordering over objects

15 / 18

Balanced Binary Tree (3/3)

I Can you implement a Set using a BBT? Is it e�cient?

⇒ TreeSet in Java.

Draw the tree created after inserting 5,3,6,7,8,2,4 in the empty tree.

Do the same after inserting 1,2,3,4,5,6,7,8. What's the problem?

⇒ rebalancing is important!

I Can you implement a Map using a BBT? Is it e�cient?

⇒ TreeMap in Java.

Cons:

I log2 (n) is acceptable in many cases but still not �super mega fast�

I need a total ordering over objects

15 / 18

Balanced Binary Tree (3/3)

I Can you implement a Set using a BBT? Is it e�cient?

⇒ TreeSet in Java.

Draw the tree created after inserting 5,3,6,7,8,2,4 in the empty tree.

Do the same after inserting 1,2,3,4,5,6,7,8. What's the problem?
⇒ rebalancing is important!

I Can you implement a Map using a BBT? Is it e�cient?

⇒ TreeMap in Java.

Cons:

I log2 (n) is acceptable in many cases but still not �super mega fast�

I need a total ordering over objects

15 / 18

Balanced Binary Tree (3/3)

I Can you implement a Set using a BBT? Is it e�cient?

⇒ TreeSet in Java.

Draw the tree created after inserting 5,3,6,7,8,2,4 in the empty tree.

Do the same after inserting 1,2,3,4,5,6,7,8. What's the problem?
⇒ rebalancing is important!

I Can you implement a Map using a BBT? Is it e�cient?

⇒ TreeMap in Java.

Cons:

I log2 (n) is acceptable in many cases but still not �super mega fast�

I need a total ordering over objects

15 / 18

Balanced Binary Tree (3/3)

I Can you implement a Set using a BBT? Is it e�cient?

⇒ TreeSet in Java.

Draw the tree created after inserting 5,3,6,7,8,2,4 in the empty tree.

Do the same after inserting 1,2,3,4,5,6,7,8. What's the problem?
⇒ rebalancing is important!

I Can you implement a Map using a BBT? Is it e�cient?

⇒ TreeMap in Java.

Cons:

I log2 (n) is acceptable in many cases but still not �super mega fast�

I need a total ordering over objects

15 / 18

Hashtable (1/3)

Implements Map, i.e. stores associations of keys and values. Needs:

I a hash function for keys

I an equality function between keys

BFW: The whole behaviour depends on the hash function, its VERY
tricky to get a correct hash function!
Basic data structure: Array of LinkedList (the cells of the array are
often called slots and the lists bucket).
How does it work ?

16 / 18

Hashtable (1/3)

Implements Map, i.e. stores associations of keys and values. Needs:

I a hash function for keys

I an equality function between keys

BFW: The whole behaviour depends on the hash function, its VERY
tricky to get a correct hash function!
Basic data structure: Array of LinkedList (the cells of the array are
often called slots and the lists bucket).
How does it work ?

16 / 18

Hashtable (1/3)

Implements Map, i.e. stores associations of keys and values. Needs:

I a hash function for keys

I an equality function between keys

BFW: The whole behaviour depends on the hash function, its VERY
tricky to get a correct hash function!
Basic data structure: Array of LinkedList (the cells of the array are
often called slots and the lists bucket).

How does it work ?

16 / 18

Hashtable (1/3)

Implements Map, i.e. stores associations of keys and values. Needs:

I a hash function for keys

I an equality function between keys

BFW: The whole behaviour depends on the hash function, its VERY
tricky to get a correct hash function!
Basic data structure: Array of LinkedList (the cells of the array are
often called slots and the lists bucket).
How does it work ?

16 / 18

Hashtable (2/3)

Suppose we want to associate strings with IP addresses (stored as
arrays of integers).
Suppose 10 slots, initially �lled with empty buckets.
We want to insert ("www.google.com", 209 85 171 100):

1. compute the hash of the key, hash("www.google.com") = 2810

2. maps the hash (2810) to a value between 0 and 10: 2810 mod
10 = 0

3. get the linked list at position 0 in the Hashtable

4. insert the pair (key,data) at the begining of the list

17 / 18

Hashtable (3/3)

What happens if two keys go into the same slot?

What happens if a lot of keys go into the same slot?
What happens if two keys have the same hash?

Good properties of a hash function:

I Good distribution: all keys are hashed to di�erent integers

I Fast

As for the BBT, we need to resize (rebalance) the Hashtable if the
buckets are too large. Rebalancing needs to be fast/not too often.
Only if we have these properties, we get constant time for delete,add,
exists

Can you implement Map using Hashtable? Is it e�cient?
Can you implement Set using Hashtable? Is it e�cient?
⇒ See HashSet and HashMap in Java. Cons:
The iterators are in unsepci�ed order

18 / 18

Hashtable (3/3)

What happens if two keys go into the same slot?
What happens if a lot of keys go into the same slot?

What happens if two keys have the same hash?

Good properties of a hash function:

I Good distribution: all keys are hashed to di�erent integers

I Fast

As for the BBT, we need to resize (rebalance) the Hashtable if the
buckets are too large. Rebalancing needs to be fast/not too often.
Only if we have these properties, we get constant time for delete,add,
exists

Can you implement Map using Hashtable? Is it e�cient?
Can you implement Set using Hashtable? Is it e�cient?
⇒ See HashSet and HashMap in Java. Cons:
The iterators are in unsepci�ed order

18 / 18

Hashtable (3/3)

What happens if two keys go into the same slot?
What happens if a lot of keys go into the same slot?
What happens if two keys have the same hash?

Good properties of a hash function:

I Good distribution: all keys are hashed to di�erent integers

I Fast

As for the BBT, we need to resize (rebalance) the Hashtable if the
buckets are too large. Rebalancing needs to be fast/not too often.
Only if we have these properties, we get constant time for delete,add,
exists

Can you implement Map using Hashtable? Is it e�cient?
Can you implement Set using Hashtable? Is it e�cient?
⇒ See HashSet and HashMap in Java. Cons:
The iterators are in unsepci�ed order

18 / 18

Hashtable (3/3)

What happens if two keys go into the same slot?
What happens if a lot of keys go into the same slot?
What happens if two keys have the same hash?

Good properties of a hash function:

I Good distribution: all keys are hashed to di�erent integers

I Fast

As for the BBT, we need to resize (rebalance) the Hashtable if the
buckets are too large. Rebalancing needs to be fast/not too often.
Only if we have these properties, we get constant time for delete,add,
exists

Can you implement Map using Hashtable? Is it e�cient?
Can you implement Set using Hashtable? Is it e�cient?
⇒ See HashSet and HashMap in Java. Cons:
The iterators are in unsepci�ed order

18 / 18

Hashtable (3/3)

What happens if two keys go into the same slot?
What happens if a lot of keys go into the same slot?
What happens if two keys have the same hash?

Good properties of a hash function:

I Good distribution: all keys are hashed to di�erent integers

I Fast

As for the BBT, we need to resize (rebalance) the Hashtable if the
buckets are too large. Rebalancing needs to be fast/not too often.
Only if we have these properties, we get constant time for delete,add,
exists

Can you implement Map using Hashtable? Is it e�cient?

Can you implement Set using Hashtable? Is it e�cient?
⇒ See HashSet and HashMap in Java. Cons:
The iterators are in unsepci�ed order

18 / 18

Hashtable (3/3)

What happens if two keys go into the same slot?
What happens if a lot of keys go into the same slot?
What happens if two keys have the same hash?

Good properties of a hash function:

I Good distribution: all keys are hashed to di�erent integers

I Fast

As for the BBT, we need to resize (rebalance) the Hashtable if the
buckets are too large. Rebalancing needs to be fast/not too often.
Only if we have these properties, we get constant time for delete,add,
exists

Can you implement Map using Hashtable? Is it e�cient?
Can you implement Set using Hashtable? Is it e�cient?

⇒ See HashSet and HashMap in Java. Cons:
The iterators are in unsepci�ed order

18 / 18

Hashtable (3/3)

What happens if two keys go into the same slot?
What happens if a lot of keys go into the same slot?
What happens if two keys have the same hash?

Good properties of a hash function:

I Good distribution: all keys are hashed to di�erent integers

I Fast

As for the BBT, we need to resize (rebalance) the Hashtable if the
buckets are too large. Rebalancing needs to be fast/not too often.
Only if we have these properties, we get constant time for delete,add,
exists

Can you implement Map using Hashtable? Is it e�cient?
Can you implement Set using Hashtable? Is it e�cient?
⇒ See HashSet and HashMap in Java. Cons:
The iterators are in unsepci�ed order

18 / 18

