
1a)
Not well-formed, violation of grammar rule [14]: the symbol “<” is not allowed
Inside of CharData
1b)
Not well-formed, violation of grammar rule [5]: the symbols “<” and “>” may not appear
inside of tag name.
1c)
Not well-formed, violation of grammar rule [39] (there are four b-Start-tags but
only tree b-End-tags)
1d)
 Not well-formed, violation of grammar rule [10]: the symbol “<” may not appear inside of
an attribute value.
1e)
Well-formed.
1f)
Well-formed.
1g)
Well-formed.
1h)
Not well-formed. Grammar violation of rule [39] just as for c).

2)
n=root;
repeat {
 while(lastChild(n)!=NIL)
 { n=lastChild(n);
 If(nodeType(n)==TEXT_NODE) print(nodeValue(n));
 }
 while(previousSibling(n)=NIL)
 { n=parent(n);}
 n=nextSibling(n);
 if(nodeType(n)==TEXT_NODE) print(nodeValue(n));
}

3)
id=1
while (lab(id)!=””)
 {
 if (lab(id)==”a”) count[id]=1 else count[id]=0;
 for each child in dag(id) do
 {
 count[id] = count[id] + count[child]
 }
 id = id + 1
 }

4)
When computing the minimal DAG, we need to determine whether a given subtree has
occurred already. If we keep a table of pointers to subtrees that have already occurred,
then to check for a given subtree if it is in the table takes worst case time
(# of trees in table) * (# nodes in the subtree)
Which in the worst case is quadratic in the size of the input tree!

With hashing, we only need
(#trees in the hash bucket) * (#nodes in the subtree).

For the example, take hash(tree) = 1 if tree is a leaf and
hash(tree) = 2 if not a leaf and contains no “f”
hash(tree) = 3 in all other cases.

Then
hash(c) = bucket 1
hash(b(c, c)) = bucket 2
hash(f) = bucket 1
hash(b(f,c)) = bucket 3
Etc.
Without hashing: check up to 6 nodes each time.
With hash: check only up to 3 nodes each time!

5)
Descendants(Node p){
 for(i=1; i<size(p); i++) print(p + i)
}
Children(Node p){
 c = p+1;
 while(c < p+size(p)) { print(c); c = c+size(c) }
}
Parent(Node p){
 for(i=1; i<p; i++) if p is in Children(i) then print(i)
}
Following-Siblings(Node p){
 f = p + size(p);
 while(f < Parent(p) + p) { print(f); f = f+size(f) }
}
Preceding(Node p){
 for(i=1; i<p; i++) if(p not in Descendants (i)) then print(i)
}

6a)
The string “a” is accepted; the string “c” is not accepted.
It is not deterministic (the initial state has two outgoing a-edges)

6b)
c*(a+b)(a+b+c)*

6c)
Not 1-unambigous: Glushkov automaton is non-deterministic.

a,b a,b,c

c

6d)
(b*(ab)*)*

c

a
b

a
b a b

c

a

b

c

b c

c

a b c

a b

a

