
1

XML and Databases

Sebastian Maneth
NICTA and UNSW

Lecture 9
Properties of XPath

CSE@UNSW -- Semester 1, 2009

Outline

1. XPath Equivalence

2. No Looking Back: How to Remove Backward Axes

3. Containment Test for XPath Expressions

3

A Note on Equality Test
in XPath

4

Useful Functions (on Node Sets)

XPath 1.0
Equality (“=“) is based on
string value of a node!

XPath 2.0 has clearer
comparison operators!

Careful with equality (“=“)

<a>

<d>red</d>
<d>green</d>
<d>blue</d>

<c>

<d>yellow</d>
<d>orange</d>
<d>green</d>

</c>

//a[b/d = c/d] selects a-node!!!

there is a node in the node set for b/d
with same string value as a node in node set c/d

5

A Note on Equality Test

p1, p2 XPath (1.0) Expressions

(p1 == p2) is true if there exists a node selected by p1
that is identical to a node selected by p2

XPath 2.0
XQuery 1.0

//a[b/d == c/d] selects what?

<a>

<d>red</d>
<d>green</d>
<d>blue</d>

<c>

<d>yellow</d>
<d>orange</d>
<d>green</d>

</c>
 6

A Note on Equality Test

p1, p2 XPath (1.0) Expressions

(p1 == p2) is true if there exists a node selected by p1
that is identical to a node selected by p2

XPath 2.0
XQuery 1.0

//a[b/d == c/d] selects what?

<a>

<d>red</d>
<d>green</d>
<d>blue</d>

<c>

<d>yellow</d>
<d>orange</d>
<d>green</d>

</c>

false (on any document)

//*[child::node()[1]
== child::node()[position=last()]]

2

7

A Note on Equality Test

p1, p2 XPath (1.0) Expressions

(p1 == p2) is true if there exists a node selected by p1
that is identical to a node selected by p2

XPath 2.0
XQuery 1.0

XPath 1.0 simulation of (node) equality test (==)

Instead of (p1 == p2) write:

(count(p1 | p2) < count(p1) + count(p2)) ☺

8

1. XPath Equivalence

p1, p2 XPath (1.0) Expressions

(p1 ≡ p2) p1 “is equivalent to” p2
is true if,
for any document D, and any context node N of D,

p1 evaluated on D with context N gives the same result as
p2 evaluated on D with context N.

Examples

/a//*/b ≡ /a/*//b
//a/b/c/../.. ≡ //a[.b/c/]
//a[b | c] ≡ //a/*[self::b | self::c]/..

NOT equivalent: child::*/parent::* ≡ self::*

Æ show a counter example!

9

1. XPath Equivalence

EBNF for XPaths that we want to consider now:

An XPath starting with “/” (root node) is called absolute,
otherwise it is called relative.

10

1. XPath Equivalence

p1, p2 XPaths
p arbitrary XPath
q arbitrary qualifier

RelÆAbs If p1 ≡ p2, then /p1 ≡ /p2.

Adjunct If p1 ≡ p2 and p is a relative, then p1/p ≡ p2/p.
If p1 ≡ p2 and p1,p2 relative, then p/p1 ≡ p/p2.
If p1 ≡ p2, then p1[q] ≡ p2[q] and p[p1] ≡ p[p2].

Qualifier Flattening p[p1/p2] ≡ p[p1[p2]]

ancestor-or-self::n ≡ ancestor::n | self::n
descendant-or-self::n ≡ descendant::n | self::n

p[p1 = /p2] ≡ p[p1[self::node() = /p2]]
p[p1 == /p2] ≡ p[p1[self::node() == /p2]]

11

1. XPath Equivalence

12

2. No Looking Back

child
descendant
descendant-or-self
following
following-sibling

Dual backward forward

parent
ancestor

ancestor-or-self
preceding

preceding-sibling

Thus: dual(parent) = child
dual(following) = preceding
etc.

Rewrite rule #1 (p,s: relative paths, ax: reverse axis)

p[ax::m/s] Î
p[/descendant::m[s]/dual(ax)::node() == self::node()]

3

13

Rewrite rule #1 (p,s: relative paths, ax: reverse axis)

p[ax::m/s] Î
p[/descendant::m[s]/dual(ax)::node() == self::node()]

any “m[s]-node”
in the tree

E.g. ax = ancestor

p[ancestor::m] Î
p[/descendant::m/descendant::node()==self::node()]

but, via dual axis, must
reach context node

“any m-node from which the context node can be reached via descendant,
must be an ancestor of the context node.”

14

Rewrite rule #1 (p,s: relative paths, ax: reverse axis)

p[ax::m/s] Î
p[/descendant::m[s]/dual(ax)::node() == self::node()]

any “m[s]-node”
in the tree

E.g. ax = preceding-sibling

p[preceding-sibling::m] Î
p[/descendant::m/following-sibling::node()==self::node()]

but, via dual axis, must
reach context node

“any m-node from which the context node can be reached via following-sibling,
must be a preceding-sibling of the context node.”

15

Rewrite rule #1 (p,s: relative paths, ax: reverse axis)

p[ax::m/s] Î
p[/descendant::m[s]/dual(ax)::node() == self::node()]

any “m[s]-node”
in the tree

E.g. ax=preceding-sibling

p[preceding-sibling::m] Î
p[/descendant::m/following-sibling::node()==self::node()]

but, via dual axis, must
reach context node

“any m-node from which the context node can be reached via following-sibling,
must be a preceding-sibling of the context node.”

Similar for parent and preceding. (ancestor-or-self not really needed. Why?)

16

Rewrite rule #1 (p,s: relative paths, ax: reverse axis)

p[ax::m/s] Î
p[/descendant::m[s]/dual(ax)::node() == self::node()]

17

Rewrite rule #1 (p,s: relative paths, ax: reverse axis)

p[ax::m/s] Î
p[/descendant::m[s]/dual(ax)::node() == self::node()]

Removes first reverse axis inside a filter (qualifier).

Use qualifier flattening to replace *any* reverse axis
from inside a filter.

Qualifier Flattening p[p1/p2] ≡ p[p1[p2]]

Similar rules for absolute paths:

/p/fAx::n/ax::m Î /descendant::m[dual(ax)::n == /p/fAx::n]

/fAx::n/ax::m Î /descendant::m[dual(ax)::n == /fAx::n]

Rewrite rules #2 and #2a
18

Similar rules for absolute paths:

Rewrite rules #2 and #2a

E.g.

/descendant::price/preceding::name

is rewritten via Rule #2a into:

/descendant::name[following::price==/descendant::price]

/p/fAx::n/ax::m Î /descendant::m[dual(ax)::n == /p/fAx::n]

/fAx::n/ax::m Î /descendant::m[dual(ax)::n == /fAx::n]

4

19

Similar rules for absolute paths:

Rewrite rules #2 and #2a

E.g.

/descendant::price/preceding::name

is rewritten via Rule #2a into:

/descendant::name[following::price==/descendant::price]

/p/fAx::n/ax::m Î /descendant::m[dual(ax)::n == /p/fAx::n]

/fAx::n/ax::m Î /descendant::m[dual(ax)::n == /fAx::n]

Of course, the “join” can be removed in this example:

/descendant::name[following::price]

Not needed, in this
example.

20

Similar rules for absolute paths:

Rewrite rules #2 and #2a

E.g.

/descendant::journal[child::title]/descendant::price/preceding::name

becomes

/descendant::name[following::price==
/descendant::journal[child::title]/descendant::price]

/p/fAx::n/ax::m Î /descendant::m[dual(ax)::n == /p/fAx::n]

/fAx::n/ax::m Î /descendant::m[dual(ax)::n == /fAx::n]

Can you avoide the join, also for this example??

21

/p/fAx::n/ax::m Î /descendant::m[dual(ax)::n == /p/fAx::n]
/fAx::n/ax::m Î /descendant::m[dual(ax)::n == /fAx::n]

p[ax::m/s] Î
p[/descendant::m[s]/dual(ax)::node() == self::node()]

Rules (1),(2),(2a) suffice to remove ALL backward axes from above queries!
Why?
Æ Size Increase?
Æ How many joins?

(1)

(2)
(2a)

22

2. No Looking Back

child
descendant
descendant-or-self
following
following-sibling

Dual backward forward

Joins (==) are expensive! (typically quadratic wrt data)

To obtain queries with fewer joins
consider the forward-axis left of the reverse-axis to be removed!

New rules will be of the form

p/forw/back Î p_new

p/forw[back] Î p_new

not
needed

parent
ancestor

ancestor-or-self
preceding

preceding-sibling

23

2. No Looking Back

Interaction of back=parent with forward axes:

24

2. No Looking Back

Interaction of back=parent with forward axes:

5

25

2. No Looking Back

Interaction of back=parent with forward axes:

26

2. No Looking Back

Interaction of back=parent with forward axes:

27

2. No Looking Back

Interaction of back=parent with forward axes:

28

2. No Looking Back

Interaction of back=parent with forward axes:

29

2. No Looking Back

Interaction of back=ancestor with forward axes:

30

2. No Looking Back

Interaction of back=ancestor with forward axes:

6

31

2. No Looking Back

Interaction of back=ancestor with forward axes:

32

2. No Looking Back

Interaction of back=ancestor with forward axes:

33

2. No Looking Back

Interaction of back=ancestor with forward axes:

34

2. No Looking Back

Interaction of back=ancestor with forward axes:

Similar rules for ancestor in a filters.

35

2. No Looking Back
Interaction of back=preceding with forward axes:

36

Rule 33

7

37

Rule 33

Wrong, I think!
Should be descendant instead!

38

2. No Looking Back

/descendant::price/preceding::name

is rewritten via Rule #2a into:

/descendant::name[following::price==/descendant::price]

Now, let us use Rule (33a)

/descendant::n/preceding::m Î /descendant::m[following::n]

We obtain

/descendant::name[following::price]

39

Rule (33a)
/descendant::n/preceding::m Î /descendant::m[following::n]

doesn’t work because descendant is absolute here.
Rule (33):
p/descendant::n/preceding::m Î p[descendant::n]/preceding::m

| p/child::*[following-sibling::*/descendant-or-self::n]
/descendant-or-self::m

/descendant::journal[child::title]/descendant::price/preceding::name

becomes

/descendant::name[following::price==
/descendant::journal[child::title]/descendant::price]

We obtain

p[descendant::price]/preceding::name
| p/child::*[following-sibling::*/descendant-or-self::price]

/descendant-or-self::name

40

Rule (33a)
/descendant::n/preceding::m Î /descendant::m[following::n]

doesn’t work because descendant is absolute here.
Rule (33):
p/descendant::n/preceding::m Î p[descendant::n]/preceding::m

| p/child::*[following-sibling::*/descendant-or-self::n]
/descendant-or-self::m

/descendant::journal[child::title]/descendant::price/preceding::name

becomes

/descendant::name[following::price==
/descendant::journal[child::title]/descendant::price]

p[descendant::price]/preceding::name
| p/child::*[following-sibling::*/descendant-or-self::price]

/descendant-or-self::name

Æ Rule (33a) with n = journal[child::title][descendant::price]

41

Rule (33a)
/descendant::n/preceding::m Î /descendant::m[following::n]

doesn’t work because descendant is absolute here.

/descendant::journal[child::title]/descendant::price/preceding::name

becomes

/descendant::name[following::price==
/descendant::journal[child::title]/descendant::price]

p[descendant::price]/preceding::name
| p/child::*[following-sibling::*/descendant-or-self::price]

/descendant-or-self::name

Æ Rule (33a) with n = journal[child::title][descendant::price]

/descendant::name[following::journal[child::title][descendant::price]]
| p/child::*[following-sibling::*/descendant-or-self::price]

/descendant-or-self::name

42

Rule (33a)
/descendant::n/preceding::m Î /descendant::m[following::n]

doesn’t work because descendant is absolute here. seems it does work! ☺

/descendant::journal[child::title]/descendant::price/preceding::name

becomes

/descendant::name[following::price==
/descendant::journal[child::title]/descendant::price]

/descendant::name[following::journal[child::title][descendant::price]]
| p/child::*[following-sibling::*/descendant-or-self::price]

/descendant-or-self::name

What about this one:

/descendant::name[following::journal[child::title]/descendant::price]

=n

8

43

Theorem
(from D. Olteanu, H. Meuss, T. Furche, F. Bry

XPath: Looking Forward. EDBT Workshops 2002: 109-127)

Given an XPath expression p that has no joins of the form (p1 == p2) with
both p1,p2 relative, an equivalent expression u without reverse axes
can be computed.

Time needed: at most exponential in length of p
Length of u: at most exponential in length of p

(moreover: no joins are introduced when computing u)

Questions

Æ Can you find a subclass for which Time to compute u is linear or polynomial?

ÆWhat is the problem with joins (p1 == p2) for removal of reverse axes?

44

3. XPath Containment Test
Given two XPath expressions p, q:
Are all nodes selected by p, also selected by q? (on any document)
(p “contained in” q)

Has many applications!

Want to select documents that “match p”.
Æ If a document matches p, and p contained in q,
then we know the document also matches q!

Æ If a document does not match q, and p contained in q,
then we know that document does not match p!

Î Decrease online-time of publish/subscribe systems based on XPath
Î Decrease query-time by making use of materialized intermediate results
Î Optimization by ruling out queries with empty result set
etc, etc

Boolean query

Applications

45

3. XPath Containment Test

Given two XPath expressions p, q

“0-containment” For every tree, if p selects a node then so does q.
p ⊆0 q

“1-containment” For every tree, all nodes selected by p are also selected by q.
p ⊆1 q

“2-containment” For every tree, and every context node N,
p ⊆2 q all nodes selected by p starting from N,

are also selected by q starting from N.

1. Inclusion on Booleans
2. Inclusion on Node Sets
3. Inclusion on Node Relations

(If only child and descendant axes are allowed
then ⊆1 and ⊆2 are the same! -- Why?)

start from root

46

3. XPath Containment Test

Given two XPath expressions p, q

“0-containment” For every tree, if p selects a node then so does q.
p ⊆0 q

“1-containment” For every tree, all nodes selected by p are also selected by q.
p ⊆1 q

Question

Given p, q and the fact p ⊆1 q,
how can you determine from a result set of nodes for q,

the correct result set of nodes for p?

47

3. XPath Containment Test

Given two XPath expressions p, q

Sometimes we want to test containment wrt a given DTD:

p = /a/b//d
q = /a//c

Want to check if p ⊆0 q.

NO! a

b

d

But, what if documents are valid wrt to this DTD?

root Æ a*
a Æ b* | c*
b Æ d+c+
c Æ b?c?

Boolean!

48

2. XPath
Containment Test

from:

T. Schwentick
XPath query containment.
SIGMOD Record 33(1): 101-109 (2004)

9

49

Pattern trees

E.g. p = a[.//d]/*//c

a

d *

c

selection node (unique)Note: child order has no meaning in
pattern trees!

Test ⊆1 (node set inclusion) using ⊆0 (Boolean inclusion)

Æ Simply add a new node below the selection node

New tree is Boolean (no selection node)

In a given XML tree:
pattern matches / does not match.

a

d *

c

x

50

3. XPath Containment Test

4 techniques of testing XPath (Boolean) containment:

(1) The Canonical Model Technique

(2) The Homomorphism Technique

(3) The Automaton Technique

(4) The Chase Technique

51

3. XPath Containment Test
Canonical Model - XPath(/,//,[],*)

Idea: if there exists a tree that matches p but not q, then
such a tree exists of size polynomial in the size of p an q.

Simple: remember, if you know that the XML document is only of height 5,
then //a/b/*/c could be enumerated by /a/b/*/c | /*/a/b/*/c | /*/*/a/b/*/c | /*/*/*/a…

Similarly, we try to construct a counter example tree, by
replacing in p

Æ every * by some new symbol “z”
Æ every // by z/, z/z/, z/z/z/, … z/z/../z/

N = length of
longest */../* chain
in q

N+1 many z’s

52

3. XPath Containment Test
Canonical Model - XPath(/,//,[],*)

b

d *

c
p’s patter tree

a

d *

c

a

q’s patter tree

Example

Test for
q-match:

b

a

z

d

z

c

z
b

a

d

z

c

z
b

a

d z

c

Formally, must test
1 and 2 more z’s
at right branch of
each of the trees.

53

3. XPath Containment Test
Homomorphism h maps each node of q’s query tree Q

to a node of p’s query tree P such that

(1) root of Q is mapped to root of P
(2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
(3) if (u,v) is descendant-edge of Q, then

h(v) is a “below” h(u) in P
(4) if u is labeled by “e” (not *), then h(u) is also labeled by “e”.

p,q expressions in XPath(/,//,[])

Theorem
p ⊆0 q if and only if there is a homomorphism from Q to P.

54

3. XPath Containment Test
Homomorphism h

b

d *

c
p’s patter tree

a

d *

c

a

q’s patter tree

(1) root of Q is mapped to root of P
(2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
(3) if (u,v) is descendant-edge of Q, then

h(v) is a “below” h(u) in P
(4) if u is labeled by “e” (not *), then h(u) is also labeled by “e”.

h

maps each node of q’s query tree Q
to a node of p’s query tree P such that

10

55

3. XPath Containment Test
Homomorphism h

b

d *

c
p’s patter tree

a

d *

c

a

q’s patter tree

(1) root of Q is mapped to root of P
(2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
(3) if (u,v) is descendant-edge of Q, then

h(v) is a “below” h(u) in P
(4) if u is labeled by “e” (not *), then h(u) is also labeled by “e”.

h

h

maps each node of q’s query tree Q
to a node of p’s query tree P such that

56

3. XPath Containment Test
Homomorphism h

b

d *

c
p’s patter tree

a

d *

c

a

q’s patter tree

(1) root of Q is mapped to root of P
(2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
(3) if (u,v) is descendant-edge of Q, then

h(v) is a “below” h(u) in P
(4) if u is labeled by “e” (not *), then h(u) is also labeled by “e”.

h

h

h

maps each node of q’s query tree Q
to a node of p’s query tree P such that

57

3. XPath Containment Test
Homomorphism h

b

d *

c
p’s patter tree

a

d *

c

a

q’s patter tree

(1) root of Q is mapped to root of P
(2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
(3) if (u,v) is descendant-edge of Q, then

h(v) is a “below” h(u) in P
(4) if u is labeled by “e” (not *), then h(u) is also labeled by “e”.

h

h

h

h

Î hom. h exists from Q to P, thus p ⊆0 q must hold!

maps each node of q’s query tree Q
to a node of p’s query tree P such that

58

3. XPath Containment Test
Homomorphism h

(1) root of Q is mapped to root of P
(2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
(3) if (u,v) is descendant-edge of Q, then

h(v) is a “below” h(u) in P
(4) if u is labeled by “e” (not *), then h(u) is also labeled by “e”.

Cave If we add the star (*) then homomorphism need not exist!

Æ there are p,q ∈ XPath(/,//,[],*) such that p ⊆0 q and
there is no homomorphism from Q to P /

maps each node of q’s query tree Q
to a node of p’s query tree P such that

p,q expressions in XPath(/,//,[])

Theorem
p ⊆0 q if and only if there is a homomorphism from Q to P.

59

3. XPath Containment Test

b

b *

c

a

cb

c

b

b *

c

a

c

IS there a homomorphism??

Cave If we add the star (*) then homomorphism need not exist!

Æ there are p,q ∈ XPath(/,//,[],*) such that p ⊆0 q and
there is no homomorphism from Q to P /

h
[/a//b[./b[./b/d]//c]/*/c] [/a//b[./b/d]/*//c]

60

Cave If we add the star (*) then homomorphism need not exist!

Æ there are p,q ∈ XPath(/,//,[],*) such that p ⊆0 q and
there is no homomorphism from Q to P /

p = /a[.//b[c/*//d]/b[c//d]/b[c/d]]
q = /a[.//b[c/*//d]/b[c/d]]

b

a

c

*

d

b

c

d

b

c

d

b

a

c

*

d

b

c

d

Where to map??

11

61

Cave If we add the star (*) then homomorphism need not exist!

Æ there are p,q ∈ XPath(/,//,[],*) such that p ⊆0 q and
there is no homomorphism from Q to P /

p = /a[.//b[c/*//d]/b[c//d]/b[c/d]]
q = /a[.//b[c/*//d]/b[c/d]]

b

a

c

*

d

b

c

d

b

c

d

b

a

c

*

d

b

c

d

Where to map??

Is p contained in q??
Æ Test this, using the
canonical model!!

62

Let’s check the web… Î YES p contained in q!

63

3. XPath Containment Test
Automaton Technique

Recall: for any DTD there is a tree automaton which
recognized the corresponding trees.

Similarly, for any XPath(/,//,[],*,|) expression ex we can
construct a (non-deterministic bottom-up) tree automaton A
which accepts a tree if and only if ex matches the tree.

Theorem
Containment test of XPath(/,//,[],*,|) in the presence of DTDs
can be solved in EXPTIME.

Exponential (deterministic) time
Blow-up due to non-determinism of tree automaton.

BUT: no hope for improvement:
The problem is actually complete for EXPTIME.

64

3. XPath Containment Test
Automaton Technique

Recall: for any DTD there is a tree automaton which
recognized the corresponding trees.

Similarly, for any XPath(/,//,[],*,|) expression ex we can
construct a (non-deterministic bottom-up) tree automaton A
which accepts a tree if and only if ex matches the tree.

Theorem
Containment test of XPath(/,//,[],*,|) in the presence of DTDs
can be solved in EXPTIME.

Intersection of automata
(“product construction”)

Union of automata

Proof Idea construct automaton for all possible
counter example trees. Test if this automaton accepts any tree.

65

3. XPath Containment Test
Automaton Technique

Recall: for any DTD there is a tree automaton which
recognized the corresponding trees.

Similarly, for any XPath(/,//,[],*,|) expression ex we can
construct a (non-deterministic bottom-up) tree automaton A
which accepts a tree if and only if ex matches the tree.

Theorem
Containment test of XPath(/,//,[],*,|) in the presence of DTDs
can be solved in EXPTIME.

Proof Idea construct automaton for all possible
counter example trees. Test if this automaton accepts any tree.

Emptiness test
for automata

ÎAutomata can also be
Tested for Finiteness!

Is p ⊆0 q, for all trees but
finitely many exceptions?

solvable!

66

3. XPath Containment Test
Chase Technique -- 1979 relational DB’s to check query containment

in the presence of integrity constraints.

root Æ a*
a Æ b* | c*
b Æ d+c+
c Æ b?c?

Example

p = /a/b//d
q = /a//c

DTD E =

Is p contained in q for E-conform documents?

(“the chase”
extends the relational
homomorphsim
technique)

First Possibility: use tree automata

Æ Construct automata Ap, Aq, AE
Æ Construct Bq for the complement of Aq (=not q)
Æ Intersect Bq with Ap with AE (gives automaton A)
Æ Check if A accepts any tree.

12

67

3. XPath Containment Test
Chase Technique -- 1979 relational DB’s to check query containment

in the presence of integrity constraints.

root Æ a*
a Æ b* | c*
b Æ d+c+
c Æ b?c?

Example

p = /a/b//d
q = /a//c

DTD E =

Is p contained in q for E-conform documents?

(“the chase”
extends the relational
homomorphsim
technique)

Each b-element has a d-child and a c-child
Î constraints

c1: bÆd
c2: bÆc

a

b

d

p’s pattern tree

68

3. XPath Containment Test
Chase Technique -- 1979 relational DB’s to check query containment

in the presence of integrity constraints.

root Æ a*
a Æ b* | c*
b Æ d+c+
c Æ b?c?

Example

p = /a/b//d
q = /a//c

DTD E =

Is p contained in q for E-conform documents?

(“the chase”
extends the relational
homomorphsim
technique)

Each b-element has a d-child and a c-child
Î constraints

c1: bÆd
c2: bÆc

a

b

d

p’s pattern tree
after chasing with c1,c2

d c

69

3. XPath Containment Test
Chase Technique -- 1979 relational DB’s to check query containment

in the presence of integrity constraints.

root Æ a*
a Æ b* | c*
b Æ d+c+
c Æ b?c?

Example

p = /a/b//d
q = /a//c

DTD E =

Is p contained in q for E-conform documents?

(“the chase”
extends the relational
homomorphsim
technique)

Each b-element has a d-child and a c-child
Î constraints

c1: bÆd
c2: bÆc

a

b

d

p’s pattern tree
after chasing with c1,c2

d c

a

c

h

h
q’s
pattern tree

Í

p is contained in q
in the presence
of the DTD E

70

END
Lecture 9

