

Outline

- 1. XPath Equivalence
- 2. No Looking Back: How to Remove Backward Axes
- 3. Containment Test for XPath Expressions

A Note on Equality Test in XPath

1. XPath Equivalence EBNF for XPaths that we want to consider now: path ::= path | path | / path | path | path | path | qualif] | axis :: nodetest | ⊥ , qualif ::= qualif and qualif | qualif or qualif | (qualif) | axis :: nodetest | ⊥ , qualif ::= qualif and qualif | qualif or qualif | (qualif) | path = path | path = path | path . axis ::= reverse_axis | forward_axis . reverse_axis ::= parent | ancestor | ancestor-or-self | forward_axis ::= self | child | descendant | descendant-or-self | following | following-stbling . nodetest ::= tagname | * | text() | node() . An XPath starting with "/" (root node) is called absolute, otherwise it is called relative.

E.g. /descendant::price/preceding::name is rewritten via Rule #2a into: /descendant::name[following::price==/descendant::price] Similar rules for absolute paths: /p/fAx::n/ax::m → /descendant::m[dual(ax)::n == /p/fAx::n] /fAx::n/ax::m → /descendant::m[dual(ax)::n == /fAx::n] Rewrite rules #2 and #2a

2. No Looking Back

Interaction of back=parent with forward axes:	
$descendant::n/parent::m \equiv descendant-or-self::m[child::n]$	(3)
$child::n/parent::m \equiv self::m[child::n]$	(4)
p /self:: n /parent:: $m \equiv p$ [self:: n]/parent:: m	(5)
	25

2. No Looking Back

Interaction of **back=parent** with forward axes:

descendant:: n /parent:: $m \equiv descendant-or-self::m[child::n]$	(3)
$child::n/parent::m \equiv self::m[child::n]$	(4)
$p/self::n/parent::m \equiv p[self::n]/parent::m$	(5)
p /following-sibling:: n /parent:: $m \equiv p$ [following-sibling:: n]/parent:: m	(6)
p /following:: n /parent:: $m \equiv p$ /following:: m [child:: n]	(7)
<pre>//ancestor-or-self::*[following-sibling::n</pre>	1
/parent::m	

2. No Looking Back	
Interaction of back=parent with forward axes:	
$descendant:: m/parent:: m \equiv descendant-or-self:: m[child::n]$	(3)
$child::n/parent::m \equiv self::m[child::n]$	(4)
p /self:: n /parent:: $m \equiv p$ [self:: n]/parent:: m	(5)
p /following-sibling:: n /parent:: $m \equiv p$ [following-sibling:: n]/parent:: m	(6)
p /following:: n /parent:: $m \equiv p$ /following:: m [child:: n]	(7)
<pre>/ p/ancestor-or-self::*[following-sibling</pre>	g::n]
/parent::m	
$descendant::n [parent::m] \equiv descendant-or-self::m/child::n$	(8)
$child::n[parent::m] \equiv self::m/child::n$	(9)
$p/self::n[parent::m] \equiv p[parent::m]/self::n$	(10)
p /following-sibling:: n [parent:: m] $\equiv p$ [parent:: m]/following-sibling:: n	(11)
p /following:: n [parent:: m] $\equiv p$ /following:: m /child:: n	(12)
<pre>p/ancestor-or-self::*[parent::m]</pre>	
/following-sibling::n	

٦

28

2. No Looking Back	
Interaction of back=ancestor with forward axes:	
p /descendant:: n /ancestor:: $m \equiv p$ [descendant:: n]/ancestor:: m p /descendant-or-self:: m [descendant:: n]	(13)
$/\texttt{descendant}::n/\texttt{ancestor}::m \equiv /\texttt{descendant-or-self}::m[\texttt{descendant}::n]$	(13a)
	20

2. No Looking Back

Interaction of back=ancestor with forward axes:

$p/descendant::n/ancestor::m \equiv p[descendant::n]/ancestor::m$	(13)
<pre>//descendant-or-self::m[descendant::n]</pre>	
$/descendant:: n/ancestor:: m \equiv /descendant-or-self:: m[descendant:: n]$	(13a)
p /child:: n /ancestor:: $m \equiv p$ [child:: n]/ancestor-or-self:: m	(14)

2. No Looking Back

Interaction of back=ancestor with forward axes:

	$p/\texttt{descendant}::n/\texttt{ancestor}::m \equiv p[\texttt{descendant}::n]/\texttt{ancestor}::m$	(13)
	<pre> p/descendant-or-self::m[descendant::n]</pre>	
	$descendant::n/ancestor::m \equiv descendant-or-self::m[descendant::n]$	(13a)
	p /child:: n /ancestor:: $m \equiv p$ [child:: n]/ancestor-or-self:: m	(14)
	$p/self::n/ancestor::m \equiv p[self::n]/ancestor::m$	(15)
/follo	wing-sibling:: n /ancestor:: $m \equiv p$ [following-sibling:: n]/ancestor:: m	(16)

<pre> p/descendant-or-self::m[descendant::n] /descendant::n/ancestor::m = /descendant-or-self::m[descendant::n] p/child::n/ancestor::m = p[child::n]/ancestor-or-self::m</pre>	(13a)
/descendant:: n /ancestor:: $m \equiv$ /descendant-or-self:: m [descendant:: n] p /child:: n /ancestor:: $m \equiv p$ [child:: n]/ancestor-or-self:: m	(13a)
p /child:: n /ancestor:: $m \equiv p$ [child:: n]/ancestor-or-self:: m	
	(14)
p /self:: n /ancestor:: $m \equiv p$ [self:: n]/ancestor:: m	(15)
/following-sibling:: n /ancestor:: $m \equiv p$ [following-sibling:: n]/ancestor:: m	(16)
p /following:: n /ancestor:: $m \equiv p$ /following:: m [descendant:: n]	(17)
p/ancestor-or-self::*	
[following-sibling::*/descendant-or-self:	:n]
/ancestor::m	

2. No Looking Back

2. No Looking Back

Interaction of back=precedi ng with forward axes:	
$p/\texttt{descendant}::n/\texttt{preceding}::m \equiv p[\texttt{descendant}::n]/\texttt{preceding}::m$	(33)
p/child::*	
[following-sibling::*/descendant-or-self	::n]
/descendant-or-self::m	
$/descendant:: n/preceding:: m \equiv /descendant:: m[following:: n]$	(33a)
p /child:: n /preceding:: $m \equiv p$ [child:: n]/preceding:: m	(34)
<pre>/ p/child::*[following-sibling::n]</pre>	
/descendant-or-self::m	
p /self:: n /preceding:: $m \equiv p$ [self:: n]/preceding:: m	(35)
p /following-sibling:: n /preceding:: $m \equiv p$ [following-sibling:: n]/preceding:: m	(36)
<pre>/ p/following-sibling::*[following-sibling</pre>	::n]
/descendant-or-self::m	
<pre>/ p[following-sibling::n]/descendant-or-se</pre>	lf::m
p /following:: n /preceding:: $m \equiv p$ [following:: n]/preceding:: m	(37)
<pre>p/following::m[following::n]</pre>	
<pre>p[following::n]/descendant-or-self::m</pre>	
	35

Theorem

(from D. Olteanu, H. Meuss, T. Furche, F. Bry XPath: Looking Forward. EDBT Workshops 2002: 109-127)

Given an XPath expression p that has no joins of the form (p1 == p2) with both p1,p2 relative, an equivalent expression u without reverse axes can be computed.

Time needed: at most **exponential** in length of p *Length* of u: at most **exponential** in length of p

(moreover: no joins are introduced when computing u)

Questions

 \rightarrow Can you find a subclass for which *Time* to compute u is linear or polynomial?

 \rightarrow What is the problem with joins (p1 == p2) for removal of reverse axes?

3. XPath Containment Test Given two XPath expressions p, q: Are all nodes selected by p, also selected by q? (on *any* document) (p "contained in" q) Has many applications! Boolean query Want to select documents that "match p". \rightarrow If a document matches p, and p contained in q, then we know the document also matches q! \rightarrow If a document does not match q, and p contained in q, then we know that document does not match p! Applications

Decrease online-time of publish/subscribe systems based on XPath
 Decrease query-time by making use of materialized intermediate results
 Optimization by ruling out queries with empty result set

- etc, etc

3. XPath Containment Test Given two XPath expressions p, q "0-containment" For every tree, if p selects a node then so does q. p <u>⊆</u>₀ q "1-containment" For every tree, all nodes selected by **p** are also selected by **q**. p⊆₁q "2-containment" For every tree, and every context node N, all nodes selected by p starting from N, are also selected by q starting from N. p ⊆₂ q 1. Inclusion on Booleans } start from root 2 Inclusion on Node Sets 3. Inclusion on Node Relations (If only child and descendant axes are allowed then $\underline{\subseteq}_1$ and $\underline{\subseteq}_2$ are the same! $\ \ - \ \ Why?$)

CONP PSPACE EXPTIME Undecidable	$\begin{split} & \operatorname{NP}(/, l^+) & [21] \\ & \operatorname{NP}(/, l^+) & [see [19]) \\ & \operatorname{NP}(/, l^+) & [see [19]) \\ & \operatorname{NP}(/, l^+) & [DTb & [22] \\ & \operatorname{NP}(/, l^+) & DTb & [22] \\ & \operatorname{NP}(/, l^+) & [+, l^+) & [NP(/, l^+), NP(/, l^+)] & [22] \\ & \operatorname{NP}(/, l^+) & [+, l^+) & [NP(/, l^+), NP(/, l^+)] & [22] \\ & \operatorname{NP}(/, l^+) & [+, l^+) & [NP(/, l^+)] & [+] & [+] & [+] & [NP(/, l^+)] & [+] & $	2. XPath Containment Test from: T. Schwentick XPath query containment. SIGMOD Record 33(1): 101-109 (2004)	
Undecidable	$XP(i, /i, [], [) + existential variables +unbounded SXICs [9]XP(i, /i, [], [) + existential variables +bounded SXICs + DTDs [9]XP(i, /i, [], *_1) + nodeset equality +simple DTDs [22]XP(i, /i, [], *_1) + existential variablesadd. [accurated]$		48
	with mechanicales		

