XML and Databases

Lecture 9
Properties of XPath

Sebastian Maneth NICTA and UNSW

CSE@UNSW -- Semester 1, 2009

Outline

- 1. XPath Equivalence
- 2. No Looking Back: How to Remove Backward Axes
- 3. Containment Test for XPath Expressions

A Note on Equality Test in XPath

Useful Functions (on Node Sets)

```
Careful with equality ("=")
                                                  XPath 2.0 has clearer
                                                 comparison operators!
<a>>
 <b>
  <d>red</d>
  <d>green</d>
  <d>blue</d>
 </b>
                                    XPath 1.0
 <C>
                                    Equality ("=") is based on
  <d>yellow</d>
                                    string value of a node!
  <d>orange</d>
  <d>green</d>
 </c>
</a>
                 //a[b/d = c/d] selects a-node!!!
```

there is a node in the node set for b/d with same string value as a node in node set c/d

A Note on Equality Test

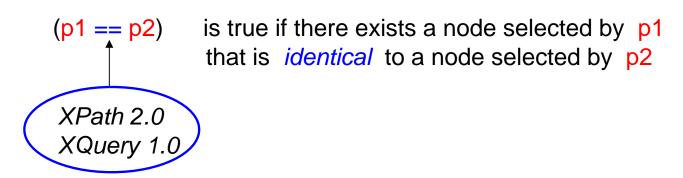
```
p1, p2 XPath (1.0) Expressions
```

```
(p1 == p2) is true if there exists a node selected by p1 that is identical to a node selected by p2

XPath 2.0
XQuery 1.0
```

A Note on Equality Test

```
p1, p2 XPath (1.0) Expressions
```


```
(p1 == p2) is true if there exists a node selected by p1 that is identical to a node selected by p2

XPath 2.0
XQuery 1.0
```

```
<a>>
 <b>
 <d>red</d>
                             false
                                    (on any document)
  <d>green</d>
  <d>blue</d>
                    //a[b/d == c/d] selects what?
 </b>
 <C>
 <d>yellow</d>
  <d>orange</d>
                    //*[chi | d:: node()[1]
  <d>green</d>
                     == child::node()[position=last()]]
 </c>
</a>
```

A Note on Equality Test

p1, p2 XPath (1.0) Expressions

XPath 1.0 simulation of (node) equality test (==)

Instead of
$$(p1 == p2)$$
 write:
$$(count(p1 \mid p2) < count(p1) + count(p2))$$

```
p1, p2 XPath (1.0) Expressions
(p1 ≡ p2) p1 "is equivalent to" p2 is true if, for any document D, and any context node N of D,
p1 evaluated on D with context N gives the same result as p2 evaluated on D with context N.
```

Examples

```
/a//*/b \equiv /a/*//b \equiv //a/b/c/../.. \equiv //a[.b/c/] \neq //a[b | c] \equiv //a/*[sel f::b | sel f::c]/..

NOT equivalent: chi | d::*/parent::* \neq sel f::*

\Rightarrow show a counter example!
```

EBNF for XPaths that we want to consider now:

An XPath starting with "/" (root node) is called *absolute*, otherwise it is called *relative*.

```
p1, p2 XPaths
p arbitrary XPath
q arbitrary qualifier
Rel\rightarrowAbs If p1 \equiv p2, then /p1 \equiv /p2.
Adjunct If p1 \equiv p2 and p is a relative, then p1/p \equiv p2/p.
            If p1 \equiv p2 and p1,p2 relative, then p/p1 \equiv p/p2.
            If p1 \equiv p2, then p1[q] \equiv p2[q] and p[p1] \equiv p[p2].
Qualifier Flattening p[p1/p2] \equiv p[p1[p2]]
ancestor-or-self::n = ancestor::n | self::n
descendant-or-self::n = descendant::n | self::n
p[p1 = /p2] \equiv p[p1[self::node() = /p2]]
p[p1 == /p2] \equiv p[p1[self::node() == /p2]]
```

Lemma 3.2. Let m and n be node tests, i.e. m and n are tag names or one of the xPath constructs *, node(), or text().

• Let a be one of the axes parent, ancestor, preceding, preceding-sibling, self, following, or following-sibling. Then the following holds:

$$/a::n \equiv \begin{cases} / & if \ a = self \ and \ n = node() \\ \bot & otherwise \end{cases}$$

• Let a be the preceding or ancestor axis. Then the following equivalences hold:

$$\label{eq:child:matrix} \begin{split} / \text{child::} & m/a : : n \equiv \begin{cases} / \text{self::} \text{node()} \left[\text{child::} m \right] & \textit{if } a = \text{ancestor } \textit{and } n = \text{node()} \\ \bot & \textit{otherwise} \\ \end{cases} \\ / \text{child::} & m \left[a : : n \right] \equiv \begin{cases} / \text{child::} m & \textit{if } a = \text{ancestor } \textit{and } n = \text{node()} \\ \bot & \textit{otherwise} \end{cases} \end{split}$$

Dual

backward

forward

parent ancestor ancestor-or-sel f precedi ng precedi ng-si bl i ng child
descendant
descendant-or-self
following
following-sibling

```
Thus: dual(parent) = child
```

dual(following) = preceding

etc.

Rewrite rule #1 (p,s: relative paths, ax: reverse axis)

```
p[ax::m/s] →
p[/descendant::m[s]/dual(ax)::node() == sel f::node()]
```

E.g. ax = ancestor

"any m-node from which the context node can be reached via descendant, must be an ancestor of the context node."

E.g. ax = preceding-sibling

```
p[precedi ng-si bl i ng: : m] →
p[/descendant: : m/followi ng-si bl i ng: : node() == sel f: : node()]
```

"any m-node from which the context node can be reached via following-sibling, must be a preceding-sibling of the context node."

E.g. ax=preceding-sibling

```
p[precedi ng-si bl i ng: : m] →
p[/descendant: : m/fol l owi ng-si bl i ng: : node() == sel f: : node()]
```

"any m-node from which the context node can be reached via following-sibling, must be a preceding-sibling of the context node."

Similar for parent and preceding. (ancestor-or-self not really needed. Why?)

Rewrite rule #1 (p,s: relative paths, ax: reverse axis) p[ax::m/s] p[/descendant::m[s]/dual(ax)::node() == sel f::node()] navigation in left-hand side of equivalence navigation in right-hand side of equivalence root node context node selected nodes node (a_m

```
p[ax::m/s] →
p[/descendant::m[s]/dual(ax)::node() == sel f::node()]
```

Removes first reverse axis inside a filter (qualifier).

Use *qualifier flattening* to replace *any* reverse axis from inside a filter.

Qualifier Flattening
$$p[p1/p2] \equiv p[p1[p2]]$$

Similar rules for absolute paths:

```
E.g.
```

```
/descendant::pri ce/precedi ng::name
```

is rewritten via Rule #2a into:

```
/descendant::name[following::price==/descendant::price]
```

Similar rules for absolute paths:

```
/p/fAx::n/ax::m \rightarrow /descendant::m[dual(ax)::n == /p/fAx::n]
```

```
/fAx::n/ax::m → /descendant::m[dual(ax)::n == /fAx::n]
```

```
E.g.
```

```
/descendant::pri ce/precedi ng::name
```

is rewritten via Rule #2a into:

```
/descendant::name[following::price==/descendant::price]
```

Of course, the "join" can be removed in this example:

/descendant::name[following::price]

Not needed, in this example.

Similar rules for absolute paths:

```
/p/fAx::n/ax::m \rightarrow /descendant::m[dual(ax)::n == /p/fAx::n]
```

E.g.

```
/descendant: : j ournal [child: : title]/descendant: : price/preceding: : name
```

becomes

Can you avoide the join, also for this example??

Similar rules for absolute paths:

```
/p/fAx::n/ax::m → /descendant::m[dual(ax)::n == /p/fAx::n]
/fAx::n/ax::m → /descendant::m[dual(ax)::n == /fAx::n]
```

```
path ::= path | path | / path | path | path | path [ qualif ] | axis :: nodetest | \perp .

qualif ::= qualif and qualif | qualif or qualif | ( qualif ) |

path = path | path == path | path .

axis ::= reverse_axis | forward_axis .

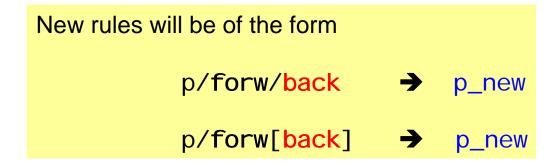
reverse_axis ::= parent | ancestor | ancestor-or-self |

preceding | preceding-sibling .


forward_axis ::= self | child | descendant | descendant-or-self |

following | following-sibling .

nodetest ::= tagname | * | text() | node() .
```


Rules (1),(2),(2a) suffice to remove ALL backward axes from above queries! Why?

- → Size Increase?
- → How many joins?

Joins (==) are expensive! (typically quadratic wrt data)

To obtain queries with fewer joins consider the **forward-axis** left of the **reverse-axis** to be removed!


```
descendant:: n/parent:: m \equiv descendant-or-self:: m[child:: n]  (3)
```

```
descendant:: n/parent:: m \equiv descendant-or-self:: m[child:: n] 
child:: n/parent:: m \equiv self:: m[child:: n] 
(3)
```

```
\begin{aligned} \operatorname{descendant} &: n/\operatorname{parent} :: m \equiv \operatorname{descendant-or-self} :: m[\operatorname{child} :: n] \\ & \operatorname{child} :: n/\operatorname{parent} :: m \equiv \operatorname{self} :: m[\operatorname{child} :: n] \end{aligned} \tag{3} \\ & p/\operatorname{self} :: n/\operatorname{parent} :: m \equiv p[\operatorname{self} :: n]/\operatorname{parent} :: m \end{aligned} \tag{5}
```

```
\begin{aligned} \operatorname{descendant}: n/\operatorname{parent}:: m &\equiv \operatorname{descendant-or-self}:: m[\operatorname{child}:: n] \\ \operatorname{child}:: n/\operatorname{parent}:: m &\equiv \operatorname{self}:: m[\operatorname{child}:: n] \end{aligned} \tag{3} \\ p/\operatorname{self}:: n/\operatorname{parent}:: m &\equiv p[\operatorname{self}:: n]/\operatorname{parent}:: m \\ p/\operatorname{following-sibling}:: n/\operatorname{parent}:: m &\equiv p[\operatorname{following-sibling}:: n]/\operatorname{parent}:: m \end{aligned} \tag{5}
```

```
descendant:: n/parent:: m \equiv descendant-or-self:: m[child:: n] \qquad (3)
child:: n/parent:: m \equiv self:: m[child:: n] \qquad (4)
p/self:: n/parent:: m \equiv p[self:: n]/parent:: m \qquad (5)
p/following-sibling:: n/parent:: m \equiv p[following-sibling:: n]/parent:: m \qquad (6)
p/following:: n/parent:: m \equiv p/following:: m[child:: n] \qquad (7)
|p/ancestor-or-self:: *[following-sibling:: n]/parent:: m
```

```
(3)
           descendant::n/parent::m \equiv descendant-or-self::m[child::n]
                 child::n/parent::m \equiv self::m[child::n]
                                                                                              (4)
               p/self::n/parent::m \equiv p[self::n]/parent::m
                                                                                              (5)
p/following-sibling::n/parent::m \equiv p[following-sibling::n]/parent::m
                                                                                              (6)
          p/\text{following}::n/\text{parent}::m \equiv p/\text{following}::m[\text{child}::n]
                                                                                              (7)
                                        \mid p \mid p \mid p = 1 
                                          /parent::m
          descendant::n [parent::m] \equiv descendant-or-self::m/child::n
                                                                                             (8)
                child: n[parent::m] \equiv self::m/child::n
                                                                                              (9)
               p/self::n[parent::m] \equiv p[parent::m]/self::n
                                                                                            (10)
p/\text{following-sibling:}:n[\text{parent:}:m] \equiv p[\text{parent:}:m]/\text{following-sibling:}:n
                                                                                            (11)
         p/\text{following}: n[\text{parent}::m] \equiv p/\text{following}::m/\text{child}::n
                                                                                            (12)
                                        | p/ancestor-or-self::*[parent::m]
                                          /following-sibling::n
```

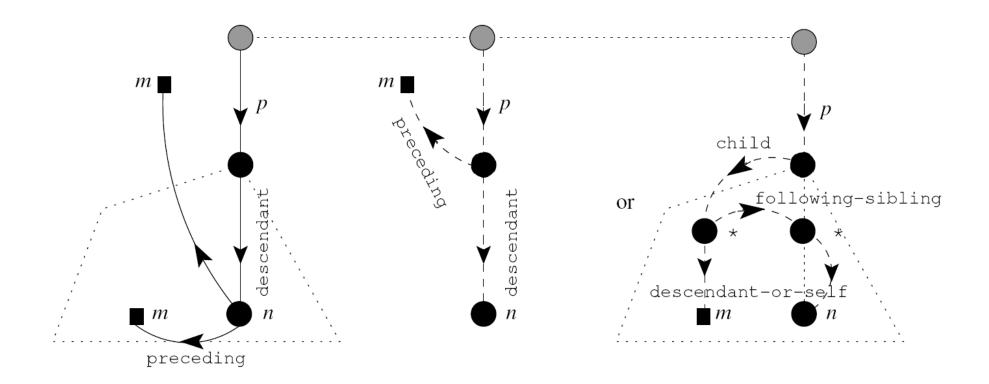
```
p/\text{descendant}::n/\text{ancestor}::m \equiv p[\text{descendant}::n]/\text{ancestor}::m (13)
| p/\text{descendant-or-self}::m[\text{descendant}::n]
```

```
p/{\tt descendant::n/ancestor::m} \equiv p[{\tt descendant::n}]/{\tt ancestor::m} \qquad (13) \mid p/{\tt descendant-or-self::m}[{\tt descendant::n}] /{\tt descendant::n/ancestor::m} \equiv /{\tt descendant-or-self::m}[{\tt descendant::n}] \qquad (13a)
```

```
p/{\tt descendant::n/ancestor::m} \equiv p[{\tt descendant::n}]/{\tt ancestor::m} \qquad (13) | p/{\tt descendant-or-self::m}[{\tt descendant::n}] /{\tt descendant::n/ancestor::m} \equiv /{\tt descendant-or-self::m}[{\tt descendant::n}] \qquad (13a) p/{\tt child::n/ancestor::m} \equiv p[{\tt child::n}]/{\tt ancestor-or-self::m} \qquad (14)
```

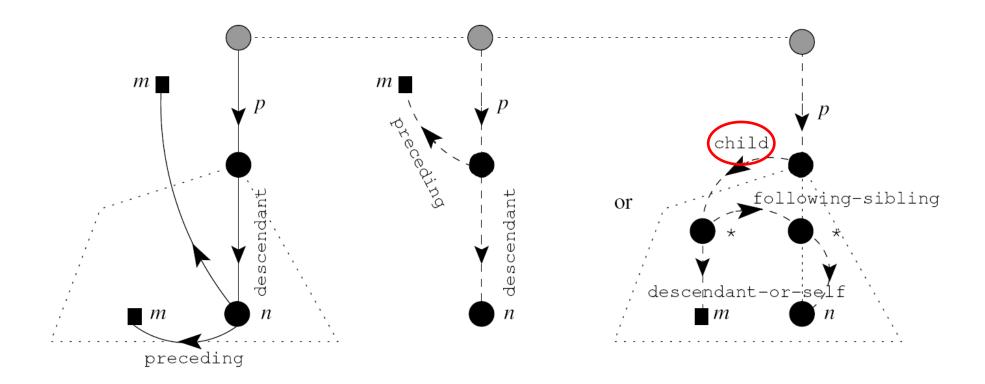
```
p/{\text{descendant}::n/\text{ancestor}::m} \equiv p[{\text{descendant}::n}]/{\text{ancestor}::m} \qquad (13)
|p/{\text{descendant-or-self}::m}[{\text{descendant}::n}]
/{\text{descendant}::n/\text{ancestor}::m} \equiv /{\text{descendant-or-self}::m}[{\text{descendant}::n}] \qquad (13a)
p/{\text{child}::n/\text{ancestor}::m} \equiv p[{\text{child}::n}]/{\text{ancestor-or-self}::m} \qquad (14)
p/{\text{self}::n/\text{ancestor}::m} \equiv p[{\text{self}::n}]/{\text{ancestor}::m} \qquad (15)
```

```
p/{\tt descendant}::n/{\tt ancestor}::m \equiv p[{\tt descendant}::n]/{\tt ancestor}::m \qquad (13)
|p/{\tt descendant}-{\tt or-self}::m[{\tt descendant}::n]
/{\tt descendant}::n/{\tt ancestor}::m \equiv /{\tt descendant}-{\tt or-self}::m[{\tt descendant}::n] \qquad (13a)
p/{\tt child}::n/{\tt ancestor}::m \equiv p[{\tt child}::n]/{\tt ancestor}-{\tt or-self}::m \qquad (14)
p/{\tt self}::n/{\tt ancestor}::m \equiv p[{\tt self}::n]/{\tt ancestor}::m \qquad (15)
p/{\tt following-sibling}::n/{\tt ancestor}::m \equiv p[{\tt following-sibling}::n]/{\tt ancestor}::m \qquad (16)
```


Interaction of back=ancestor with forward axes:

```
(13)
        p/\text{descendant}::n/\text{ancestor}::m \equiv p[\text{descendant}::n]/\text{ancestor}::m
                                           | p/\text{descendant-or-self} :: m[\text{descendant} :: n]
          /descendant::n/ancestor::m \equiv /descendant-or-self::m[descendant::n]
                                                                                                (13a)
              p/child::n/ancestor::m \equiv p[child::n]/ancestor-or-self::m
                                                                                                 (14)
               p/self::n/ancestor::m \equiv p[self::n]/ancestor::m
                                                                                                 (15)
p/following-sibling::n/ancestor::m \equiv p[following-sibling::n]/ancestor::m
                                                                                                 (16)
         p/\text{following}::n/\text{ancestor}::m \equiv p/\text{following}::m [\texttt{descendant}::n]
                                                                                                 (17)
                                           | p/ancestor-or-self::*
                                             [following-sibling::*/descendant-or-self::n]
                                             /ancestor::m
```

Similar rules for ancestor in a filters.


```
p/\text{descendant}::n/\text{preceding}::m \equiv p[\text{descendant}::n]/\text{preceding}::m
                                                                                                  (33)
                                            | p/child::*
                                              [following-sibling::*/descendant-or-self::n]
                                              /descendant-or-self::m
          /descendant::n/preceding::m \equiv /descendant::m[following::n]
                                                                                                (33a)
                                                                                                  (34)
               p/\text{child}::n/\text{preceding}::m \equiv p[\text{child}::n]/\text{preceding}::m
                                            | p/child::*[following-sibling::n]
                                              /descendant-or-self::m
               p/\text{self}::n/\text{preceding}::m \equiv p[\text{self}::n]/\text{preceding}::m
                                                                                                  (35)
p/following-sibling::n/preceding::m \equiv p[following-sibling::n]/preceding::m
                                                                                                  (36)
                                            p/following-sibling::*[following-sibling::n]
                                              /descendant-or-self::m
                                            p[following-sibling::n]/descendant-or-self::m
         p/\text{following}::n/\text{preceding}::m \equiv p[\text{following}::n]/\text{preceding}::m
                                                                                                  (37)
                                            | p/following::m[following::n]
                                            |p[following::n]/descendant-or-self::m
```

Rule 33


```
p/{\tt descendant::} n/{\tt preceding::} m \equiv p[{\tt descendant::} n]/{\tt preceding::} m \\ | p/{\tt child::*[following-sibling::*/descendant-or-self::} n]/{\tt descendant-or-self::} m
```

Rule 33


```
p/{\tt descendant::n/preceding::m} \equiv p [{\tt descendant::n}]/{\tt preceding::m} \\ | p/{\tt child}:*[{\tt following-sibling::*/descendant-or-self::n}]/{\tt descendant-or-self::m} \\ | Wrong, I think! \\ | Should be | {\tt descendant instead!} |
```

2. No Looking Back

```
/descendant::pri ce/precedi ng::name
is rewritten via Rule #2a into:
/descendant: : name[following: : pri ce==/descendant: : pri ce]
Now, let us use Rule (33a)
/descendant::n/preceding::m → /descendant::m[following::n]
 We obtain
```

/descendant: : name[following: : pri ce]

```
<mark>/descendant: : j ournal [child: : title]</mark>/descendant: : price/<mark>preceding</mark>: : name
```

becomes

```
Rule (33a)

/descendant::n/preceding::m → /descendant::m[following::n]

doesn't work because descendant is absolute here.

Rule (33):
```

We obtain

```
/descendant::journal[child::title]/descendant::price/preceding::name
becomes
/descendant::name[following::price==
                /descendant::journal[child::title]/descendant::price]
 Rule (33a)
 /descendant::n/preceding::m → /descendant::m[following::n]
 doesn't work because descendant is absolute here.
 Rule (33):
 p/child::*[following-sibling::*/descendant-or-self::n]
               /descendant-or-self::m
     → Rule (33a) with n = journal [child::title][descendant::price]
  p[descendant::price]/preceding::name
    p/child::*[following-sibling::*/descendant-or-self::price]
               /descendant-or-self::name
```

```
/descendant::journal[child::title]/descendant::price/preceding::name
becomes
/descendant::name[following::price==
                  /descendant::journal[child::title]/descendant::price]
 Rule (33a)
 /descendant::n/preceding::m → /descendant::m[following::n]
 doesn't work because descendant is absolute here.
 /descendant::name[following::journal[child::title][descendant::price]]
           p/child::*[following-sibling::*/descendant-or-self::price]
                     /descendant-or-self::name
      → Rule (33a) with n = journal [child::title][descendant::price]
  p[descendant::price]/preceding::name
     p/child::*[following-sibling::*/descendant-or-self::price]
                 /descendant-or-self::name
```

```
/descendant::journal[child::title]/descendant::price/preceding::name
becomes
                                =n
/descendant::name[following::price==
                  /descendant::journal[child::title]/descendant::price]
 Rule (33a)
 /descendant::n/preceding::m → /descendant::m[following::n]
doesn't work because descendant is absolute here. seems it does work!
 /descendant::name[following::journal[child::title][des&endant::price]]
           p/child::*[following-sibling::*/descendant-or-self::price]
                     /descendant-or-self::name
What about this one:
/descendant::name[following::journal[child::title]/descendant::price]
```

Theorem

```
( from D. Olteanu, H. Meuss, T. Furche, F. Bry
XPath: Looking Forward. <u>EDBT Workshops 2002</u>: 109-127 )
```

Given an XPath expression p that has no joins of the form (p1 == p2) with both p1,p2 relative, an equivalent expression u without reverse axes can be computed.

Time needed: at most **exponential** in length of p Length of u: at most **exponential** in length of p

(moreover: *no joins* are introduced when computing u)

Questions

- → Can you find a subclass for which *Time* to compute u is linear or polynomial?
- \rightarrow What is the problem with joins (p1 == p2) for removal of reverse axes?

Given two XPath expressions p, q: Are all nodes selected by p, also selected by q? (on *any* document) (p "contained in" q)

Has many applications!

Boolean query

Want to select documents that "match p".

→ If a document matches p, and p contained in q, then we know the document also matches q!

→ If a document does not match q, and p contained in q, then we know that document does not match p!

Applications

- → Decrease online-time of publish/subscribe systems based on XPath
- → Decrease query-time by making use of materialized intermediate results
- → Optimization by ruling out queries with empty result set etc, etc

Given two XPath expressions p, q

3. Inclusion on Node Relations

```
"0-containment" For every tree, if p selects a node then so does q.
p ⊆<sub>0</sub> q
"1-containment" For every tree, all nodes selected by p are also selected by q.
"2-containment" For every tree, and every context node N, all nodes selected by p starting from N, are also selected by q starting from N.
1. Inclusion on Booleans
2. Inclusion on Node Sets
```

(If only child and descendant axes are allowed then \subseteq_1 and \subseteq_2 are the same! -- Why?)

Given two XPath expressions p, q

```
"0-containment" For every tree, if p selects a node then so does q. p\subseteq_0 q "1-containment" For every tree, all nodes selected by p are also selected by q. p\subseteq_1 q
```

Question

Given p, q and the fact $p \subseteq_1 q$, how can you determine from a *result set of nodes* for q, the correct *result set of nodes* for p?

Given two XPath expressions p, q

Sometimes we want to test containment wrt a given DTD:

$$p = /a/b//d$$

 $q = /a//c$ Boolean!
Want to check if $p \subseteq_0 q$.

NO! a

But, what if documents are valid wrt to this DTD?

root
$$\rightarrow$$
 a*
a \rightarrow b* | c*
b \rightarrow d+c+
c \rightarrow b?c?

PTIME $ \begin{array}{c} \mathrm{XP}(/,//,*) \ [21] \\ \mathrm{XP}(/,//,*) \ [see \ [19]) \\ \mathrm{XP}(/,//,[]) \ [2], \ \mathrm{with \ fixed \ bounded} \\ \mathrm{SXICs} \ [9] \\ \mathrm{XP}(/,//) + \mathrm{DTDs} \ [22] \\ \mathrm{XP}(/,//) \ [1] + \mathrm{DTDs} \ [22] \\ \mathrm{XP}(/,//,[],*) \ [19] \\ \mathrm{XP}(/,//,[],*) \ \mathrm{XP}(/,) \ \mathrm{XP}(//,) \ [22] \\ \mathrm{XP}(/,[]) + \mathrm{DTDs} \ [22] \\ \mathrm{XP}(/,[]) + \mathrm{DTDs} \ [22] \\ \mathrm{XP}(/,//,[],*) + \mathrm{existential \ variables} \\ + \mathrm{path \ equality} \ + \mathrm{ancestor-or-self} \\ \mathrm{axis} + \mathrm{fixed \ bounded \ SXICs} \ [9] \\ \mathrm{XP}(/,//,[],*,) + \mathrm{existential \ variables} \\ + \mathrm{all \ backward \ axes} + \mathrm{fixed \ bounded} \\ \mathrm{SXICs} \ [9] \\ \mathrm{XP}(/,//,[],*,) + \mathrm{existential \ variables} \\ \mathrm{with \ inequality} \ [22] \\ \mathrm{PSPACE} \qquad \mathrm{XP}(/,//,[],*,) + \mathrm{variables \ with} \\ \mathrm{XPath \ semantics} \ [22] \\ \mathrm{XP}(/,//,[],*,) + \mathrm{variables \ with} \\ \mathrm{XPath \ semantics} \ [22] \\ \mathrm{EXPTIME} \qquad \mathrm{XP}(/,//,[],*,) + \mathrm{cxistential \ variables} + \\ \mathrm{bounded \ SXICs} \ [9] \\ \mathrm{XP}(/,//,[],*,) + \mathrm{DTDs} \ [22] \\ \mathrm{XP}(/,//,[],*,) + \mathrm{DTDs} \ [22] \\ \mathrm{XP}(/,//,[],*) + \mathrm{DTDs} \ [22] \\ \mathrm{XP}(/,//,[],*) + \mathrm{DTDs} \ [22] \\ \mathrm{YP}(/,//,[],*) + \mathrm{existential \ variables} + \\ \mathrm{unbounded \ SXICs} \ [9] \\ \mathrm{XP}(/,//,[],) + \mathrm{existential \ variables} + \\ \mathrm{bounded \ SXICs} \ [9] \\ \mathrm{XP}(/,//,[],) + \mathrm{existential \ variables} + \\ \mathrm{bounded \ SXICs} \ [9] \\ \mathrm{XP}(/,//,[],) + \mathrm{existential \ variables} + \\ \mathrm{bounded \ SXICs} \ [9] \\ \mathrm{XP}(/,//,[],) + \mathrm{existential \ variables} + \\ \mathrm{bounded \ SXICs} \ [9] \\ \mathrm{XP}(/,//,[],) + \mathrm{existential \ variables} + \\ \mathrm{bounded \ SXICs} + \mathrm{DTDs} \ [9] \\ \end{array}$		
$XP(/,//,[]) [2], \text{ with fixed bounded } SXICs [9] \\ XP(/,//) + DTDs [22] \\ XP[/,[]] + DTDs [22] \\ XP(/,//,[],*) [19] \\ XP(/,//,[],*,), XP(/,), XP(//,) [22] \\ XP(/,[]) + DTDs [22] \\ XP(/,[]) + DTDs [22] \\ XP(/,[],) + existential variables \\ + path equality + ancestor-or-self axis + fixed bounded SXICs [9] \\ XP(/,//,[],*,) + existential variables \\ + all backward axes + fixed bounded SXICs [9] \\ XP(/,//,[],*,) + existential variables with inequality [22] \\ PSPACE $	PTIME	
$ \begin{array}{c} \text{SXICs [9]} \\ \text{XP}(/,//) + \text{DTDs [22]} \\ \text{XP}[/,[]] + \text{DTDs [22]} \\ \text{XP}(/,//,[],*) [19] \\ \text{XP}(/,//,[],*) \text{NP}(/,), \text{XP}(//,) [22] \\ \text{XP}(/,[]) + \text{DTDs [22]} \\ \text{XP}(/,[]) + \text{DTDs [22]} \\ \text{XP}(/,[],*) + \text{existential variables} \\ + \text{path equality + ancestor-or-self} \\ \text{axis + fixed bounded SXICs [9]} \\ \text{XP}(/,//,[],*,) + \text{existential variables} \\ + \text{all backward axes + fixed bounded} \\ \text{SXICs [9]} \\ \text{XP}(/,//,[],*,) + \text{existential variables} \\ \text{with inequality [22]} \\ \\ \text{PSPACE} \qquad \begin{array}{c} \text{XP}(/,//,[],*,) \text{ and } \text{XP}(/,//,) \text{ if the alphabet is finite [22]} \\ \text{XP}(/,//,[],*,) + \text{variables with XPath semantics [22]} \\ \\ \text{EXPTIME} \qquad \begin{array}{c} \text{XP}(/,//,[],*,) + \text{existential variables + bounded SXICs [9]} \\ \text{XP}(/,//,[],*,) + \text{DTDs [22]} \\ \text{XP}(/,//,[],*) + \text{DTDs [22]} \\ \text{XP}(/,//,[],*) + \text{DTDs [22]} \\ \\ \text{XP}(/,//,[],*) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + \text{existential variables + unbounded SXICs [9]} \\ \\ \text{XP}(/,//,[],]) + exist$		17 - 12 - 7 - 1 - 27
$ \begin{array}{c} XP(/,/\!/) + DTDs \ [22] \\ XP[/,[]] + DTDs \ [22] \\ XP(/,/\!/,[],*) \ [19] \\ XP(/,/\!/,[],*,), XP(/,), XP(/\!/,) \ [22] \\ XP(/,[]) + DTDs \ [22] \\ XP(/\!/,[]) + DTDs \ [22] \\ XP(/,/,[],) + existential variables \\ + path \ equality + ancestor-or-self \\ axis + fixed \ bounded \ SXICs \ [9] \\ XP(/,/\!/,[],*,) + existential \ variables \\ + all \ backward \ axes + fixed \ bounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables \\ with \ inequality \ [22] \\ \\ PSPACE \qquad XP(/,/\!/,[],*,) \ and \ XP(/,/\!/,) \ if \ the \ alphabet \ is \ finite \ [22] \\ XP(/,/\!/,[],*,) + variables \ with \ XPath \ semantics \ [22] \\ EXPTIME \qquad XP(/,/\!/,[],) + existential \ variables + \ bounded \ SXICs \ [9] \\ XP(/,/\!/,[],*,) + DTDs \ [22] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded$		XP(/, //, []) [2], with fixed bounded
$ \begin{array}{c} \text{CONP} & \text{XP}(/, ,*) \ [19] \\ \text{XP}(/,//,[],*,), \text{XP}(/,), \text{XP}(//,) \ [22] \\ \text{XP}(/,) + \text{DTDs} \ [22] \\ \text{XP}(/,) + \text{DTDs} \ [22] \\ \text{XP}(/, ,) + \text{existential variables} \\ + \text{path equality} + \text{ancestor-or-self} \\ \text{axis} + \text{fixed bounded SXICs} \ [9] \\ \text{XP}(/,//,[],*,) + \text{existential variables} \\ + \text{all backward axes} + \text{fixed bounded} \\ \text{SXICs} \ [9] \\ \text{XP}(/,//,[],) + \text{existential variables} \\ \text{with inequality} \ [22] \\ \\ \text{PSPACE} & \text{XP}(/,//,[],*,) \text{ and XP}(/,//,) \text{ if the alphabet is finite} \ [22] \\ \text{XP}(/,//,[],*,) + \text{variables with} \\ \text{XPath semantics} \ [22] \\ \\ \text{EXPTIME} & \text{XP}(/,//,[],*,) + \text{existential variables} + \\ \text{bounded SXICs} \ [9] \\ \text{XP}(/,//,[],*,) + \text{DTDs} \ [22] \\ \text{XP}(/,//,[],*) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{Undecidable} \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{Undecidable} \\ \text{XP}(/,//,[],) + existential var$		SXICs [9]
CONP $ \begin{array}{c} XP(/,//,[],*) \ [19] \\ XP(/,//,[],*,), XP(/,), XP(//,) \ [22] \\ XP(/,[]) + DTDs \ [22] \\ XP(//,[]) + DTDs \ [22] \\ XP(/,//,[],) + existential variables \\ + path equality + ancestor-or-self \\ axis + fixed bounded SXICs \ [9] \\ XP(/,//,[],*,) + existential variables \\ + all backward axes + fixed bounded \\ SXICs \ [9] \\ XP(/,//,[],) + existential variables \\ with inequality \ [22] \\ PSPACE & XP(/,//,[],*,) \ and \ XP(/,//,) \ if the \\ alphabet is finite \ [22] \\ XP(/,//,[],*,) + variables \ with \\ XPath semantics \ [22] \\ XP(/,//,[],*,) + existential variables + \\ bounded \ SXICs \ [9] \\ XP(/,//,[],*,) + DTDs \ [22] \\ XP(/,//,[],*) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ SXICs \ [9] \\ XP(/,//,[],) + existential variables + \\ unbounded \ S$		XP(/,//) + DTDs [22]
$XP(/,//,[],*,),XP(/,),XP(//,) [22]$ $XP(/,[]) + DTDs [22]$ $XP(/,/,[],) + existential variables$ $+ path equality + ancestor-or-self$ $axis + fixed bounded SXICs [9]$ $XP(/,//,[],*,) + existential variables$ $+ all backward axes + fixed bounded$ $SXICs [9]$ $XP(/,//,[],) + existential variables$ $+ inequality [22]$ $PSPACE \qquad XP(/,//,[],*,) \text{ and } XP(/,//,) \text{ if the alphabet is finite } [22]$ $XP(/,//,[],*,) + \text{ variables } \text{ with } XPath \text{ semantics } [22]$ $EXPTIME \qquad XP(/,//,[],*,) + DTDs [22]$ $XP(/,//,[],*,) + DTDs [22]$ $XP(/,//,[],*) + existential variables + unbounded SXICs [9]$ $XP(/,//,[],) + existential variables + unbounded SXICs [9]$ $XP(/,//,[],) + existential variables + unbounded SXICs [9]$		XP[/,[]] + DTDs[22]
$ \begin{array}{c} {\rm XP}(/,[]) + {\rm DTDs} \ [22] \\ {\rm XP}(//,[]) + {\rm DTDs} \ [22] \\ \\ {\rm XP}(/,//,[],) + {\rm existential} \ {\rm variables} \\ + {\rm path} \ {\rm equality} + {\rm ancestor-or-self} \\ {\rm axis} + {\rm fixed} \ {\rm bounded} \ {\rm SXICs} \ [9] \\ {\rm XP}(/,//,[],*,) + {\rm existential} \ {\rm variables} \\ + {\rm all} \ {\rm backward} \ {\rm axes} + {\rm fixed} \ {\rm bounded} \\ {\rm SXICs} \ [9] \\ {\rm XP}(/,//,[],) + {\rm existential} \ {\rm variables} \\ {\rm with} \ {\rm inequality} \ [22] \\ \\ {\rm PSPACE} \qquad {\rm XP}(/,//,[],*,) \ {\rm and} \ {\rm XP}(/,//,) \ {\rm if} \ {\rm the} \\ {\rm alphabet} \ {\rm is} \ {\rm finite} \ [22] \\ {\rm XP}(/,//,[],*,) + {\rm variables} \ {\rm with} \\ {\rm XPath} \ {\rm semantics} \ [22] \\ \\ {\rm EXPTIME} \qquad {\rm XP}(/,//,[],*,) + {\rm existential} \ {\rm variables} + \\ {\rm bounded} \ {\rm SXICs} \ [9] \\ {\rm XP}(/,//,[],*,+) + {\rm DTDs} \ [22] \\ {\rm XP}(/,//,[],*) + {\rm DTDs} \ [22] \\ {\rm XP}(/,//,[],*) + {\rm DTDs} \ [22] \\ \\ {\rm VP}(/,//,[],*) + {\rm DTDs} \ [22] \\ \\ {\rm VP}(/,//,[],+) + {\rm existential} \ {\rm variables} + \\ {\rm unbounded} \ {\rm SXICs} \ [9] \\ \\ {\rm XP}(/,//,[],) + {\rm existential} \ {\rm variables} + \\ \\ {\rm unbounded} \ {\rm SXICs} \ [9] \\ \\ {\rm XP}(/,//,[],) + {\rm existential} \ {\rm variables} + \\ \\ {\rm unbounded} \ {\rm SXICs} \ [9] \\ \\ {\rm XP}(/,//,[],) + {\rm existential} \ {\rm variables} + \\ \\ {\rm unbounded} \ {\rm SXICs} \ [9] \\ \\ {\rm XP}(/,//,[],) + {\rm existential} \ {\rm variables} + \\ \\ {\rm unbounded} \ {\rm SXICs} \ [9] \\ \\ {\rm XP}(/,//,[],) + {\rm existential} \ {\rm variables} + \\ \\ {\rm unbounded} \ {\rm SXICs} \ [9] \\ \\ {\rm XP}(/,//,[],) + {\rm existential} \ {\rm variables} + \\ \\ {\rm unbounded} \ {\rm SXICs} \ [9] \\ \\ {\rm XP}(/,//,[],) + {\rm existential} \ {\rm variables} + \\ \\ {\rm unbounded} \ {\rm SXICs} \ [9] \\ \\ {\rm NP}(/,//,[],) + {\rm existential} \ {\rm variables} + \\ \\ {\rm NP}(/,//,[],) + {\rm existential} \ {\rm variables} + \\ \\ {\rm NP}(/,//,[],) + {\rm existential} \ {\rm variables} + \\ \\ {\rm NP}(/,//,[],) + {\rm existential} \ {\rm variables} + \\ \\ {\rm NP}(/,//,[],) + {\rm existential} \ {\rm variables} + \\ \\ {\rm NP}(/,//,[],) + {\rm existential} \ {\rm existential} + \\ \\ {\rm NP}($	coNP	XP(/, //, [], *) [19]
$ \begin{array}{c} XP(/\!/,[]) + DTDs \ [22] \\ XP(/,/\!/,[],) + existential \ variables \\ + \ path \ equality + ancestor-or-self \\ axis + fixed \ bounded \ SXICs \ [9] \\ XP(/,/\!/,[],*,) + existential \ variables \\ + \ all \ backward \ axes + fixed \ bounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables \\ with \ inequality \ [22] \\ \\ PSPACE & XP(/,/\!/,[],*,) \ and \ XP(/,/\!/,) \ if \ the \ alphabet \ is \ finite \ [22] \\ XP(/,/\!/,[],*,) + variables \ with \ XPath \ semantics \ [22] \\ \\ EXPTIME & XP(/,/\!/,[],) + existential \ variables + \ bounded \ SXICs \ [9] \\ XP(/,/\!/,[],*,) + DTDs \ [22] \\ XP(/,/\!/,[],*) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \ unbounded \ SXICs \ [9] \\ XP(/,/\!/$		XP(/, //, [], *,), XP(/,), XP(//,) [22]
$\begin{array}{c} \Pi_2^p & XP(/,//,[],) + \text{existential variables} \\ & + \text{path equality} + \text{ancestor-or-self} \\ & \text{axis} + \text{fixed bounded SXICs [9]} \\ & XP(/,//,[],*,) + \text{existential variables} \\ & + \text{all backward axes} + \text{fixed bounded} \\ & \text{SXICs [9]} \\ & XP(/,//,[],) + \text{existential variables} \\ & \text{with inequality [22]} \\ \\ & PSPACE & XP(/,//,[],*,) \text{ and } XP(/,//,) \text{ if the alphabet is finite [22]} \\ & XP(/,//,[],*,) + \text{variables with } \\ & XPath \text{ semantics [22]} \\ \\ & EXPTIME & XP(/,//,[],) + \text{existential variables} + \\ & \text{bounded SXICs [9]} \\ & XP(/,//,[],*,) + DTDs [22] \\ & XP(/,//,[],*) + DTDs [22] \\ & XP(/,//,[],*) + DTDs [22] \\ \\ & Undecidable & XP(/,//,[],) + \text{existential variables} + \\ & \text{unbounded SXICs [9]} \\ & XP(/,//,[],) + \text{existential variables} + \\ & \text{unbounded SXICs [9]} \\ & XP(/,//,[],) + \text{existential variables} + \\ & \text{unbounded SXICs [9]} \\ \end{array}$		XP(/,[]) + DTDs [22]
$+ \text{ path equality} + \text{ancestor-or-self} \\ \text{axis} + \text{fixed bounded SXICs [9]} \\ \text{XP}(/,//,[],*,) + \text{existential variables} \\ + \text{ all backward axes} + \text{fixed bounded} \\ \text{SXICs [9]} \\ \text{XP}(/,//,[],) + \text{existential variables} \\ \text{with inequality [22]} \\ \text{PSPACE} \text{XP}(/,//,[],*,) \text{ and } \text{XP}(/,//,) \text{ if the alphabet is finite [22]} \\ \text{XP}(/,//,[],*,) + \text{variables with } \\ \text{XPath semantics [22]} \\ \text{EXPTIME} \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{bounded SXICs [9]} \\ \text{XP}(/,//,[],*,) + \text{DTDs [22]} \\ \text{XP}(/,//,[],*) + \text{DTDs [22]} \\ \text{YP}(/,//,[],*) + \text{DTDs [22]} \\ \text{Undecidable} \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP}(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP}(/,//,[],) + \\ \text{EXP}(/,//,[],) + \\$		
axis + fixed bounded SXICs [9] $XP(/,//,[],*,) + \text{existential variables}$ $+ \text{ all backward axes} + \text{ fixed bounded}$ $SXICs [9]$ $XP(/,//,[],) + \text{ existential variables}$ $\text{with inequality } [22]$ $PSPACE \qquad XP(/,//,[],*,) \text{ and } XP(/,//,) \text{ if the alphabet is finite } [22]$ $XP(/,//,[],*,) + \text{ variables } \text{ with } XPath \text{ semantics } [22]$ $EXPTIME \qquad XP(/,//,[],) + \text{ existential variables } + \text{ bounded SXICs } [9]$ $XP(/,//,[],*,) + \text{ DTDs } [22]$ $XP(/,//,[],*) + \text{ existential variables } + \text{ unbounded SXICs } [9]$ $XP(/,//,[],) + \text{ existential variables } + \text{ unbounded SXICs } [9]$ $XP(/,//,[],) + \text{ existential variables } + \text{ unbounded SXICs } [9]$	Π_2^p	0 77 22 17
$XP(/,//,[],*,) + \text{existential variables} \\ + \text{ all backward axes} + \text{fixed bounded} \\ SXICs [9] \\ XP(/,//,[],) + \text{existential variables} \\ \text{with inequality [22]} \\ PSPACE & XP(/,//,[],*,) \text{ and } XP(/,//,) \text{ if the alphabet is finite [22]} \\ XP(/,//,[],*,) + \text{variables with } \\ XPath \text{ semantics [22]} \\ EXPTIME & XP(/,//,[],) + \text{existential variables} + \\ \text{bounded SXICs [9]} \\ XP(/,//,[],*,) + DTDs [22] \\ XP(/,//,[],*) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ XP(/,//,[],) + \text{existential variables} + \\ XP(/,//,[],) + \text{existential variables} + \\ XP(/,//,[],) + \\ XP(/,//,[],) + \text{existential variables} + \\ XP(/,//,[],) + \\ XP(/$		
$ \begin{array}{c} + \text{ all backward axes} + \text{fixed bounded} \\ \text{SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} \\ \text{with inequality [22]} \\ \\ \text{PSPACE} & \text{XP(/,//,[],*,)} \text{ and } \text{XP(/,//,)} \text{ if the} \\ \text{alphabet is finite [22]} \\ \text{XP(/,//,[],*,)} + \text{variables with} \\ \text{XPath semantics [22]} \\ \\ \text{EXPTIME} & \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{bounded SXICs [9]} \\ \text{XP(/,//,[],*,)} + \text{DTDs [22]} \\ \text{XP(/,//,[],*)} + \text{DTDs [22]} \\ \text{XP(/,//,[],*)} + \text{DTDs [22]} \\ \\ \text{Undecidable} & \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \end{array} $		
$ \begin{array}{c} \text{SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} \\ \text{with inequality [22]} \\ \text{PSPACE} & \text{XP(/,//,[],*,)} \text{ and } \text{XP(/,//,)} \text{ if the} \\ \text{alphabet is finite [22]} \\ \text{XP(/,//,[],*,)} + \text{variables with} \\ \text{XPath semantics [22]} \\ \text{EXPTIME} & \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{bounded SXICs [9]} \\ \text{XP(/,//,[],*,)} + \text{DTDs [22]} \\ \text{XP(/,//,],*)} + \text{DTDs [22]} \\ \text{XP(/,//,[],*)} + \text{DTDs [22]} \\ \text{Undecidable} & \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(/,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(//,//,[],)} + \text{existential variables} + \\ \text{unbounded SXICs [9]} \\ \text{XP(//,//,[],)} + \text{existential variables} + \\ \text{NP(///,//,[],)} + \text{existential variables} + \\ \text{NP(////,[],)} + \text{existential variables} + \\ \text{NP(/////,[],)} + \text{existential variables} + \\ \text{NP(//////,[],)} + \text{existential variables} + \\ \text{existential variables}$,, ,, ,, ,,
$ \begin{array}{c} XP(/,/\!/,[],) + \text{ existential variables} \\ \text{with inequality } [22] \\ \hline \\ PSPACE & XP(/,/\!/,[],*,) \text{ and } XP(/,/\!/,) \text{ if the} \\ \text{alphabet is finite } [22] \\ XP(/,/\!/,[],*,) + \text{ variables } \text{ with} \\ XPath \text{ semantics } [22] \\ \hline \\ EXPTIME & XP(/,/\!/,[],) + \text{ existential variables } + \\ \text{bounded SXICs } [9] \\ XP(/,/\!/,[],*,) + DTDs [22] \\ XP(/,/\!/,[],*) + DTDs [22] \\ XP(/,/\!/,[],*) + DTDs [22] \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \text{unbounded SXICs } [9] \\ XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \\ Undecidable & XP(/,/\!/,[],) + \\ \hline \\ Unde$		
PSPACE $XP(/,//,[],*,)$ and $XP(/,//,)$ if the alphabet is finite [22] $XP(/,//,[],*,)$ + variables with XP ath semantics [22] $XP(/,//,[],)$ + existential variables + bounded $SXICs$ [9] $XP(/,//,[],*,)$ + $DTDs$ [22] $XP(/,//,[],*)$ + $DTDs$ [23] $ZP(/,//,[],*)$ + existential variables + unbounded $ZP(/,//,[],*)$ + existential variables + $ZP(/,//,[],*)$		
PSPACE $XP(/,//,[],*,)$ and $XP(/,//,)$ if the alphabet is finite [22] $XP(/,//,[],*,)$ + variables with XP ath semantics [22] $XP(/,//,[],)$ + existential variables + bounded $SXICs$ [9] $XP(/,//,[],*,)$ + $DTDs$ [22] $XP(/,//,[],*)$ + $DTDs$ [23] $ZP(/,//,[],*)$ + Z		
alphabet is finite [22] $XP(/,//,[],*,) + variables with \\ XPath \; semantics [22]$ $EXPTIME XP(/,//,[],) + existential \; variables + \\ bounded \; SXICs \; [9] \\ XP(/,//,[],*,) + DTDs \; [22] \\ XP(/,//,[],*) + DTDs \; [22] \\ XP(/,//,[],*) + DTDs \; [22]$ $Undecidable XP(/,//,[],) + existential \; variables + \\ unbounded \; SXICs \; [9] \\ XP(/,//,[],) + existential \; variables + \\ unbounded \; SXICs \; [9]$		
$ \begin{array}{c} XP(/,/\!/,[],*,) + \text{ variables with } \\ XPath \text{ semantics } [22] \\ \hline EXPTIME & XP(/,/\!/,[],) + \text{ existential variables } + \\ \text{bounded SXICs } [9] \\ XP(/,/\!/,[],*,) + DTDs [22] \\ XP(/,/\!/,[],*) + DTDs [22] \\ XP(/,/\!/,[],*) + DTDs [22] \\ \hline Undecidable & XP(/,/\!/,[],) + \text{ existential variables } + \\ \text{unbounded SXICs } [9] \\ XP(/,/\!/,[],) + \text{ existential variables } + \\ \hline \end{array} $	PSPACE	XP(/, //, [], *,) and $XP(/, //,)$ if the
EXPTIME XP(/, //, [],) + existential variables + bounded SXICs [9] $XP(/, //, [], *,) + DTDs [22]$ $XP(/, //, [], *) + DTDs [22]$ $XP(/, //, [], *) + DTDs [22]$ Undecidable XP(/, //, [],) + existential variables + unbounded SXICs [9] $XP(/, //, [],) + existential variables + existenti$		
EXPTIME $XP(/,//,[],)$ + existential variables + bounded SXICs [9] $XP(/,//,[],*,)$ + DTDs [22] $XP(/,//,[],*)$ + DTDs [22] $XP(/,//,[],*)$ + DTDs [22] Undecidable $XP(/,//,[],)$ + existential variables + unbounded SXICs [9] $XP(/,//,[],)$ + existential variables +		. , , , , , , , , , , , , , , , , , , ,
bounded SXICs [9] $XP(/,//,[],*,) + DTDs [22]$ $XP(/,//,) + DTDs [22]$ $XP(/,//,[],*) + DTDs [22]$ Undecidable $XP(/,//,[],) + \text{existential variables} + \text{unbounded SXICs [9]}$ $XP(/,//,[],) + \text{existential variables} + existenti$. 1
$ \begin{array}{c} XP(/,/\!/,[],*,) + DTDs \ [22] \\ XP(/,/\!/,) + DTDs \ [22] \\ XP(/,/\!/,[],*) + DTDs \ [22] \\ \end{array} $ Undecidable $ \begin{array}{c} XP(/,/\!/,[],) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ XP(/,/\!/,[],) + \text{existential variables} + \\ \end{array} $	EXPTIME	XP(/,//,[],) + existential variables +
$ \begin{array}{c} XP(/,/\!/,) + DTDs \ [22] \\ XP(/,/\!/,[],*) + DTDs \ [22] \\ \end{array} $ Undecidable $ \begin{array}{c} XP(/,/\!/,[],) + \text{existential variables} + \\ \text{unbounded SXICs} \ [9] \\ XP(/,/\!/,[],) + \text{existential variables} + \\ \end{array} $		bounded SXICs [9]
$ \begin{array}{c} XP(/,/\!/,[],*) + DTDs \ [22] \\ Undecidable & XP(/,/\!/,[],) + existential \ variables + \\ unbounded \ SXICs \ [9] \\ XP(/,/\!/,[],) + existential \ variables + \\ \end{array} $		
Undecidable $XP(/, //, [],)$ + existential variables + unbounded SXICs [9] $XP(/, //, [],)$ + existential variables +		
unbounded SXICs [9] XP(/, //, [],) + existential variables +		
XP(/, //, [],) + existential variables +	Undecidable	XP(/,//,[],) + existential variables +
bounded SXICs $+$ DTDs [9]		XP(/, //, [],) + existential variables +
XP(/,//,[],*,) + nodeset equality +		
simple DTDs [22]		
XP(/,//,[],*,) + existential variables		
with inequality[22]		with inequality[22]

from:

T. Schwentick
XPath query containment.
SIGMOD Record 33(1): 101-109 (2004)

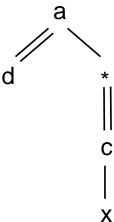
Pattern trees

E.g.
$$p = a[.//d]/*//c$$

a

d

*
|
c
selection node (unique)


Note: child order has no meaning in pattern trees!

Test \subseteq_1 (node set inclusion) using \subseteq_0 (Boolean inclusion)

→ Simply add a new node below the selection node

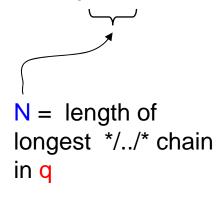
New tree is Boolean (no selection node)

In a given XML tree: pattern matches / does not match.

4 techniques of testing XPath (Boolean) containment:

- (1) The Canonical Model Technique
- (2) The Homomorphism Technique
- (3) The Automaton Technique
- (4) The Chase Technique

Canonical Model - XPath(/, //, [], *)


Idea: if there exists a tree that matches p but not q, then such a tree exists of size polynomial in the size of p an q.

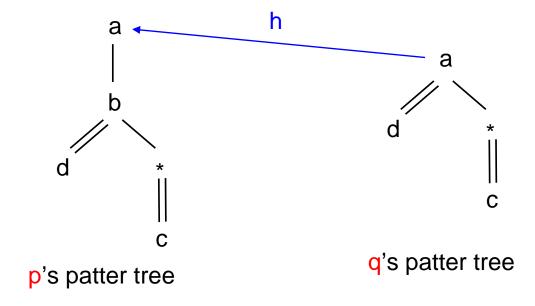
Simple: remember, if you know that the XML document is only of height 5, then //a/b/*/c could be enumerated by /a/b/*/c | /*/a/b/*/c | /*/*/a/b/*/c | /*/*/a...

Similarly, we try to construct a counter example tree, by replacing in p

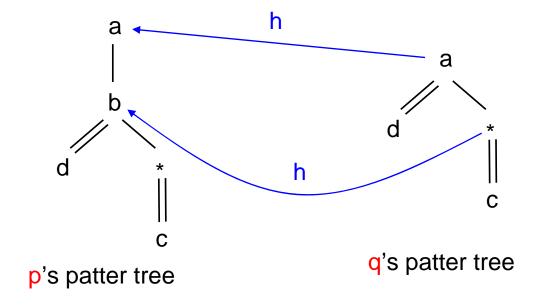
- → every * by some new symbol "z"
- \rightarrow every // by z/, z/z/, z/z/z/, ... z/z/../z/

N+1 many z's

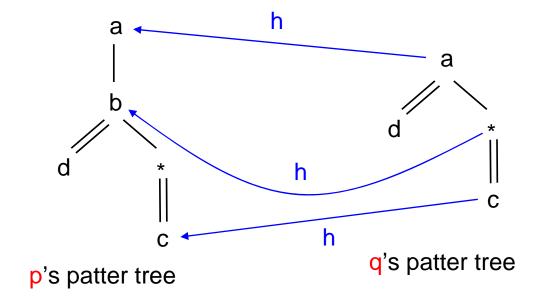
- XPath(/, //, [], *) **Canonical Model** a Example a q's patter tree p's patter tree Test for q-match: Formally, must test 1 and 2 more z's at right branch of each of the trees.

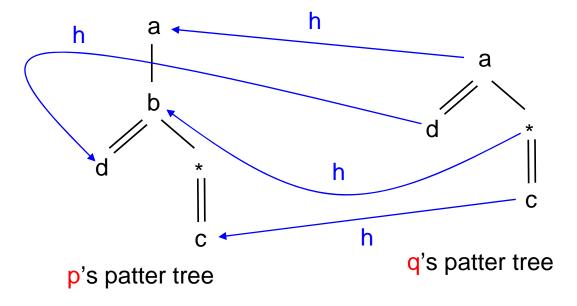

Homomorphism h maps each node of q's query tree Q to a node of p's query tree P such that

- (1) root of Q is mapped to root of P
- (2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
- (3) if (u,v) is descendant-edge of Q, then h(v) is a "below" h(u) in P
- (4) if u is labeled by "e" (not *), then h(u) is also labeled by "e".


p,q expressions in XPath(/, //, [])

Theorem


 $p \subseteq_0 q$ if and only if there is a homomorphism from Q to P.


- (1) root of Q is mapped to root of P
- (2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
- (3) if (u,v) is descendant-edge of Q, then h(v) is a "below" h(u) in P
- (4) if u is labeled by "e" (not *), then h(u) is also labeled by "e".

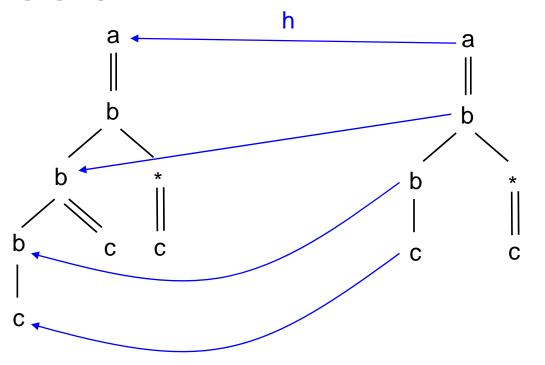
- (1) root of Q is mapped to root of P
- (2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
- (3) if (u,v) is descendant-edge of Q, then h(v) is a "below" h(u) in P
- (4) if u is labeled by "e" (not *), then h(u) is also labeled by "e".

- (1) root of Q is mapped to root of P
- (2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
- (3) if (u,v) is descendant-edge of Q, then h(v) is a "below" h(u) in P
- (4) if u is labeled by "e" (not *), then h(u) is also labeled by "e".

- \rightarrow hom. h exists from Q to P, thus $p \subseteq_0 q$ must hold!
 - (1) root of Q is mapped to root of P
 - (2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
 - (3) if (u,v) is descendant-edge of Q, then h(v) is a "below" h(u) in P
 - (4) if u is labeled by "e" (not *), then h(u) is also labeled by "e".

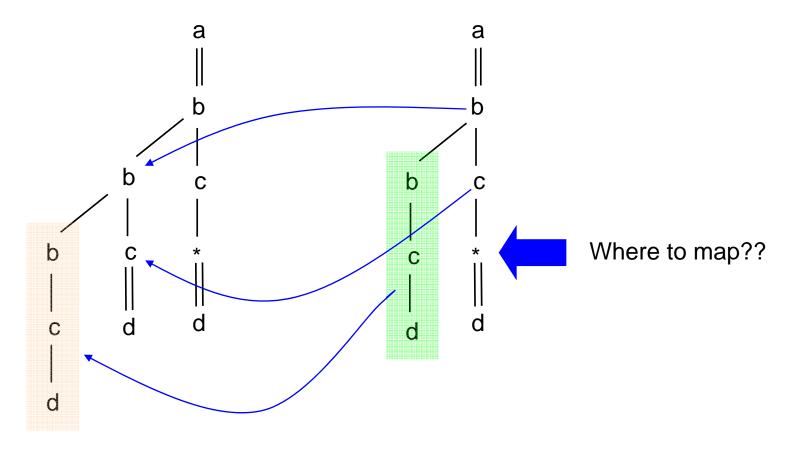
Homomorphism h maps each node of q's query tree Q to a node of p's query tree P such that

- (1) root of Q is mapped to root of P
- (2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
- (3) if (u,v) is descendant-edge of Q, then h(v) is a "below" h(u) in P
- (4) if u is labeled by "e" (not *), then h(u) is also labeled by "e".

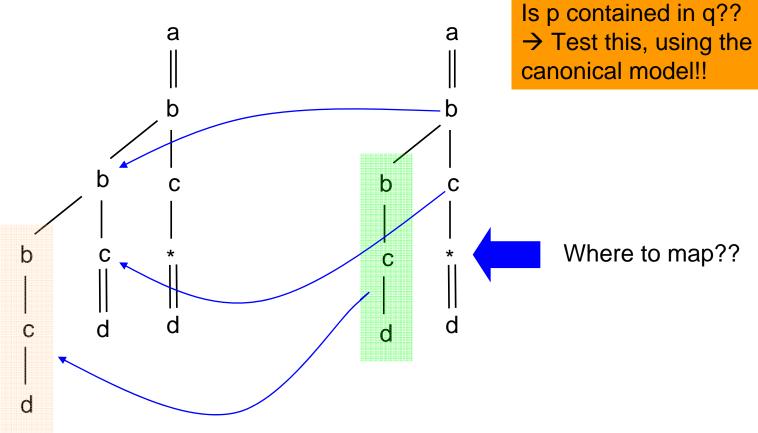

```
p,q expressions in XPath(/, //, [])
```

Theorem

 $p \subseteq_0 q$ if and only if there is a homomorphism from Q to P.

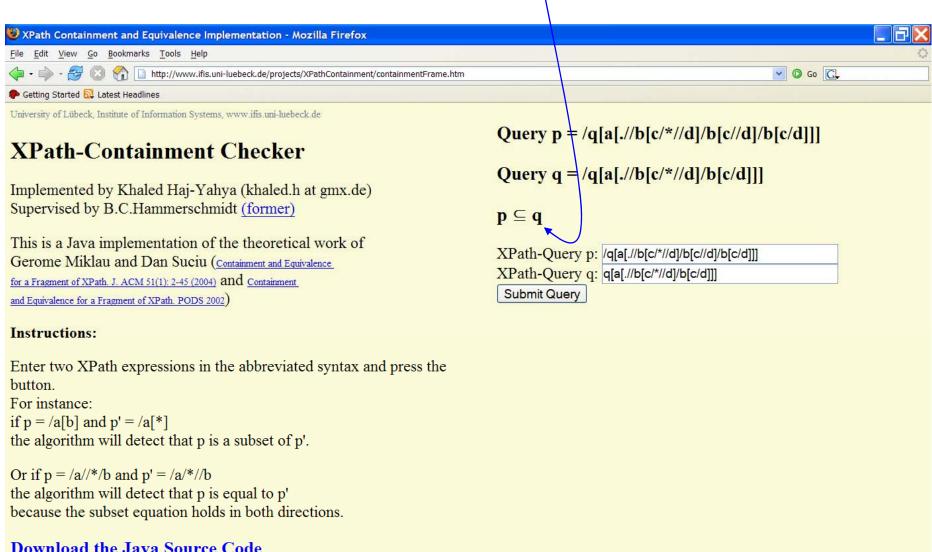

Cave If we add the star (*) then homomorphism need not exist!

[/a//b[./b/d]//c]/*/c] [/a//b[./b/d]/*/c]



IS there a homomorphism??

Cave If we add the star (*) then homomorphism need not exist!


Cave If we add the star (*) then homomorphism need not exist!

Cave If we add the star (*) then homomorphism need not exist!

Let's check the web...

Download the Java Source Code

Download Khaled's bachelor thesis (in German)

If there is no application on the right side please contact our system administrator: webmaster at ifis.uni-luebeck.de.

Automaton Technique

Recall: for any DTD there is a tree automaton which recognized the corresponding trees.

Similarly, for any XPath(/, //, [], *, |) expression ex we can construct a (non-deterministic bottom-up) tree automaton A which accepts a tree if and only if ex matches the tree.

Theorem

Containment test of XPath(/, //, [], *, |) in the presence of DTDs can be solved in EXPTIME.

Exponential (deterministic) time
Blow-up due to non-determinism of tree automaton.

BUT: no hope for improvement: The problem is actually *complete* for EXPTIME.

Automaton Technique

Recall: for any DTD there is a tree automaton which recognized the corresponding trees.

Similarly, for any XPath(/, //, [], *, |) expression ex we can construct a (non-deterministic bottom-up) tree automaton A which accepts a tree if and only if ex matches the tree.

Theorem

Containment test of XPath(/, //, [], *, |) in the presence of DTDs can be solved in EXPTIME.

Union of automata

Union of automata

("product construction")

Proof Idea construct automaton for all possible counter example trees. Test if this automaton accepts any tree.

Automaton Technique

Recall: for any DTD there is a tree automaton which recognized the corresponding trees.

Similarly, for any XPath(/, //, [], *, |) expression ex we can construct a (non-deterministic bottom-up) tree automaton A which accepts a tree if and only if ex matches the tree.

Theorem

Containment test of XPath(/, //, [], *, |) in the presence of DTDs

can be solved in **EXPTIME**.

Emptiness test of for automata

Proof Idea construct automaton for all possible

counter example trees. Test if this automaton accepts any tree.

→ Automata can also be Tested for Finiteness!

Is $p \subseteq_0 q$, for all trees but finitely many exceptions?

solvable!

Chase Technique -- 1979 relational DB's to check query containment in the presence of *integrity constraints*.

Example

root
$$\rightarrow$$
 a*

 $a \rightarrow b^* \mid c^*$
 $b \rightarrow d+c+$
 $c \rightarrow b$?c?

("the chase" extends the relational homomorphsim technique)

$$p = /a/b//d$$

 $q = /a//c$ Is p contained in q for E-conform documents?

First Possibility: use tree automata

- → Construct automata Ap, Aq, AE
- → Construct Bq for the complement of Aq (=not q)
- → Intersect Bq with Ap with AE (gives automaton A)
- → Check if A accepts any tree.

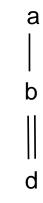
Chase Technique -- 1979 relational DB's to check query containment in the presence of *integrity constraints*.

Example

DTD
$$E =$$

$$\begin{array}{ccc}
 & \text{root} \rightarrow & \text{a*} \\
 & \text{a} \rightarrow & \text{b*} \mid \text{c*} \\
 & \text{b} \rightarrow & \text{d+c+} \\
 & \text{c} \rightarrow & \text{b?c?}
\end{array}$$

("the chase" extends the relational homomorphsim technique)


Is p contained in q for E-conform documents?

Each b-element has a d-child and a c-child

→ constraints

c1: b→d

c2: b→c

p's pattern tree

Chase Technique -- 1979 relational DB's to check query containment in the presence of *integrity constraints*.

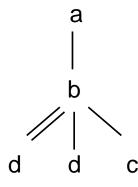
Example

DTD
$$E =$$

$$\begin{array}{ccc}
 & \text{root} \rightarrow & \text{a*} \\
 & \text{a} \rightarrow & \text{b*} \mid \text{c*} \\
 & \text{b} \rightarrow & \text{d+c+} \\
 & \text{c} \rightarrow & \text{b?c?}
\end{array}$$

("the chase" extends the relational homomorphsim technique)

$$p = /a/b//d$$


q = /a//c

Is p contained in q for E-conform documents?

Each b-element has a d-child and a c-child

→ constraints

c1: b→d c2: b→c

p's pattern tree after *chasing* with c1,c2

Chase Technique -- 1979 relational DB's to check query containment in the presence of *integrity constraints*.

Example

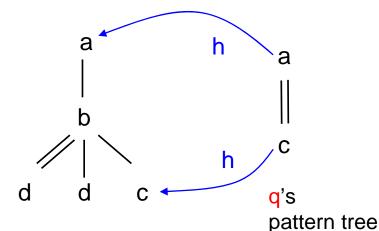
DTD
$$E =$$

$$\begin{array}{ccc}
 & \text{root} \rightarrow & \text{a*} \\
 & \text{a} \rightarrow & \text{b*} \mid \text{c*} \\
 & \text{b} \rightarrow & \text{d+c+} \\
 & \text{c} \rightarrow & \text{b?c?}
\end{array}$$

("the chase" extends the relational homomorphsim technique)

$$p = /a/b//d$$

 $q = /a//c$


Is p contained in q for E-conform documents?

Each b-element has a d-child and a c-child

→ constraints

c1: b→d c2: b→c

> p is contained in q in the presence of the DTD E

p's pattern tree after *chasing* with c1,c2

END Lecture 9