XML and Databases

Lecture 9
Properties of XPath

Sebastian Maneth
NICTA and UNSW

CSE@UNSW -- Semester 1, 2009

Outline

1. XPath Equivalence

2. No Looking Back: How to Remove Backward Axes

3. Containment Test for XPath Expressions

A Note on Equality Test
iIn XPath

Useful Functions (on Node Sets)

Careful with equality ("=") XPath 2.0 has clearer

comparison operators!
<a>

<d>red</d>
<d>green</d>
<d>blue</d>

 XPath 1.0
<c> Equality (“=") is based on

<d>yellow</d> string value of a node!
<d>orange</d>

<d>green</d>
</c>

 //afb/d = c/d] selects a-node!!!

there is a node in the node set for b/d
with same string value as a node in node set c/d

A Note on Equality Test

pl, p2 XPath (1.0) Expressions

(pl ==p2) s true if there exists a node selected by pl

that is identical to a node selected by p2
XPath 2.0
XQuery 1.0

<a>

<d>red</d>
<d>green</d>
<d>blue</d>
 //a|b/d == c/d] selects what?
<C>
<d>yellow</d>
<d>orange</d>
<d>green</d>
</c>

A Note on Equality Test

pl, p2 XPath (1.0) Expressions

(pl ==p2) s true if there exists a node selected by pl
that is identical to a node selected by p2
XPath 2.0
XQuery 1.0
<a>

<d>red</d> false (on any document)
<d>green</d> N
<d>blue</d> 4 o
 //a|b/d == c/d] selects what?
<C>
<d>yellow</d>
<d>orange</d> //*[child::node([1]
</<Cd>>9ree“<’d> == child: :node()[position=last()]]

A Note on Equality Test

pl, p2 XPath (1.0) Expressions

(pl ==p2) s true if there exists a node selected by pl

that is identical to a node selected by p2
XPath 2.0
XQuery 1.0

XPath 1.0 simulation of (node) equality test (==)

Instead of (pl ==p2) write:

(count(pl | p2) < count(pl) + count(p2))

©

1. XPath Equivalence

pl, p2 XPath (1.0) Expressions

(pl = p2) pl “is equivalent to” p2
IS true if,
for any document D, and any context node N of D,

pl evaluated on D with context N gives the same result as
p2 evaluated on D with context N.

Examples

/a//*/b = Ja/*//b

//a/b/c/. /.. = /[//a[.-b/c/]

//a[b | c] = //a/*[self::b | self::c]/-.

NOT equivalent: child::*/parent::* # self::*

- show a counter example!

1. XPath Equivalence

EBNF for XPaths that we want to consider now:

path
qualif ::

ars 1=

reverse_aris .=

forward_axis ::

nodetest ::

path | path | / path | path / path | path [qualif 1 | axis ::

qualif and qualif | qualif or qualif | ¢ qualif) |
path = path | path == path | path .

reverse_axis | forward_azis .

parent | ancestor | ancestor-or-self |
preceding | preceding-sibling .

self | child | descendant | descendant-or-self |
following | following-sibling .

tagname | * | text() | node() .

An XPath starting with “/” (root node) is called absolute,
otherwise it is called relative.

nodetest | 1 .

1. XPath Equivalence

pl, p2 XPaths
p arbitrary XPath
g arbitrary qualifier

Rel=>Abs If pl = p2, then /pl = /p2.

Adjunct If pl = p2 and pis arelative, then pl/p = p2/p.
If pl = p2 and pl,p2 relative, then p/pl = p/p2.

If pl = p2,then pl[q] = p2[q] and p[pl] = p[p2].

Qualifier Flattening p[pl/p2] = p[pl[p2]]

ancestor-or-self::n = ancestor::n | self::n
descendant-or-self::n = descendant::n | self::n

p[pl =/p2] = p[pl[self::node() = /p2]]
p[pl ==/p2] = p[pl[self::node() == /p2]]

10

1. XPath Equivalence

Lemma 3.2. Let m and n be node tests, i.e. m and n are tag names or one of the rPath

constructs *, node (), or text ().

e Let a be one of the ares parent, ancestor, preceding, preceding-sibling, self,
following, or following-sibling. Then the following holds:

{/ if a = self and n = node()
/a .. —

1 otherwise

e Let a be the preceding or ancestor axis. Then the following equivalences hold:

/self::node() [child::m] if a = ancestor and n = node()

/child: :m/a::n = ,
1 otherwise

/child::m if a = ancestor and n = node()

1 otherwise

/child: :m[a::n] = {

11

2. No Looking Back

Dual backward forward

parent

ancestor
ancestor-or-self
preceding
preceding-sibling

Thus: dual(parent) = child
dual(following) = preceding
etc.

Rewrite rule #1 (p,s: relative paths, ax: reverse axis)

p[ax::m/s] ->
p[/descendant: :m[s]/dual(ax)::node() == self::node()]

12

Rewrite rule #1 (p,s: relative paths, ax: reverse axis)

p[ax::m/s] ->
p[/descendant: :m[s]/dual(ax): :node() == self::node()]

T T

any “m[s]-node” but, via dual axis, must
in the tree reach context node

E.g. ax = ancestor

p[ancestor::m] ->
p[/descendant: :m/descendant: :node()==self::node()]

“any m-node from which the context node can be reached via descendant,
must be an ancestor of the context node.”

13

Rewrite rule #1 (p,s: relative paths, ax: reverse axis)

p[ax::m/s] ->
p[/descendant: :m[s]/dual(ax)::node() == self::node()]

T T

any “m[s]-node” but, via dual axis, must
in the tree reach context node

E.g. ax = preceding-sibling

p[preceding-sibling::mj] > 4
p[/descendant::m/following-sibling::node()==self::node()]}

“any m-node from which the context node can be reached via following-sibling,
must be a preceding-sibling of the context node.”

14

Rewrite rule #1 (p,s: relative paths, ax: reverse axis)

p[ax::m/s] ->
p[/descendant: :m[s]/dual(ax)::node() == self::node()]

T T

any “m[s]-node” but, via dual axis, must
in the tree reach context node

E.g. ax=preceding-sibling

p[preceding-sibling::mj] > 4
p[/descendant::m/following-sibling::node()==self::node()]}

“any m-node from which the context node can be reached via following-sibling,
must be a preceding-sibling of the context node.”

Similar for parent and preceding. (ancestor-or-self not really needed. Why?)

15

Rewrite rule #1 (p,s: relative paths, ax: reverse axis)

p[ax::m/s] >
p[/descendant: :m[s]/dual(ax)::node() == self::node()]

—»—— navigation in left—hand side of equivalence o

- — - - pavigation in right—hand side of equivalence

o S
root node RS
. /Ov /
O
O context node R

. selected nodes

Rewrite rule #1 (p,s: relative paths, ax: reverse axis)

p[ax::m/s] ->
p[/descendant: :m[s]/dual(ax)::node() == self::node()]

Removes first reverse axis inside a filter (qualifier).

Use qualifier flattening to replace *any* reverse axis

from inside a filter.
Quialifier Flattening p[p1/p2] = p[pllp2]]

Similar rules for absolute paths:

/p/fAx::n/ax::m = /descendant::m[dual(ax)::n == /p/fAx::n]

/TAXZ n/ax: tm = /descendant: :m[dual(ax)::n == /fAx::n]

Rewrite rules #2 and #2a

17

E.Q.
/descendant: :price/preceding: :name

IS rewritten via Rule #2a into:

/descendant: -name[following: :price==/descendant: :price]

Similar rules for absolute paths:

/p/fAx::n/ax::m = /descendant::m[dual(ax)::n == /p/fAx::n]

/TAXZ n/ax: tm = /descendant: :m[dual(ax)::n == /fAx::n]

Rewrite rules #2 and #2a

18

E.Q.
/descendant: :price/preceding: :name
IS rewritten via Rule #2a into:

/descendant: -name[following: :price==/descendant: :price]

|

Not needed, in this
example.

Of course, the “join” can be removed in this example:

/descendant: :name[following: :price]

Similar rules for absolute paths:

/p/fAx::n/ax::m = /descendant::m[dual(ax)::n == /p/fAx::n]

/TAXZ n/ax: tm = /descendant: :m[dual(ax)::n == /fAx::n]

Rewrite rules #2 and #2a

19

E.Q.
/descendant: :journal[child::title]/descendant: :price/preceding: :name
becomes

/descendant: :name[following: price==
/descendant: : journal[child::title]/descendant: :price]

Can you avoide the join, also for this example??

Similar rules for absolute paths:

/p/fAx::n/ax::m = /descendant::m[dual(ax)::n == /p/fAx::n]

/TAXZ n/ax: tm = /descendant: :m[dual(ax)::n == /fAx::n]

Rewrite rules #2 and #2a

20

path ::== path | path | / path | path / path | path [qualif 1 | axis :: nodetest | L .

qualif := qualif and qualif | qualif or qualif | C qualif) |
path = path | path == path | path .

aris ::= reverse_axis | forward_azxis .
reverse_axis ::= parent | ancestor | ancestor-or-self |
preceding | preceding-sibling .
forward_axis := self | child | descendant | descendant-or-self |
following | following-sibling .
nodetest ::= tagname | * | text () | node() .

(1)

(2)
(28)

p[ax::m/s] ->

p[/descendant::m[s]/dual(ax): :node() == self::node()]
/p/fAx::n/ax::m = /descendant::m[dual(ax)::n == /p/fAx::n]
/TAXZ n/ax: tm = /descendant: :m[dual(ax)::n == /fAx::n]

Rules (1),(2),(2a) suffice to remove ALL backward axes from above queries!
Why?

- Size Increase?

- How many joins?

21

2. No Looking Back

Dual backward forward
parent
ancestor not
——aReesteor—or—set—
N needed
preceding

preceding-sibling

Joins (==) are expensive! (typically quadratic wrt data)

To obtain queries with fewer joins
consider the forward-axis left of the reverse-axis to be removed!

New rules will be of the form
p/forw/back = P _new

p/forw[back] = p_nhew

22

2. No Looking Back

Interaction of back=parent with forward axes:

descendant: : n/parent: :m = descendant-or-self::m[child: : n]

23

2. No Looking Back

Interaction of back=parent with forward axes:

descendant: : n/parent: :m = descendant-or-self::m[child: : n]

child::n/parent::m = self::m[child: :n]

24

2. No Looking Back

Interaction of back=parent with forward axes:

descendant: : n/parent: :m = descendant-or-self::m[child: : n]
child::n/parent::m = self::m[child: :n]
p/self::n/parent::m = plself::n]/parent::m

TN N T
U = W
R

25

2. No Looking Back

Interaction of back=parent with forward axes:

descendant: :n/parent: :
child::n/parent::m = self::m[child: :n]
p/self::n/parent::

p/following-sibling: :n/parent::

m = descendant-or-self::ml[child: : n]

m = p[self::n]/parent::m

m = p[following-sibling: :n]/parent::m

IS
R

(@]

— e

26

Interaction of back=parent with forward axes:

2. No Looking Back

descendant: :n/parent: :m =

child:

p/self:
p/following-sibling:
p/following:

:n/parent:
:n/parent:
:n/parent:

:n/parent:

o=

=

| p/ancestor-or-self::*x[following-sibling:

descendant-or-self::mlchild: : n]
self::m[child::n]
plself::n]/parent::m

:m = p[following-sibling: :n]/parent::m

:m = p/following: :m[child: :n]

:n]

o~ e —
-
] C«"_{ l'l\d‘ J
T e e e S—

~1

o

27

2. No Looking Back

Interaction of back=parent with forward axes:

descendant: : n/parent: :m = descendant-or-self::m[child: : n]

child::n/parent:
p/self::n/parent::
p/following-sibling: :n/parent:
p/following: :n/parent: :

descendant::n [parent::
child::n[parent::
p/self::n[parent:
p/following-sibling: :n[parent::
p/following: :n[parent::

:m = self::m[child: :n]

m = p[self::n]/parent::m

:m = p[following-sibling: :n]/parent::m

m = p/following: :m[child: :n]

| p/ancestor-or-self::*x[following-sibling:

m] = descendant-or-self::m/child::n

m] = self::m/child::n

:m] = plparent::m]/self::n

m] = plparent::m]/following-sibling: :n
m] = p/following: :m/child::n
| p/ancestor-or-self: :*[parent: :ml]

/following-sibling::n

:n]

—_
L — —

o~ e —
-
] C«"_{ l'l\d‘ J
T e e e S—

~1

o

o = o O
—_— e’ e e

28

2. No Looking Back

Interaction of back=ancestor with forward axes:

p/descendant: : n/ancestor: :m = p[descendant: :n] /ancestor::m

| p/descendant-or-self: :m[descendant: :n]

(13)

29

2. No Looking Back

Interaction of back=ancestor with forward axes:

p/descendant: : n/ancestor: :m = p[descendant: :n] /ancestor::m
| p/descendant-or-self: :m[descendant: :n]

/descendant: :n/ancestor::m = /descendant-or-self: :m[descendant: : n]

(13)

(13a)

30

2. No Looking Back

Interaction of back=ancestor with forward axes:

p/descendant: : n/ancestor: :m = p[descendant: :n] /ancestor::m
| p/descendant-or-self: :m[descendant: :n]
/descendant: :n/ancestor::m = /descendant-or-self::m[descendant: : n]

p/child::n/ancestor::m = pl[child::n]/ancestor-or-self::m

(13)

(13a)
(14)

31

2. No Looking Back

Interaction of back=ancestor with forward axes:

p/descendant: : n/ancestor:

/descendant: : n/ancestor:
p/child: :n/ancestor:

p/self::n/ancestor::

:m = pldescendant: :n] /ancestor: :m

| p/descendant-or-self: :m[descendant: :n]

:m = /descendant-or-self::m[descendant: : n]

:m = plchild: :n]/ancestor-or-self: :m

(13)
(13a)
(14)
(15)

32

2. No Looking Back

Interaction of back=ancestor with forward axes:

p/descendant: : n/ancestor: :

/descendant: :n/ancestor: :
p/child::n/ancestor::
p/self::n/ancestor::

p/following-sibling: :n/ancestor::

m = p[descendant: : n] /ancestor: :m (13)

| p/descendant-or-self: :m[descendant: :n]

m = /descendant-or-self::m[descendant: :n] (13a)
m = plchild::n]/ancestor-or-self::m (14)
m = plself::n]/ancestor::m (15)
nzzzp[followingigigiigéQ:n]/ancestor::nz (16)

33

2. No Looking Back

Interaction of back=ancestor with forward axes:

p/descendant::n/ancestor::n155p[descendant::n]/ancestor::nz (13)

| p/descendant-or-self: :m[descendant: :n]

/descendant: :n/ancestor::m = /descendant-or-self::m[descendant: : n] (13a)
p/child::n/ancestor::m = plchild::n]/ancestor-or-self::m (14)
p/self::n/ancestor::nLEEp[self::n]/éggg;;gf::nl (15)

p/following—sibling::n/ancestor::nzEzp[followingigigilgéG:n]/ancestor::nl (16)

p/following::n/ancestor::nzzzp/following::7n[descenda££:i;ﬁ ----------- (17)

| p/ancestor-or-self: :x

[following-sibling: : */descendant-or-self: :n]

/ancestor::m

Similar rules for ancestor in a filters.

2. No Looking Back

Interaction of back=preceding with forward axes:

p/descendant: : n/preceding:

/descendant: : n/preceding: :

p/child: :n/preceding: :

p/self::n/preceding:
p/following-sibling: :n/preceding: :

p/following: :n/preceding: :

:m = pldescendant: :n] /preceding: : m (33)

| p/child: : *
[following-sibling: :*/descendant-or-self: :n]
/descendant-or-self::m
m = /descendant : : m[following: : n] (33a)
m = plchild::n]/preceding::m (34)
|p/child::*[féiigéigé:éibling::n]

/descendant-or-self::m

:m = plself::n]/preceding: :m (35)

|p/following—sibling::*[fdiigaiﬁé:éibling::n]
/descendant-or-self::m
| plfollowing-sibling: :n]/descendant-or-self::m
m = p[following: :n]/preceding: :m (37)

| p/following: :m[following: :n]

| p[following: :n]/descendant-or-self: :m

35

! !
n)"??-. [[
|
P \ D |
«%\ Y’ vrp
@O‘; | child |
®%' , /“ .
b= % : = or -)follovulng sibling
k) 3 c |
2 . ' . Q=
0] [} | ' \ "\
Y o Y o ! :
0 I 0 . Y | Y
o} I : I
go) go; + descendant-or—-self
n ‘ n ’ L n

preceding

p/descendant: :n/preceding: :m = p[descendant: :n]/preceding: :m

| p/child::*[following-sibling: :*/descendant-or-self::n]/descendant-or-self::m

36

! !
m m I |
|
P ‘ P |
< \ \ A
A l
o, @ ~ @
. < /.
b= ?Q : + or -/)follcbw:Lng sibling
- o s j ‘
2 o : . s @
0] 0] | ! \ "
Y o Y © : :
0 | 0 . Y . Y
() | O ‘ I
£o, go; - descendant-or—-self
n ‘ n ’ KL n

preceding

p/descendant: :n/preceding: :m = p[descendant: :n]/preceding: :m

| p :*¥[following-sibling: : */descendant-or-self: :n]/descendant-or-self: :m

Wrong, | think!
Should be descendant instead!

37

2. No Looking Back

/descendant: :price/preceding: :name

IS rewritten via Rule #2a into:

/descendant: :name[fol lowing: :price==/descendant: :price]

Now, let us use Rule (33a)

/descendant: :n/preceding::m =2 /descendant::m[following::n]

We obtain

/descendant: :name[following: :price]

38

|/descendant: :price/preceding: :name

becomes

/descendant: :name[following: price==
/descendant: - journal[child::title]/descendant: :price]

Rule (33a)
/descendant: :n/preceding::m =» /descendant::m[following::n]
doesn’'t work because descendant is absolute here.
Rule (33):
descendant::n/preceding::m = p[descendant::n]/preceding::m
| p/child::-*[following-sibling::*/descendant-or-self::n]
/descendant-or-self::m

We obtain

p[descendant: :price]/preceding: :name
| p/child::*[following-sibling::*/descendant-or-self::price]
/descendant-or-self: -name

39

/descendant i/descendant::price/preceding::name
becomes

/descendant: :name[following: price==
/descendant: - journal[child::title]/descendant: :price]

Rule (33a)
/descendant: :n/preceding::m =» /descendant::m[following::n]
doesn’t work because descendant is absolute here.
Rule (33):
p/descendant: :n/preceding::m = p[descendant::n]/preceding::m
| p/child::-*[following-sibling::*/descendant-or-self::n]
/descendant-or-self::m

- Rule (33a) with n = journal[child::title][descendant: :price]

preceding: :name
ng-sibling::*/descendant-or-self: :price]
/descendant-or-self: :name

40

/descendant |/descendant: :price/preceding: :name

becomes

/descendant: :name[following: price==
/descendant: - journal[child::title]/descendant: :price]

Rule (33a)
/descendant: :n/preceding::m = /descendant::m[following::n]

doesn’t work because descendant is absolute here.

/descendant: :name[following::journal[child::title][descendant: :price]]
| p/child::*[following-sibling::*/descendant-or-self::price]
/descendant-or-self: name

- Rule (33a) with n = journal[child::title][descendant: :price]

J/preceding: :name
wing-sibling: :*/descendant-or-self: :price]

/descendant-or-self: :name

41

/descendant iipreceding::name

becomes Y

/descendant::na ollowing::price==

/descendant: - journal[child::title]/descendant: :price]

Rule (33a) \
/descendant: :n/preceding::m =» /descendant::m[following::n]
toestworkbecatse-deseendantisabselte-here- seems it does work! ©

\

/descendant: :name[following::journal[child::title][desgendant: :price]]
| p/child::*[following-sibling::*/descendant-oy-self::price]
/descendant-or-self: name

What about this one:

/descendant: :name[following::journal[child::title]/descendant: :price]
42

Theorem
(from D. Olteanu, H. Meuss, T. Furche, F. Bry
XPath: Looking Forward. EDBT Workshops 2002: 109-127)

Given an XPath expression p that has no joins of the form (pl1 == p2) with
both pl,p2 relative, an equivalent expression u without reverse axes
can be computed.

Time needed: at most exponential in length of p
Length of u: at most exponential in length of p

(moreover: no joins are introduced when computing u)

Questions
—> Can you find a subclass for which Time to compute u is linear or polynomial?

- What is the problem with joins (p1 == p2) for removal of reverse axes?

43

3. XPath Containment Test

Given two XPath expressions p, Q:
Are all nodes selected by p, also selected by g? (on any document)
(p “contained in” q)

Has many applications! ﬁ_ Boolean query
Want to select documents that “match p”.

- If a document matches p, and p contained in g,

then we know the document also matches q!

- If a document does not match g, and p contained in q,
then we know that document does not match p!

Applications

=» Decrease online-time of publish/subscribe systems based on XPath

=>» Decrease query-time by making use of materialized intermediate results
=» Optimization by ruling out queries with empty result set

etc, etc

44

3. XPath Containment Test

Given two XPath expressions p, g

“O-containment” For every tree, if p selects a node then so does q.
PCSoQ

“1-containment” For every tree, all nodes selected by p are also selected by g.
PC,q

“2-containment” For every tree, and every context node N,
p<C,Q all nodes selected by p starting from N,
are also selected by g starting from N.

1. Inclusion on Booleans
_ start from root
2. Inclusion on Node Sets

3. Inclusion on Node Relations

(If only child and descendant axes are allowed
then C, and C, are the same! -- Why?)

45

3. XPath Containment Test

Given two XPath expressions p, g

“O-containment” For every tree, if p selects a node then so does q.

PCSoQ
“1-containment” For every tree, all nodes selected by p are also selected by g.
PC,q

Question

Given p, g and the fact p C; q,
how can you determine from a result set of nodes for g,
the correct result set of nodes for p?

46

3. XPath Containment Test

Given two XPath expressions p, g
Sometimes we want to test containment wrt a given DTD:

b =/a/b//d

q =/a//c (\ Boolean!

Want to check if p &, Q.
NO!

But, what if documents are valid wrt to this DTD?

O —T —o

root > a*

a - b* | c*
b 2> d+c+

C - b?c?

PTIME XD(/,//.%) 21

XP(/,[].*) (see [19])
XP{;" f/ T) 2], with fixed bounded 2. XPath

RN

SXICs [9)

XP(/, //) + DTDs [22] Containment Test

XP[/,[]] + DTDs [22]

CONP XP{;'F._ Jr'rlf'rl. [:. *) [19:
XP(/, /1) XP(/L), XP(/ L)) [22]
XP(/.[]) + DTDs [22]

XP(//.[]) + DTDs [22] from:

INE XP(/,//.1l.]) + existential variables
+ path equality + ancestor-or-self .
axis + fixed bounded SXICs [9] T. Schwentick

XP(/,//.[].*.|) + existential variables XPath query containment.
+ all backward axes + fixed b led
Koy o mes it homded) 51GMOD Record 33(1): 101-109 (2004)
XP(/, f}".-[:.) + existential variables
with inequality [22]

PSPACE | XP(/.//.[].*.]) and XP(/.//.]) if the

a-l.llﬁl‘lzl.ln_‘.t is finite [22]
XP(/.//.]].*.|) + wvariables with

XPath semantics [22]

EXPTIME | XP(/.//.[].|) + existential variables +
bounded SXICs [9]

XP(/.//.[].*.|) + DTDs [22]
XP(/.//.]) + DTDs [22]

XP(/,//,[], %) + DTDs [22]

Undecidable | XP(/, //.[].|) + existential variables +
unbounded SXICs [9]
XP(/,//.[].]) + existential variables +

bounded SXICs + DTDs [9]
XP(/,//.[].%,]) + nodeset equality +

Hillli)lu DTDs [22]
XP(/,//.[].#,|) + existential variables

with inequality[22]

Pattern trees a

Eg. p = a[.//d]/*//c d .
<
Note: child order has no meaning in) .
selection node (unique)
pattern trees!

Test C; (node set inclusion) using C, (Boolean inclusion)
- Simply add a new node below the selection node

New tree is Boolean (no selection node) / \

d *
In a given XML tree: l

pattern matches / does not match.

49

3. XPath Containment Test

4 techniques of testing XPath (Boolean) containment:

(1) The Canonical Model Technique
(2) The Homomorphism Technique
(3) The Automaton Technique

(4) The Chase Technique

50

3. XPath Containment Test
Canonical Model - XPath(/,77/,[1.,7)

Idea: if there exists a tree that matches p but not g, then
such a tree exists of size polynomial in the size of p an q.

Simple: remember, if you know that the XML document is only of height 5,
then //a/b/*/c could be enumerated by /a/b/*/c | [*/albl*Ic | [*[*[albl*Ic | [*/*[*/a...

_Y_I

Similarly, we try to construct a counter example tree, by
replacing in p

N = length of
- every * by some new symbol “z” longest */../* chain
> every /I by z/,zlzl, zlzlzl, ... zlz]..Iz] in g

H_/

N+1 many z’'s

51

3. XPath Containment Test

Canonical Model - XPath(/,/7/,[1.,%)

Example |a

p’'s patter tree

Test for a a a
g-match: | ! |

Formally, must test
1 and 2 more z’s
at right branch of
each of the trees.

52

3. XPath Containment Test

Homomorphism h maps each node of g’'s query tree Q
to a node of p’s query tree P such that

(1) root of Q is mapped to root of P
(2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
(3) if (u,v) is descendant-edge of Q, then
h(v) is a “below” h(u) in P
(4) ifuis labeled by “e” (not *), then h(u) is also labeled by “e”.

p,q expressions in XPath(/,/7/,[1)

Theorem
p Cyq ifandonlyif thereis a homomorphism from Q to P.

53

3. XPath Containment Test

Homomorphism h maps each node of g’s query tree Q
to a node of p’s query tree P such that

0's patter tree g’s patter tree

(1) root of Q is mapped to root of P
(2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
(3) if (u,v) is descendant-edge of Q, then
h(v) is a “below” h(u) in P
(4) if u is labeled by “e” (not *), then h(u) is also labeled by “e”.

54

3. XPath Containment Test

Homomorphism h maps each node of g’s query tree Q
to a node of p’s query tree P such that

0's patter tree g’s patter tree

(1) root of Q is mapped to root of P
(2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
(3) if (u,v) is descendant-edge of Q, then
h(v) is a “below” h(u) in P
(4) if u is labeled by “e” (not *), then h(u) is also labeled by “e”.

55

3. XPath Containment Test

Homomorphism h maps each node of g’s query tree Q
to a node of p’s query tree P such that

a h
<

| a
b 2N

/\/*

d . h .
e

g’s patter tree

p’'s patter tree

(1) root of Q is mapped to root of P
(2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
(3) if (u,v) is descendant-edge of Q, then
h(v) is a “below” h(u) in P
(4) if u is labeled by “e” (not *), then h(u) is also labeled by “e”.

56

3. XPath Containment Test

Homomorphism h maps each node of g’s query tree Q
to a node of p’s query tree P such that

h

h 3<

b 2N
/\—d/*
d *. h .
c<h/

g’s patter tree

p’'s patter tree

=» hom. h exists from Q to P, thus p C, g must hold!

(1) root of Q is mapped to root of P
(2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
(3) if (u,v) is descendant-edge of Q, then
h(v) is a “below” h(u) in P
(4) if u is labeled by “e” (not *), then h(u) is also labeled by “e”.

57

3. XPath Containment Test

Homomorphism h maps each node of g's query tree Q
to a node of p’s query tree P such that

(1) root of Q is mapped to root of P
(2) if (u,v) is child-edge of Q then (h(u),h(v)) is child-edge of P
(3) if (u,v) is descendant-edge of Q, then
h(v) is a “below” h(u) in P
(4) if u is labeled by “e” (not *), then h(u) is also labeled by “e”.

p,q expressions in XPath(/,/77/,[1)

Theorem
pCyq ifandonlyif thereis a homomorphism from Q to P.

Cave If we add the star (*) then homomorphism need not exist!

- there are p,qe XPath(/,//,[1.*) suchthat pC,q and
there is no homomorphism from Qto P ®

58

3. XPath Containment Test

[/a//b[./b[./b/d]//c]/*/c] [/a//b[./b/d]/*/ic]
A <«— h a
b b
SN — N
b * b *
N]
b C C C C
|
C

IS there a homomorphism??
Cave If we add the star (*) then homomorphism need not exist!

- there are p,qe XPath(/,//,[1.*) suchthat pC,q and
there is no homomorphism from Qto P ®

59

o= /a[.//b[c/*//d])/b[c//d]/b[c/d]]
q= /a[.//b[c/*//d]/b[c/d]]

a
|
b

o
b C

e

b C *

|
C d d

d

b

d

b

C

*. - Where to map??

d

Cave If we add the star (*) then homomorphism need not exist!

- thereare p,q e XPath(/,//,[1.,>) suchthat pC,q and
there is no homomorphism from Qto P ®

o= /a[.//b[c/*//d])/b[c//d]/b[c/d]]
q= /a[.//b[c/*//d]/b[c/d]]

Is p contained in q??

a > Test this, using the
| | canonical model!!
b b
- d
b C b C
/
b C x c * - Where to map??
™ |
L d d d d
d

Cave If we add the star (*) then homomorphism need not exist!

- thereare p,q e XPath(/,//,[1.,>) suchthat pC,q and
there is no homomorphism from Qto P ®

61

Let’s check the web... = YES pcontainedin q!

) XPath Containment and Equivalence Implementation - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

<]IEI - I_; - @ i:i @ |_|_| http://www.ifis.uni-luebeck.de/projects/XPathContainment/containmentFrame. htm \ Vi © Go |_|C|, |

Getting Started 5 Latest Headlines

University of Liibeck, Institute of Information Systems, www.ifis. uni-luebeck de
_ Query p * /q[a[.//b[e/*//d]/b[c//d]/b[c/d]]]
XPath-Containment Checker

Implemented by Khaled Haj-Yahya (khaled.h at gmx.de)
Supervised by B.C.Hammerschmidt (former)

Query q = /q[a[.//b[c¢/*//d]/b[c/d]]]

PSq

This 1s a Java implementation of the theoretical work of XPath R i
Gerome Miklau and Dan Suciu (Containment and Equivalence H S el b diblcidbicid]T

for a Fragment of XPath. J_ ACM 51(1): 2-45 (2004) and Containment XPath-Query q: gfal/blc///dyblc/d]]]

and Equivalence for a Fragment of XPath. PODS 2002) Submit Query

Instructions:

Enter two XPath expressions in the abbreviated syntax and press the
button.

For instance:

if p=/a[b] and p' = /a[*]

the algorithm will detect that p is a subset of p'.

Or if p =/a//*/b and p' = /a/*//b
the algorithm will detect that p is equal to p'
because the subset equation holds in both directions.

Download the Java Source Code

Download Khaled's bachelor thesis (in German)

If there is no application on the right side please contact
our system administrator: webmaster at ifis.uni-luebeck.de.

3. XPath Containment Test

Automaton Technique

Recall: for any DTD there is a tree automaton which
recognized the corresponding trees.

Similarly, for any XPath(/,//,[],*,]) expression ex we can
construct a (non-deterministic bottom-up) tree automaton A
which accepts a tree if and only if ex matches the tree.

Theorem
Containment test of XPath(/,77/,[1,%,]) in the presence of DTDs
can be solved in EXPTIME.

Exponential (deterministic) time

Blow-up due to non-determinism of tree automaton.

BUT: no hope for improvement:
The problem is actually complete for EXPTIME.

63

3. XPath Containment Test

Automaton Technique

Recall: for any DTD there is a tree automaton which
recognized the corresponding trees.

Similarly, for any XPath(/,//,[],*,]) expression ex we can
construct a (non-deterministic bottom-up) tree automaton A
which accepts a tree if and only if ex matches the tree.

Theorem
Containment test of XPath(/,77/,[1,%,]) in the presence of DTDs

can be solved in EXPTIME. / /

Union of automata Intersection of automata
(“product construction”)

Proof Idea construct automaton for all possible
counter example trees. Test if this automaton accepts any tree.

64

3. XPath Containment Test

Automaton Technique

Recall: for any DTD there is a tree automaton which
recognized the corresponding trees.

Similarly, for any XPath(/,//,[],*,]) expression ex we can
construct a (non-deterministic bottom-up) tree automaton A
which accepts a tree if and only if ex matches the tree.

Theorem
Containment test of XPath(/,77/,[1,%,]) in the presence of DTDs

can be solved in EXPTIME.
=» Automata can also be

Tested for Finiteness!

Emptiness test Is p C, q, for all trees but
for automata finitely many exceptions?
| t
Proof Idea construct automaton for all possible solvable!

counter example trees. Test if this automaton accepts any tree.

65

3. XPath Containment Test

Chase Technigue -- 1979 relational DB'’s to check query containment
in the presence of integrity constraints.

(“the chase”
Example « extends the relational
root 3 S* | o homomorphsim
DID E= @ c technique)
b - d+c+
C 2> Db7?c?
p = /a/b//d _ _
q = /a//c Is p contained in g for E-conform documents?

First Possibility: use tree automata

Construct automata Ap, Aq, AE

Construct Bq for the complement of Ag (=not q)
Intersect Bq with Ap with AE (gives automaton A)
Check if A accepts any tree.

N 2%

66

3. XPath Containment Test

Chase Technigue -- 1979 relational DB'’s to check query containment
in the presence of integrity constraints.

(“the chase”
Example « extends the relational
root 3 g | homomorphsim
DTD E= 2 * c* technique)

b - d+c+

C - b?c?
p = /a/b//d _ _ 5
q = /a//c Is p contained in g for E-conform documents”

a

Each b-element has a d-child and a c-child |
=>» constraints b
cl: b>d “
c2. b->c q

p’'s pattern tree

67

3. XPath Containment Test

Chase Technigue -- 1979 relational DB'’s to check query containment
in the presence of integrity constraints.

(“the chase”
Example « extends the relational
root z S* | o homomorphsim
DID E= @ c technique)
b - d+c+
C 2> Db7?c?
p = /a/b//d _ _
q = /a//c Is p contained in g for E-conform documents?

Each b-element has a d-child and a c-child
=» constraints

b
cl: b>d R
d

c2: b>c d

a

C

p’'s pattern tree
after chasing with c1,c2

68

3. XPath Containment Test

Chase Technigue -- 1979 relational DB'’s to check query containment
in the presence of integrity constraints.

(“the chase”
Example « extends the relational
root 3 S* | o homomorphsim
DID E= @ c technique)
b - d+c+
C 2> Db7?c?
p = /a/b//d _ _
q = /a//c Is p contained in g for E-conform documents?

Each b-element has a d-child and a c-child

rl‘/h\a

=» constraints b “

c1: b>d IR o ‘

c2: b—->c d d C q's
p is contained in g pattern tree
in the presence « p’s pattern tree
of the DTD E after chasing with c1,c2

69

END
Lecture 9

