
XML and Databases

Sebastian Maneth
NICTA and UNSW

Lecture 6
Node Selecting Queries: XPath 1.0

CSE@UNSW -- Semester 1, 2009

2

Outline

1. XPath Data Model: 7 types of nodes

2. Simple Examples

3. Location Steps and Paths

4. Value Comparison, and Other Functions

3

XPath

Æ Query language to select (a sequence of) nodes of an XML document

Æ W3C Standard

Æ Most important XML query language: used in many
other standards such as XQuery, XSLT, XPointer, XLink, …

Æ Cave: version 2.0 is considerably more expressive than 1.0
We study XPath 1.0

Terminology: Instead of XPath “query” we often say XPath expression.

(An expression is the primary construction of the XPath grammar;
it matches the production Expr of the XPath grammar.)

4

Outline - Lectures

1. Introduction to XML, Encodings, Parsers
2. Memory Representations for XML: Space vs Access Speed
3. RDBMS Representation of XML
4. DTDs, Schemas, Regular Expressions, Ambiguity
5. XML Validation using Automata

6. Node Selecting Queries: XPath

7. Tree Automata for Efficient XPath Evaluation, Parallel Evaluation
8. .XPath Properties: backward axes, containment test
9. Streaming Evaluation: how much memory do you need?
10. XPath Evaluation using RDBMS

11. XSLT – stylesheets and transform
12. XQuery – XML query language

X
P

ath

5

Outline - Assignments

1. Read XML, using DOM parser. Create document statistics.

2. SAX Parse into memory structure: Tree and DAG

3. Map XML into RDBMS Æ 20. April

4. XPath evaluation Æ 11. May

5. XPath into SQL Translation Æ 25. June

6

XPath Data Model

Evaluate Q
on D (in XPath

data model)

XPath Query Q

XML document D

sequence of
result nodes

Document D is modeled as a tree.

THERE ARE SEVEN TYPES OF NODES in the XPath Data Model:

Æ root nodes
Æ element nodes
Æ text nodes
Æ attribute nodes
Æ namespace nodes
Æ processing instruction nodes
Æ comment nodes

7 node
types

7

XPath Data Model

XPath Query Q

XML document D

sequence of
result nodes

Document D is modeled as a tree.

THERE ARE SEVEN TYPES OF NODES in the XPath Data Model:

Æ root nodes
Æ element nodes
Æ text nodes
Æ attribute nodes
Æ namespace nodes
Æ processing instruction nodes
Æ comment nodes

7 node
types

for rest of lecture:
this is ALL you need
to know about
XML nodes! ☺

Evaluate Q
on D (in XPath

data model)

8

XPath Data Model

Æ root nodes
Æ element nodes
Æ text nodes
Æ attribute nodes
Æ namespace nodes
Æ processing instruction nodes
Æ comment nodes

for rest of lecture:
this is ALL you need
to know about
XML nodes! ☺

5.2.1 Unique IDs
An element node may have a unique identifier (ID).
Æ Value of the attribute that is declared in the DTD as type ID.
Æ No two elements in a document may have the same unique ID.
Æ If an XML processor reports two elements in a document as having the
same unique ID (which is possible only if the document is invalid)
then the second element in doc. order must be treated as not having a unique ID.

NOTE: If a document has no DTD, then no element will have a unique ID.

9

XPath Data Model

Document D is modeled as a tree.

For each node a string-value can be determined. (sometimes part of the node,
sometimes computed from descendants, sometimes expanded-name:
local name + namespace URI)

There is an order, document order, defined on all nodes. Æ corresponds
to the position of the first character of the XML repr of the node, in the document
(after entity expansion)

Æ Attribute and namespace nodes appear
before the children of an element.

Æ Order of attribute and namespace nodes is implementation-dependent

Every node (besides root) has
exactly one parent (which is a root or an element node)

10

XPath Result Sequences

Evaluate Q
on D (in XPath

data model)

XPath Query Q

XML document D

sequence of
result nodes

Æ Ordered in document order
Æ Contains no duplicates

11

Simple Examples
In abbreviated XPath syntax.

Q0: /

Document:
<bib>
<book>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<title>Foundations of Databases</title>
<year>1995</year>

</book>
<book>
<author>Ullmann</author>
<title>Principles of Database and Knowledge Base Systems</title>
<year>1998</year>

</book>
</bib>

Selects the document root
(always the parent of the document element)

document root is virtual and
invisible, in this example.

If <?xml version="1.0"?>
is present, then it is returned
(as first entry)
in the result of Q0.

Note XPath Evaluators usually return the full subtree of the selected node.

12

Simple Examples
In abbreviated syntax.

Q1: /bib/book/year

Document:
<bib>
<book>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<title>Foundations of Databases</title>
<year>1995</year>

</book>
<book>
<author>Ullmann</author>
<title>Principles of Database and Knowledge Base Systems</title>
<year>1998</year>

</book>
</bib>

document element, if labeled bib

child nodes that are labeled book

child nodes that are labeled year

13

Simple Examples

Result of query Q1 =
(element) nodes N1, N2

subtree at N1 is <year>1995</year>
and subtree at N2 is <year>1998</year>

In abbreviated syntax.

Q1: /bib/book/year

Document:
<bib>
<book>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<title>Foundations of Databases</title>
<year>1995</year>

</book>
<book>
<author>Ullmann</author>
<title>Principles of Database and Knowledge Base Systems</title>
<year>1998</year>

</book>
</bib>

document element, if labeled bib

child nodes that are labeled book

child nodes that are labeled year

14

Simple Examples

descendant or self nodes
In abbreviated syntax.

Q2: //author

Document:
<bib>
<book>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<title>Foundations of Databases</title>
<year>1995</year>

</book>
<book>
<author>Ullmann</author>
<title>Principles of Database and Knowledge Base Systems</title>
<year>1998</year>

</book>
</bib>

relative to the
context-node
= root node

// is short for /descendant-or-self::node()/.
For example, //author is short for /descendant-or-self::node()/child::author

child nodes that are labeled author

15

Simple Examples

Descendant or self nodes
that are labeled author

In abbreviated syntax.

Q2: //author

Document:
<bib>
<book>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<title>Foundations of Databases</title>
<year>1995</year>

</book>
<book>
<author>Ullman</author>
<title>Principles of Database and Knowledge Base Systems</title>
<year>1998</year>

</book>
</bib>

Result of query Q2 =
sequence of (element) nodes
(N1, N2, N3, N4)

relative to the
context-node
= root node

// is short for /descendant-or-self::node()/.
For example, //author is short for /descendant-or-self::node()/child::author

16

Simple Examples
In abbreviated syntax.

Q3: /a/b//d

cd b d

c

a

b

de

bd

“b-child of a-doc. element”

17

Simple Examples
In abbreviated syntax.

Q3: /a/b//d

cd b d

c

a

b

de

bd

ALL d-nodes
in this subtree

“b-child of a-doc. element”

18

Simple Examples
In abbreviated syntax.

Q3: /a/b//d

cd b d

c

a

b

de

bd

ALL d-nodes
in this subtree

“b-child of a-doc. element”

19

Simple Examples
In abbreviated syntax.

Q4: /*/c

cd b d

c

a

b

dd

20

Simple Examples
In abbreviated syntax.

Q5: //c

cd b d

c

a

b

dd

21

Simple Examples
In abbreviated syntax.

Q6: //*

cd b d

c

a

b

dd

22

Abbreviations, so far
In abbreviated syntax.

/a is abbreviation for /child::a

An “Axis”

A “Nodetest”

//a is abbreviation for /descendant-or-self::node()/child::a

Æ Child and descendant-or-self are only 2 out of 12 possible axes.

An “Axis” is a sequence of nodes. It is evaluated relative to a context-node.

Other axes: Æ descendant
Æ parent
Æ ancestor-or-self
Æ ancestor
Æ following-sibling

Æ preceding-sibling
Æ attribute
Æ following
Æ preceding
Æ self

23

Abbreviations, so far
In abbreviated syntax.

/a is abbreviation for /child::a

An “Axis”

A “Nodetest”

//a is abbreviation for /descendant-or-self::node()/child::a
// is abbreviation for /descendant-or-self::node()/
. is abbreviation for self::node()
.. is abbreviation for parent::node()

Æ Child and descendant-or-self are only 2 out of 12 possible axes.

An “Axis” is a sequence of nodes. It is evaluated relative to a context-node.

Other axes: Æ descendant
Æ parent
Æ ancestor-or-self
Æ ancestor
Æ following-sibling

Æ preceding-sibling
Æ attribute
Æ following
Æ preceding
Æ self

24

Examples: Predicates
In abbreviated syntax.

Q7: //c[./b]

cd b d

c

a

b

dd

“has b-child” (context-nodes are all c-nodes…)

25

Examples: Predicates
In abbreviated syntax.

Q8: //c[./b]/d

cd b d

c

a

b

dd

“has b-child”

All d-children
of the context-node(s)

26

Examples: Predicates
In abbreviated syntax.

Q9: //c[./b]/d/..

cd b d

c

a

b

dd

“has b-child” select parent(s)
of context-node(s)

parent(s)
of the context-node(s)

Q9 selects c-nodes that “have a b-child AND a d-child”

27

Examples: Predicates
In abbreviated syntax.

Q9: //c[./b]/d/..

cd b d

c

a

b

dd

“has b-child” select parent(s)
of context-node(s)

parent(s)
of the context-node(s)

Q9 selects c-nodes that “have a b-child AND a d-child”

More direct way: //c[./b and ./d]

(same as
//c[./b]
on *this* tree..!)

28

Examples: Predicates
In abbreviated syntax.

Q9: //c[./b]/d/..

cd b d

c

a

b

dd

“has b-child” select parent(s)
of context-node(s)

parent(s)
of the context-node(s)

Q9 selects c-nodes that “have a b-child AND a d-child”

More direct way: //c[./b and ./d]

(same as
//c[./b]
on *this* tree..!)

29

Examples: Predicates
In abbreviated syntax.

Q9: //c[b]/d/..

cd b d

c

a

b

dd

“has b-child” select parent(s)
of context-node(s)

parent(s)
of the context-node(s)

Q9 selects c-nodes that “have a b-child AND a d-child”

More direct way: //c[b and d]

We do not need “./b” Æ self::node()/child::b equivalent to b

(same as
//c[./b]
on *this* tree..!)

30

Examples: Predicates (or “Filters”)
In abbreviated syntax.

//c[b and d]

cd b d

c

a

b

dd

c-nodes that “have a b-child AND a d-child”

A “Filter”
evaluates to true/false

31

Examples: Predicates (or “Filters”)
In abbreviated syntax.

//c[b and d]

cd b d

c

a

b

dd

Can use “not(…)” in a filter!

//c[not(b)]

Question

How to only select
the other c-node?

A “Filter”
evaluates to true/false

“does not have a b-child”

32

Examples: Predicates
In abbreviated syntax.

//c[b and d]

cd b d

c

a

b

dd

Can use “not(…)” in a filter!

//c[not(b)]

Question

How to only select
the other c-node?

A “Filter”
evaluates to true/false

Many more
possibilities, of course:

//c[parent::b]
//c[../../b]
//c[../d]

CAVE: what does
//c[../b] give??

33

Examples: Predicates
In abbreviated syntax.

//c[b and d]

cd b d

c

a

b

dd

Can use “not(…)” in a filter!

//c[not(b)]

Question

How to only select
the other c-node?

A “Filter”
evaluates to true/false

Many more
possibilities, of course:

//c[parent::b]
//c[../../b]
//c[../d]

CAVE: what does
//c[../b] give??

34

Examples: Predicates
In abbreviated syntax.

//c[b and d]

cd b d

c

a

b

dd

Can use “not(…)” in a filter!

//c[not(b)]

Question

How to only select
the other c-node?

A “Filter”
evaluates to true/false

Many more
possibilities, of course:

//c[parent::b]
//c[../../b]
//c[../d]

Î can you say
“c-node that has only d-children”?

35

Examples: Predicates
In abbreviated syntax.

//c[b and d]

cd b d

c

a

b

dd

Can use “not(…)” in a filter!

//c[not(b)]

Question

How to only select
the other c-node?

A “Filter”
evaluates to true/false

Many more
possibilities, of course:

//c[parent::b]
//c[../../b]
//c[../d]

Î can you say
“c-node that has only d-children”?

YES! needs a bit of logic… //c[not(child::*[not(self::d)])]

36

Examples: Predicates
In abbreviated syntax.

//c[not(b)]

cd b d

c

a

b

dd

//c[not(child::*[not(self::d)])]

“not the case that
all children are not labeled d”

holds if and only if

“all children are labeled d”

same as ..
on this tree

37

Examples: Predicates
In abbreviated syntax.

//c[not(b)]

cd b d

c

a

b

dd

//c[not(child::*[not(self::d)])]

“not the case that
all children are not labeled d”

holds if and only if

“all children are labeled d”

same as ..
on this tree

Duplicate elimination

//c[not(b)]/d/..

context-nodes
for parent selection (/..)

38

Examples: Predicates
In abbreviated syntax.

//c[not(b)]

cd b d

c

a

b

dd

//c[not(child::*[not(self::d)])]

“not the case that
all children are not labeled d”

holds if and only if

“all children are labeled d”

same as ..
on this tree

Duplicate elimination

//c[not(b)]/d/ancestor::*

context-nodes
for ancestor selection

39

Examples: Predicates
In abbreviated syntax.

//c[not(b)]

cd b d

c

a

b

dd

//c[not(child::*[not(self::d)])]

“not the case that
all children are not labeled d”

holds if and only if

“all children are labeled d”

same as ..
on this tree

Duplicate elimination

//c[not(b)]/d/ancestor::*

Equivalent one, without use of ancestor??

maybe
Æ //*[.//c[not(b)]]

40

Examples: Predicates
In abbreviated syntax.

//c[not(b)]

cd b d

c

a

b

dd

//c[not(child::*[not(self::d)])]

“not the case that
all children are not labeled d”

holds if and only if

“all children are labeled d”

same as ..
on this tree

Duplicate elimination

//c[not(b)]/d/ancestor::*

No use of ancestor?

maybe
Æ//*[.//c[not(b)]]
No.. /

How to select the c-node?

41

Examples: Predicates
In abbreviated syntax.

//c[not(b)]

cd b d

c

a

b

dd

//c[not(child::*[not(self::d)])]

“not the case that
all children are not labeled d”

holds if and only if

“all children are labeled d”

same as ..
on this tree

Duplicate elimination

//c[not(b)]/d/ancestor::*

maybe
Æ//*[.//c[not(b)]]
No.. /

How to select the c-node?

Æ//*[descendant-or-self::c[not(b)]]
No use of ancestor?

42

Examples: Predicates
In abbreviated syntax.

//c[not(b)]

cd b d

c

a

b

dd

//c[not(child::*[not(self::d)])]

“not the case that
all children are not labeled d”

holds if and only if

“all children are labeled d”

same as ..
on this tree

Duplicate elimination

//c[not(b)]/d/ancestor::*

maybe
Æ//*[.//c[not(b)]]
No.. /

How to select the c-node?

//*[.//c[not(b)] or not(child::*[not(self::d)]) and ./*]

“only d-children” “has child (not leaf)”

43

More Details

Evaluate Q
on D (in XPath

data model)

XPath Query Q

XML document D

sequence of
result nodes

NOT correct (at least not for intermediate expr’s)

An expression evaluates to an object, which has one of the following
four basic types

• node-set (an unordered collection of nodes w/o duplicates)
• boolean (true or false)
• number (a floating-point number)
• string (a sequence of UCS characters)

44

Location Steps & Paths
Æ A Location Path is a sequence of Location Steps

Location Paths
[1] LocationPath ::= RelativeLocationPath

| AbsoluteLocationPath

[2] AbsoluteLocationPath ::= '/' RelativeLocationPath?
| AbbreviatedAbsoluteLocationPath

[3] RelativeLocationPath ::= Step
| RelativeLocationPath '/' Step
| AbbreviatedRelativeLocationPath

Location Steps
[4] Step ::= AxisSpecifier NodeTest Predicate*

| AbbreviatedStep

[5] AxisSpecifier ::= AxisName '::‘
| AbbreviatedAxisSpecifier

Î Initial Context
will be is root node

45

Location Steps & Paths
Æ A Location Path is a sequence of Location Steps

Æ A Location Step is of the form

axis :: nodetest [Filter_1] [Filter_2] … [Filter_n]

Filters (aka predicates, (filter) expressions)
Æ evaluate to true/false
Æ XPath queries, evaluated with

context-node = current node

Boolean operators: and, or

Empty string/sequence are converted to false

46

Location Steps & Paths
Æ A Location Path is a sequence of Location Steps

Æ A Location Step is of the form

axis :: nodetest [Filter_1] [Filter_2] … [Filter_n]

Filters (aka predicates, (filter) expressions)
evaluate to true/false

nodetest: * or node-name (could be expanded Ænamespaces) or

text()
comment()
processing
-instruction(In)

node()

Example child::text() “select all text node children of the context node”

Æ
Æ
Æ

Æ

Æ the nodetest node() is true for any node.

attribute::* “select all attributes of the context node”

47

Location Steps & Paths
Æ A Location Path is a sequence of Location Steps

Æ A Location Step is of the form

axis :: nodetest [Filter_1] [Filter_2] … [Filter_n]

Filters (aka predicates, (filter) expressions)
evaluate to true/false

nodetest: * or node-name (could be expanded Ænamespaces) or

text()
comment()
processing
-instruction(In)

node()

Æ
Æ
Æ

Æ

Æ self
Æ child
Æ descendant-or-self
Æ descendant
Æ following
Æ following-sibling

Æ parent
Æ ancestor
Æ ancestor-or-self
Æ preceding
Æ preceding-sibling

12 Axes

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

48

Location Steps & Paths

Æ self
Æ child
Æ descendant-or-self
Æ descendant
Æ following
Æ following-sibling

Æ parent
Æ ancestor
Æ ancestor-or-self
Æ preceding
Æ preceding-sibling

Axis = a sequence of nodes (is evaluated relative to context-node)

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

cd b d

c

a

b

dd

49

Location Steps & Paths

Î self
Æ child
Æ descendant-or-self
Æ descendant
Æ following
Æ following-sibling

Æ parent
Æ ancestor
Æ ancestor-or-self
Æ preceding
Æ preceding-sibling

Axis = a sequence of nodes (is evaluated relative to context-node)

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

cd b d

c

a

b

dd

50

Location Steps & Paths

Æ self
Î child
Æ descendant-or-self
Æ descendant
Æ following
Æ following-sibling

Æ parent
Æ ancestor
Æ ancestor-or-self
Æ preceding
Æ preceding-sibling

Axis = a sequence of nodes (is evaluated relative to context-node)

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

cd b d

c

a

b

dd

51

Location Steps & Paths

Æ self
Æ child
Î descendant-or-self
Æ descendant
Æ following
Æ following-sibling

Æ parent
Æ ancestor
Æ ancestor-or-self
Æ preceding
Æ preceding-sibling

Axis = a sequence of nodes (is evaluated relative to context-node)

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

cd b d

c

a

b

dd

52

Location Steps & Paths

Æ self
Æ child
Æ descendant-or-self
Î descendant
Æ following
Æ following-sibling

Æ parent
Æ ancestor
Æ ancestor-or-self
Æ preceding
Æ preceding-sibling

Axis = a sequence of nodes (is evaluated relative to context-node)

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

cd b d

c

a

b

dd

53

Location Steps & Paths

Æ self
Æ child
Æ descendant-or-self
Æ descendant
Î following
Æ following-sibling

Æ parent
Æ ancestor
Æ ancestor-or-self
Æ preceding
Æ preceding-sibling

Axis = a sequence of nodes (is evaluated relative to context-node)

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

cd b d

c

a

b

dd

54

Location Steps & Paths

Æ self
Æ child
Æ descendant-or-self
Æ descendant
Æ following
Î following-sibling

Æ parent
Æ ancestor
Æ ancestor-or-self
Æ preceding
Æ preceding-sibling

Axis = a sequence of nodes (is evaluated relative to context-node)

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

cd b d

c

a

b

dd

dd

55

Location Steps & Paths

Æ self
Æ child
Æ descendant-or-self
Æ descendant
Æ following
Æ following-sibling

Î parent
Æ ancestor
Æ ancestor-or-self
Æ preceding
Æ preceding-sibling

Axis = a sequence of nodes (is evaluated relative to context-node)

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

cd b d

c

a

b

dd

dd

56

Location Steps & Paths

Æ self
Æ child
Æ descendant-or-self
Æ descendant
Æ following
Æ following-sibling

Æ parent
Î ancestor
Æ ancestor-or-self
Æ preceding
Æ preceding-sibling

Axis = a sequence of nodes (is evaluated relative to context-node)

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

cd b d

c

a

b

dd

dd

57

Location Steps & Paths

Æ self
Æ child
Æ descendant-or-self
Æ descendant
Æ following
Æ following-sibling

Æ parent
Æ ancestor
Î ancestor-or-self
Æ preceding
Æ preceding-sibling

Axis = a sequence of nodes (is evaluated relative to context-node)

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

cd b d

c

a

b

dd

dd

58

Location Steps & Paths

Æ self
Æ child
Æ descendant-or-self
Æ descendant
Æ following
Æ following-sibling

Æ parent
Æ ancestor
Æ ancestor-or-self
Î preceding
Æ preceding-sibling

Axis = a sequence of nodes (is evaluated relative to context-node)

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

cd b d

c

a

b

dd

dd

59

Location Steps & Paths

Æ self
Æ child
Æ descendant-or-self
Æ descendant
Æ following
Æ following-sibling

Æ parent
Æ ancestor
Æ ancestor-or-self
Æ preceding
Î preceding-sibling

Axis = a sequence of nodes (is evaluated relative to context-node)

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

cd b d

c

a

b

dd

dd

60

Location Steps & Paths

Æ self
Æ child
Æ descendant-or-self
Æ descendant
Æ following
Æ following-sibling

Æ parent
Æ ancestor
Æ ancestor-or-self
Æ preceding
Æ preceding-sibling

Axis = a sequence of nodes (is evaluated relative to context-node)

Æ attribute

Forward Axes: Backward Axes:

In doc order
reverse doc order

self

ancestor

descendant

pr
ec

ed
ing

following

61

Location Path Evaluation
Context of an XPath evaluation:

(1) context-node
(2) context position and size (both non-negative integers)
(3) set of variable bindings (= mappings from variable names to values)
(4) function library (= mapping from function names to functions)
(5) set of namespace declarations

(btw: context position is ≤ context size)

Application determines the Initial Context.

If path starts with “/”, then Initial Context has

Æ context-node = root node
Æ context-position = context-size = 1

62

Location Path Semantics
Æ A Location Path P is a sequence of Location Steps

a_1 :: n_1 [F_1_1] [F_1_2] … [F_1_n1]
/ a_2 :: n_2 [F_2_1] [F_2_2] … [F_2_n2]

/ a_m :: n_m [F_m_1] [F_m_2] … [F_m_nm]

S0 = initial sequence of context-nodes

(1) (to each) context-node N in S0, apply axis a_1: gives sequence S1 of nodes
(2) remove from S1 any node M for which

Æ test n_1 evaluates to false
Æ any of filters F_1_1,…,F_1_n1 evaluate to false.

Apply steps (1)&(2) for step 2, to botain from S1 the sequence S2
3, S2 S3
… … …
m S{m-1} Sm

= result of P

63

No Looking Back

Backward Axes are not needed!!

Æ possible to rewrite every XPath query into
an equivalent one that does not use backward axes.

Very nice result! ☺

Can you see how this could be done?

Æ We saw an example of removing ancestor axis. But, of course the
rewritten query must be the same ON EVERY possible tree!!

Questions how much larger does the query get, when you remove
all backward axis?
Is this useful for efficient query evaluation?!

64

Attribute Axis
How to
Æ test attribute nodes

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

Examples

//attribute::*

Result:
b="1"
a="1"
a="2"
a="1.0"

Remember, these are just NODEs.

//attribute::*/. gives same result

And //attribute::a/.. gives

<b a="1"><d/><c a="2"><d/><d/></c>
<c a="2"><d/><d/></c>
<c a="1.0"><d/></c>

65

Attribute Axis & Value Tests
How to
Æ test attribute values

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

Examples

//*[attribute::a=1]

(selects the two red nodes)

66

Attribute Axis & Value Tests
How to
Æ test attribute values

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

Examples

//*[attribute::a=1]

Watch out

//*[attribute::a=“1”] only gives

//*[attribute::a=“1.0”] only gives

(selects the two red nodes)

string comparison

number (float)
comparison

67

Attribute Axis & Value Tests
How to
Æ test attribute values

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

Examples

//*[attribute::a=1]

Watch out

//*[attribute::a=“1”] only gives

//*[attribute::a=“1.0”] only gives

(selects the two red nodes)

string comparison

number (float)
comparison

@

attribute::
is abbreviated by @

68

Attribute Axis & Value Tests
How to
Æ test attribute values

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

Examples

//*[attribute::a=1]

Watch out

//*[attribute::a=“1”] only gives

//*[attribute::a=“1.0”] only gives

(selects the two red nodes)

string comparison

number (float)
comparison

//*[@a!="1"] selects both c-nodes
//*[@a>1] selects only left c-node
//*[@a=//@b] selects what?? (hint: “=“ is string comp. here)

@

attribute::
is abbreviated by @

69

Tests in Filters
• or
• and
• =, !=
• <=, <, >=, >

The operators are all left associative.
For example, 3 > 2 > 1 is equivalent to (3 > 2) > 1, which evaluates to false.

But, 3 > 2 > 0.9 evaluates to true. Can you see why?

For two strings u,v

u<=v
u<v
u>=v
u>v

Always return false!
Æ Unless both u and v are numbers.

[“1.0”>=“1”] evaluates to true.

Boolean true
coerced to a float 1.0

70

Text Nodes
How
Æ test text nodes & values

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

//text()

Result:
foo
foo
Bar

//*[text()=“foo”]

Result: the two red nodes

Question:

What is the result for
//*[text()=//b/text()]

71

Useful Functions (on Booleans)

Æ boolean(object):boolean (“boolean” means {true/false})

Converts argument into true/false:
a number is true if it is not equal to zero (or NaN)
a node-set is true if it is non-empty
a string is true if its length is non-zero
- for other objects, conversion depends on type

Æ not(true)=false, not(false)=true
Æ true():boolean
Æ false():boolean

Æ lang(string):boolean
Returns true if language specified by xml:lang attributes is same as string

Useful even for use with self-axis:
child::*[self::chapter or self::appendix]

chapter or appendix
children of
context node

72

Useful Functions (on Node Sets)
Æ count
Counts number or results

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

/a[count(//*[text()=//b/text()])=2]

What is the result?

73

Useful Functions (on Node Sets)
Æ count
Counts number or results

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

/a[count(//*[text()=//b/text()])=2]

What is the result?

Same result as:

/a[count(//*[text()="foo"])
> count(//*[text()="bar"])]

74

Useful Functions (on Node Sets)
Æ count
Counts number or results

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

/a[count(//*[text()=//b/text()])=2]

What is the result?

Same result as:

/a[count(//*[text()="foo"])
> count(//*[text()="bar"])]

//c[count(b)=0]

What is the result for:

(same as //c[not(b)])

75

Useful Functions (on Node Sets)
Æ last()
returns contex-size from the evaluation context

Æ position()
Returns context-position from the eval. context

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

//*[position()=2]

76

Useful Functions (on Node Sets)
Æ last()
returns contex-size from the evaluation context

Æ position()
Returns context-position from the eval. context

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

//*[position()=2]

//*[position()=2 and ../../a]
Same as

//*[position()=2 and ./b]

77

Useful Functions (on Node Sets)
Æ last()
returns contex-size from the evaluation context

Æ position()
Returns context-position from the eval. context

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

//*[position()=2]

//*[position()=2 and ../../a]
Same as

//*[position()=2 and ./b]

//*[position()=last()]

78

Useful Functions (on Node Sets)
Æ last()
returns contex-size from the evaluation context

Æ position()
Returns context-position from the eval. context

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

//*[position()=2]

//*[position()=2 and ../../a]
Same as

//*[position()=2 and ./b]

//*[position()=last()-1]

79

Useful Functions (on Node Sets)
Æ last()
returns contex-size from the evaluation context

Æ position()
Returns context-position from the eval. context

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

//*[position()=2]

//*[position()=2 and ../../a]
Same as

//*[position()=2 and ./b]

//*[position()=last()-1
and ./text()=“foo”]

80

Useful Functions (on Node Sets)
Æ last()
returns contex-size from the evaluation context

Æ position()
Returns context-position from the eval. context

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

//*[position()=2]

//*[position()=2 and ../../a]
Same as

//*[position()=2 and ./b]

//*[position()=last()-1
and ./text()=“foo”]

Useful:
child::*[self::chapter or self::appendix][position()=last()]

selects the last chapter or appendix child of the context node

81

Useful Functions (on Node Sets)
Æ last()
returns contex-size from the evaluation context

Æ position()
Returns context-position from the eval. context

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

//*[position()=2]

//*[position()=2 and ../../a]
Same as

//*[position()=2 and ./b]

//*[position()=last()-1
and ./text()=“foo”]

/[position()=1]/*[position()=2]/*[position()=2]

Æ allows absolute location of any node (a la Dewey)

82

Useful Functions (on Node Sets)
Æ last()
returns contex-size from the evaluation context

Æ position()
Returns context-position from the eval. context

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

//*[position()=2]

//*[position()=2 and ../../a]
Same as

//*[position()=2 and ./b]

//*[position()=last()-1
and ./text()=“foo”]

/[position()=1]/*[position()=2]/*[position()=2]

Abbreviation: */*[1]/*[2]/*[2]

83

Useful Functions (on Node Sets)
Æ last()
returns contex-size from the evaluation context

Æ position()
Returns context-position from the eval. context

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

//*[position()=2]

//*[position()=2 and ../../a]
Same as

//*[position()=2 and ./b]

//*[position()=last()-1
and ./text()=“foo”]

/[position()=1]/*[position()=2]/*[position()=2]

Abbreviation: */*[1]/*[2]/*[2] ÎWhat is result for //*[./*[2]/*[2]]

84

Useful Functions (on Node Sets)
Æ last()
returns contex-size from the evaluation context

Æ position()
Returns context-position from the eval. context

books

book book book … book

How do you select the
last 20 book-children of books?

last 20

85

Useful Functions (on Node Sets)
Æ last()
returns contex-size from the evaluation context

Æ position()
Returns context-position from the eval. context

books

book book book … book

How do you select the
last 20 book-children of books?

last 20 /books/book[position()>last()-20]

86

Useful Functions (on Node Sets)

Æ last():number
returns contex-size from the evaluation context

Æ position():number
eturns context-position from the eval. Context

Æ id(object):node-set
id(“foo”) selects the element with unique ID foo

Æ local-name(node-set?):string
returns the local part of the expanded-name of the node

Æ namespace-uri(node-set?):string
returns the namespace URI of the expanded-name of the node

Æ name(node-set?):string
returns a string containing a QName representing the expanded-name of the node

87

Useful Functions (on Node Sets)

Nodes have an identity

<a>
tt
tt

//a[*[1]=*[2]]

gives empty result.

But:

//a[contains(*[1],*[2])]

gives the a-node.

Different nodes!

string-value (“tt”) is contained in “tt”

Sorry.
This is wrong.
Equality (“=“) is based on
string value of a node!

Æ Gives also a-node

XPath 2.0 has much clearer
comparison operators!!

88

Useful Functions (on Node Sets)

Sorry.
This is wrong.
Equality (“=“) is based on
string value of a node!

Æ Gives also a-node

XPath 2.0 has much clearer
comparison operators!!Careful with equality (“=“)

<a>

<d>red</d>
<d>green</d>
<d>blue</d>

<c>
<d>yellow</d>
<d>orange</d>
<d>green</d>

</c>

//a[b/d = c/d] selects a-node!!!

there exists a node in the node set for b/d
with same string value as a node in node set c/d

89

Useful Functions (on Node Sets)

Sorry.
This is wrong.
Equality (“=“) is based on
string value of a node!

Æ Gives also a-node

XPath 2.0 has much clearer
comparison operators!!Careful with equality (“=“)

<a>

<d>red</d>
<d>green</d>
<d>blue</d>

<c>
<d>yellow</d>
<d>orange</d>
<d>green</d>

</c>

//a[b/d = c/d] selects a-node!!!

there exists a node in the node set for b/d
with same string value as a node in node set c/d

Æ What about //a[b/d != c/d]

90

Useful Functions (Strings)
The string-value of an element node is the concatenation of the string-values
of all text node descendants in document order.

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

//*[.="foo"]
//*[.=“foobar”]

91

Useful Functions (Strings)
The string-value of an element node is the concatenation of the string-values
of all text node descendants in document order.

cd b d

c

a

b

dd

a=“1”

a=“2”

a=“1.0”

b=“1”

“foo” “foo” “bar”

//*[.="foo"]
//*[.=“foobar”]

Æ concat(st_1, st_2,…, st_n) =
st_1 st_2 … st_n

Æ startswith(“abcd”,”ab”) = true
Æ contains(“bar”,”a”) = true
Æ substring-before("1999/04/01","/")

= 1999.
Æ substring-after("1999/04/01","19")

= 99/04/01
Æ substring("12345",2,3) = “234”
Æ string-length(“foo”) = 3

What is the result to this: //*[contains(.,"bar")]

92

Useful Functions (Strings)
The string-value of an element node is the concatenation of the string-values
of all text node descendants in document order.

//*[.="foo"]
//*[.=“foobar”]

Æ normalize-space(“ foo bar a “) = “foo bar a”

Æ translate(“bar","abc","ABC") = BAr

returns the first argument string with occurrences of characters in
the second argument string replaced by the character at the
corresponding position in the third argument string

NOTE: The translate function is not a sufficient solution
for case conversion in all languages

93

Useful Functions (Numbers)
Æ number(object):number

Converts argument to a number
- the boolean true is converted to 1, false is converted to 0
- a string that consists of optional whitespace followed by an
optional minus sign followed by a Number followed by whitespace is
converted to the IEEE 754 number that is nearest to
the mathematical value represented by the string.

Æ sum(node-set):number
returns sum, for each node in the argument node-set,
of the result of converting the string-values of the node to a number

Æ floor(number):number
returns largest integer that is not greater than the argument
Æ ceiling(number):number
returns the smallest integer that is not less than the argument
Æ round(number):number
returns integer closest to the argument. (if there are 2, take above:

round(0.5)=1 and round(-0.5)=0

Operators on Numbers
+,-,*,div,mod

94

Display Number Result…

//*[text()=(7 mod (count(//b)+2))]/text()

cd

c

a

b

dd

k

b d

n n

1 2

… n

9

n

3

Use http://b-cage.net/code/web/xpath-evaluator.html

95

Display Number Result…

Similar for arbitrary large numbers / booleans, node-sets… Try it… ☺

cd

c

a

b

dd

k

b d

n n

1 2

… n

9

n

3

//*[text()=7 mod ((count(//b)+2)]/text()

96

XPath Query Evaluation

How to implement?

How expensive? complexity?

What are the most difficult queries?

Next time

Efficient Algorithms: which queries run how fast?

First, focus on navigational queries: only /, //, label-test, [filters]

(techniques for
value comparison/queries already well-known from rel. DB’s…)

Experiments with current
systems

Next 4 slides from
Georg Gottlob and Christoph Koch "XPath Query Processing".
Invited tutorial at DBPL 2003
http://www.dbai.tuwien.ac.at/research/xmltaskforce/xpath-tutorial1.ppt.gz

means year 2003…

Xpath Query (relative to a):
child::*/parent::*/child::*/

parent::*/child::*

<a> <c/>
Document:

a
b c

a
b c

a
b c

a
b c

a
b c

a
b c

a
b c

Tree of nodes
visited is of size

!!!)|(| ||QDO

context node

Core Xpath on Xalan and XT
Queries: a/b/parent::a/b/…parent::a/b

exponential!

Document:
<a>

Core Xpath on Microsoft IE6:
polynomial combined complexity,
quadratic data complexity

quadratic

Full XPath on IE6:

Exponential
combined
complexity!

Exponential query
complexity

102

XPath Query Evaluation

Static Methods (used, e.g., for Query Optimization…)

Given Xpath queries Q1, Q2:

Æ Is result set of Q1 included in result set of Q2?

Æ Are result sets equal?

Æ Is their intersection empty?

for all possible documents

(probably we will look at this in Lecture 8 or 9)

103

Simple Examples
Is

//c[count(d)=count(*)]

equivalent to

cd b d

c

a

b

dd

//c[not(child::*[not(self::d)])]

on all possible trees?

104

END
Lecture 6

