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Outline

1. Recap:  deterministic Reg Expr’s
/ Glushkov Automaton

2. Complexity of DTD validation

3. Beyond DTDs:  XML Schema and RELAX NG

4. Static Methods, based on Tree Automata
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Previous Lecture
XML type definition languages

want to specify a certain subset of XML doc’s  =  a “type” of XML documents

Remember
The specification/type definition should be simple, so that 

Æ a  validator can be built automatically (and efficiently)
Æ the  validator runs efficient on any XML input

(similar demands as for a  parser)

Î Type def. language must be SIMPLE!

(similarly:  parser generators use EBNF or smaller subclasses:  LL / LR)

O(n^3) parsing
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XML Type Definition Languages

DTD  (Document Type Definition, W3C)
Originated from SGML.  Now part of XML  

ÆDTD may appear at the beginning of an XML document

XML Schema  (W3C)
Now at version 1.1 
HUGE language, many built-in simple types

ÆSchemas themselves: written in XML

See the “Schema Primer” at  http://www.w3.org/TR/xmlschema-0/

RELAX NG (Oasis)
For tree structure definition, more powerful than Schemas&DTDs

Reg Exprs
must be
deterministic
(=1-unambiguous)

“Unique 
Particle Attribution”

same!!
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XML Type Definition Languages

DTD  (Document Type Definition)

<!DOCTYPE root-element [ doctype declaration …]>

<!ELEMENT element-name content-model>

content-models
• EMTPY
• ANY
• (#PCDATA | elem-name_1 | … | elem-name_n)*
• deterministic Reg Expr over element names

<!ATTLIST element-name attr-name attr-type attr-default ..>

Types: CDATA, (v1|..), ID, IDREFs
Defaults: #REQUIRED, #IMPLIED, “value”, #FIXED
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XML Type Definition Languages

DTD  (Document Type Definition)

<!DOCTYPE root-element [ doctype declaration …]>

<!ELEMENT element-name content-model>

content-models
• EMTPY
• ANY
• (#PCDATA | elem-name_1 | … | elem-name_n)*

• deterministic Reg Expr

<!ATTLIST element-name attr-name attr-type attr-default ..>

Types: CDATA, (v1|..), ID, IDREFs
Defaults: #REQUIRED, #IMPLIED, “value”, #FIXED

Most  interesting /
challenging aspect 
of DTDs
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Summary

In order to check whether a  (large)  document
is  valid  wrt to a given   DTD (“it validates”)
you need to

Æ check if children lists match the given Reg Expr’s

This can be done efficiently, using finite-automata (FAs)!

To check if a  Reg Expr  e is allowed in a DTD
we have to construct a particular finite automaton:   the  Glushkov automaton.

Glu(e) must be deterministic. 

Note If  Glu(e) is deterministic, then its size (# transitions) is  linear in size(e)!

Glu(e)
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To check if a  Reg Expr  e is allowed in a DTD
we have to construct a particular finite automaton:   the  Glushkov automaton.

Glu(e) must be deterministic. 

Note If  Glu(e) is deterministic, then its size (# transitions) is  linear in size(e)!

Glu(e)

Question Can you explain why  this  is the case?

Summary

In order to check whether a  (large)  document
is  valid  wrt to a given   DTD (“it validates”)
you need to

Æ check if children lists match the given Reg Expr’s

This can be done efficiently, using finite-automata (FAs)!
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To check if a  Reg Expr  e is allowed in a DTD
we have to construct a particular finite automaton:   the  Glushkov automaton.

Glu(e) must be deterministic. 

Note If  Glu(e) is deterministic, then its size (# transitions) is  linear in size(e)!

Glu(e)

Question Can you explain why  this  is the case?

Summary

In order to check whether a  (large)  document
is  valid  wrt to a given   DTD (“it validates”)
you need to

Æ check if children lists match the given Reg Expr’s

This can be done efficiently, using finite-automata (FAs)!

not correct:
linear in size(e) * #letters(e)
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To check if a  Reg Expr  e is allowed in a DTD
we have to construct a particular finite automaton:   the  Glushkov automaton.

Glu(e) must be deterministic. 

Note If  Glu(e) is deterministic, then its size (# transitions) is  linear in size(e)!

Glu(e)

Question Can you explain why  this  is the case?

More Notes

(1)  From a deterministic FA you  cannot necessarily obtain a
deterministic (= 1-unambiguous) regular expression!!

Example:   e  = (a | b)* a (a | b)

not correct:
linear in size(e) * #letters(e)

Å NO 1-unambigous reg exp 
exists for e
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To check if a  Reg Expr  e is allowed in a DTD
we have to construct a particular finite automaton:   the  Glushkov automaton.

Glu(e) must be deterministic. 

Note If  Glu(e) is deterministic, then its size (# transitions) is  linear in size(e)!

Glu(e)

Question Can you explain why  this  is the case?

More Notes

(1)  From a deterministic FA you  cannot necessarily obtain a
deterministic (= 1-unambiguous) regular expression!!

Example:   e  = (a | b)* a (a | b)

(2) Glu(e) is closely related to  Æ Thomson(e)           [remove ε-transitions]
and to     Æ Berry/Sethi(e)          [same]
and         Æ Brzozowski(e)

not correct:
linear in size(e) * #letters(e)

Å NO 1-unambigous reg exp 
exists for e

For more details:

See paper by Brüggemann-Klein,

Linked from the course web-page.
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Glushkov automaton Glu(e)

Each letter-position in the Reg Expr  e becomes  one state of Glu;
plus, Glu has one extra begin state.

FIRST( e ) =  all possible begin positions of words matching e

e.g.  FIRST( R (E | G) (EX)* ) = {  R1  }
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Following slides from:  http://www.cs.ut.ee/~varmo/tday-rouge/tammeoja-slides.pdf
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position 1 position 2 position 5. . . 
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FIRST( e )
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Glushkov automaton G(e)

Each position in the Reg Expr  e becomes  one state of G;
plus, G has one extra begin state.

FIRST( e ) =  all possible begin positions of words matching e

e.g.  FIRST( R (E | G) (EX)* ) =  { R1 }

FOLLOW( e, x ) = all possible positions following position x in e

e.g.  FOLLOW( R (E | G) (EX)*, R1 ) =  { E2, G3 }

Î From state “R1”:    add   E-transition to E2
G-transition to G3
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FOLLOW( e, R1) = 
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FOLLOW( e, E2) = 
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FOLLOW( e, G3) = 
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FOLLOW( e, E4) = 



25

FOLLOW( e, X5) = 
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Glushkov automaton G(e)

Each position in the Reg Expr  e becomes  one state of G;
plus, G has one extra begin state.

FIRST( e ) =  all possible begin positions of words matching e

e.g.  FIRST( R (E | G) (EX)* ) =  { R1 }

FOLLOW( e, x ) = all possible positions following position x in e

e.g.  FOLLOW( R (E | G) (EX)*, R1 ) =  { E2, G3 }

Î From state “R1”:    add   E-transition to E2
G-transition to G3

LAST( e ) = all possible  end positions of words matching e

e.g.   LAST( R (E | G) (EX)* ) =  { E2, G3, X5 }
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Is this automaton deterministic ??
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Glushkov automaton G(e)

Another example

(a* | ba)*

1

b

a

a
a

2 3
b a

b

This FA
is deterministic.

Which of these is deterministic?

Æ (ab) | (ac)
Æ a (b | c)
Æ a(a | b)*ac
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Glushkov automaton G(e)

Each position in the Reg Expr  e becomes  one state of G;
plus, G has one extra begin state.

FIRST( e ) =  all possible begin positions of words matching e

e.g.  FIRST( R (E | G) (EX)* ) =  { R1 }

FOLLOW( e, x ) = all possible positions following position x in e

LAST( e ) = all possible end positions of words matching e

Naïve implementation:   O(n^3) time,  where n = size( e )

(for each position:  computing FOLLOW goes through every position
at each step, needs to compute  union Î O( n*n*n )



31

Glushkov automaton G(e)

Each position in the Reg Expr  e becomes  one state of G;
plus, G has one extra begin state.

FIRST( e ) =  all possible begin positions of words matching e

e.g.  FIRST( R (E | G) (EX)* ) =  { R1 }

FOLLOW( e, x ) = all possible positions following position x in e

LAST( e ) = all possible end positions of words matching e

Naïve implementation:   O(n^3) time,  where n = size( e )

(for each position:  computing FOLLOW goes through every position
at each step, needs to compute  union Î O( n*n*n )

Not really needed. Can be improved to O(n^2)
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Glushkov automaton G(e)

Each position in the Reg Expr  e becomes  one state of G;
plus, G has one extra begin state.

FIRST( e ) =  all possible begin positions of words matching e

e.g.  FIRST( R (E | G) (EX)* ) =  { R1 }

FOLLOW( e, x ) = all possible positions following position x in e

LAST( e ) = all possible end positions of words matching e

Naïve implementation:   O(n^3) time,  where n = size( e )

(for each position:  computing FOLLOW goes through every position
at each step, needs to compute  union Î O( n*n*n )

Not really needed. Can be improved to O(n^2)
Can be improved to
O( size(e) + size(G(e)) )
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Glushkov automaton G(e)

Naïve implementation:   O(n^3) time,  where n = size( e )

(for each position:  computing FOLLOW goes through every position
at each step, needs to compute  union Î O( n*n*n )

Not really needed. Can be improved to O(n^2)
Can be improved to
O( size(e) + size(G(e)) )

Note If G(e) is deterministic, then its size (# transitions) is quadratic in size(e)!

Linear in   size(e) * #letters(e),   if G(e) is deterministic!

Î O( size(e) * #letters(e) )
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How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

deterministic FA:   run on w takes 
time linear in length(w)

Total Running time O(n + 2^m)

n = length(w)
m = size(e) 

Total Running time O(n + m)

Æ Other alternative:  O(nm)

Algorithm

FA = BuildFA(e);
DFA = BuildDFA(FA);

Size of FA is linear in size(e)=m
Size of DFA is exponential in m

To avoid these expensive running times

DTD requires that  FA=G(e) must be deterministic!

Unrestricted  Reg Expr e

If  s = #letters(e) is assumed fixed
(not part of the input)

Otherwise:    O(n + ms)
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Summary

Deterministic (1-unambiguous) content models give rise to
efficient matching algorithms. 

(they avoid     O(nm)
or   O(n+2^m)  complexities)

Disadvantages

Æ Hard to know whether given reg expr is OK (deterministic)

Æ Det. reg exprs are NOT closed under union.  (not so nice..)

Question Can you see why?

Hint:    find det. reg. exprs. e1 and e2 such that their
union is equal to (a | b)* a (a | b)
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Now that we know how the check all the different
content-models (in particular det. Reg Expr’s) how to
build full validator for a DTD?

elem-name_1   Æ RegExpr_1
elem-name_2   Æ RegExpr_2
…
elem-name_k   Æ RegExpr_k

The Validation Problem
Given a DTD T and a document D, is D valid wrt T?

Top-Down Implementation
Æ at element node w. label elem-name_i, run automaton A_i

Æ check attribute constraints
Æ check ID/IDREF constraints

Total Running time linear in the sum of sizes of the DTD and the  
document.  O( size(T) + size(D) )

Automata A_1, A_2, …, A_k

(Given A_1, A_2, …, A_k)
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DTDs have the

“label-guarded subtree exchange” property:

t1, t2    trees in a DTD language T
v1        node in t1, labeled “lab”
v2        node in t2, labeled “lab”

trees obtained by exchanging the subtrees 
rooted at v1 and v2 are also in T

lab lab

t1 t2

v1 v2

aka “local”
Æ content model 
only depends on 
label of parent
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Beyond DTDs

Often, the expressive power of DTDs is not sufficient.
Problem each element name has precisely one content-model in a DTD.
Would like to distuingish, depending on the context (parent).

dealer

used new

car car

model year model

car has different structure, in different contexts.
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Beyond DTDs

Often, the expressive power of DTDs is not sufficient.
Problem each element name has precisely one content-model in a DTD.
Would like to distuingish, depending on the context (parent).

dealer

used new

carused

model year model

car has different structure, in different contexts.

carnew

“specialization”
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Specialized DTDs

dealer

used new

carused

model year model

carnew

dealer    Æ used, new
used      Æ (carused)*
new       Æ (carnew)*
carused Æ model, year
carnew Æ model

dealer

used new

car

model year model

car



41

Specialized DTDs

dealer

used new

carused

model year model

carnew

dealer    Æ used, new
used      Æ (carused)*
new       Æ (carnew)*
carused Æ model, year
carnew Æ model

dealer

used new

car

model year model

car

Dealer Æ dealer [Used, New]
Used Æ used [(Carused)*]
New Æ new [(Carnew)*]
Carused Æ car [Model, Year]
Carnew Æ car [Model]

New notation.  Use  capitalized TYPE Names
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Dealer Æ dealer [Used, New]
Used Æ used [(Carused)*]
New Æ new [(Carnew)*]
Carused Æ car [Model, Year]
Carnew Æ car [Model]

New notation.  Use  capitalized TYPE Names

Let us call this new concept a  “grammar”.

A  grammar G is  local, if 
for any   label[RegExpr_1], label[RegExpr_2]   present in G
it holds that  RegExpr_1 = RegExpr_2.

the “local” restriction

By definition:    Every DTD is a local grammar, and vice versa.

Not local
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Dealer Æ dealer [Used, New]
Used Æ used [(Carused)*]
New Æ new [(Carnew)*]
Carused Æ car [Model, Year]
Carnew Æ car [Model]

New notation.  Use  capitalized TYPE Names

Let us call this new concept a  “grammar”.

A  grammar G is  local, if 
for any   label[RegExpr_1], label[RegExpr_2]   present in G
it holds that  RegExpr_1 = RegExpr_2.

the “local” restriction

By definition:    Every DTD is a local grammar, and vice versa.

A  grammar G is  single-type, if 
for any label[RegExpr_1], label[RegExpr_2]  occurring in the same rule of G
it holds that  RegExpr_1 = RegExpr_2.

the “single-type” restriction

Not local

WRONG
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Dealer Æ dealer [Used, New]
Used Æ used [(Carused)*]
New Æ new [(Carnew)*]
Carused Æ car [Model, Year]
Carnew Æ car [Model]

New notation.  Use  capitalized TYPE Names

Alternatively:

Call two TYPE Names T1 and T2 “competing”
if they have the same element name  (but not identical rules)

competing

Classes of Grammars

local no competing TYPE names!     (DTDs)

single-type TYPE names in the  same content model do not compete!

regular  no restriction… (RELAX NG)
(XML Schema’s)
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Dealer Æ dealer [Used, New]
Used Æ used [(Carused)*]
New Æ new [(Carnew)*]
Carused Æ car [Model, Year]
Carnew Æ car [Model]

New notation.  Use  capitalized TYPE Names

Are there single-type grammars (XML Schemas)
which cannot be expressed by local grammars (DTDs).

competing

Classes of Grammars

local no competing TYPE names!     (DTDs)

single-type TYPE names in the  same content model do not compete!

regular  no restriction… (RELAX NG)
(XML Schema’s)

Question
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Person Æ person [PersonName, Gender, Spouse?, Pet*]
PersonName Æ name [First, Last]
Pet Æ pet [Kind, PetName]
PetName Æ name [#PCDATA]
…

New notation.  Use  capitalized TYPE Names

Are there single-type grammars (XML Schemas)
which cannot be expressed by local grammars (DTDs).
YES!

Classes of Grammars

local no competing TYPE names!     (DTDs)

single-type TYPE names in the  same content model do not compete!

regular  no restriction… (RELAX NG)
(XML Schema’s)

Question

competing

but are not
in same 
content model!
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Dealer Æ dealer [Used, New]
Used Æ used [(Carused)*]
New Æ new [(Carnew)*]
Carused Æ car [Model, Year]
Carnew Æ car [Model]

New notation.  Use  capitalized TYPE Names

Through the use of TYPE Names (nonterminals / states) you can 
distinguish deep context!

competing

dealer

used new

model year model

carnew

“specialization”
through parent

Carnew

car car



48

Dealer Æ dealer [Used, New]
Used Æ used [(Carused)*]
New Æ new [(Carnew)*]
Carused Æ car [Model, Year]
Carnew Æ car [Model]

New notation.  Use  capitalized TYPE Names

Through the use of TYPE Names (nonterminals / states) you can 
distinguish deep context!

competing

dealer

used new

model year model

carnew

“specialization”
through parent

Carnew

Can we model
context that is
far away
from the
specialized 
node?

car car



49

Dealer Æ dealer [Used, New]
Used Æ used [(Carused)*]
New Æ new [(Carnew)*]
Carused Æ car [Model, Year]
Carnew Æ car [Model]

New notation.  Use  capitalized TYPE Names

Through the use of TYPE Names (nonterminals / states) you can 
distinguish deep context!

competing

dealer

used new

car

model year model

“specialization”
through a
following node…

Carnew

Can we model
context that is
far away
from the
specialized 
node?

Sure!
carcarMy

db

user

special

#owners

root
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DB        Æ db [Dealer, User]
Dealer Æ dealer [Used, New]
Used Æ used [(Carused)*]
New Æ new [(Carnew)*]
Carused Æ car [Model, Year]
Carnew Æ car [Model]

Through the use of TYPE Names (nonterminals / states) you can 
distinguish deep context!

dealer

used new

car

model year model

Carnew

Can we model
context that is
far away
from the
specialized 
node?

Sure!
carcarMy

db

user

special

#owners

Doc Æ root [DB | sDB]
sDB Æ db [sDealer, sUser]
sDealer Æ dealer [sUsed, New]
sUsed Æ used [(sCarused)*]
sCarused Æ car [Model, Own, Year]

root

sCarused

sUsed

sDealer

sDB

sUser
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DB        Æ db [Dealer, User]
Dealer Æ dealer [Used, New]
Used Æ used [(Carused)*]
New Æ new [(Carnew)*]
Carused Æ car [Model, Year]
Carnew Æ car [Model]

Through the use of TYPE Names (nonterminals / states) you can 
distinguish deep context!

dealer

used new

car

model year model

Carnew

Can we model
context that is
far away
from the
specialized 
node?

Sure!
carcarMy

db

user

special

#owners

Doc Æ root [DB | sDB]
sDB Æ db [sDealer, sUser]
sDealer Æ dealer [sUsed, New]
sUsed Æ used [(sCarused)*]
sCarused Æ car [Model, Own, Year]

root

sCarused

sUsed

sDealer

sDB

sUser

Question

Sure this grammar
is  not  local (DTD).
But, 
is it 
single-type?
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root

db

special

dealer

used new

… …

root

db

dealer

used new

… …

Question Is this grammar single-type?
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prev. example: 
probably,  not expressable in single-type (XML Schema).

Other example:

Person     Æ MPerson | FPerson
MPerson Æ person[Name, gender[Male], FSpouse?, Children?]
FPerson Æ person[Name, gender[Female], MSpouse?, Children?]
Male Æ male[]
Female Æ female[]
FSpouse Æ spouse[Name, gender[Female]]
MSpouse Æ spouse[Name, gender[Male]]
Children    Æ children[Person+]

a person’s spouse must have
opposite gender.

Note This example and the Pet-example are taken from Hosoya’s book (see course web page).
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prev. example: 
probably,  not expressable in single-type (XML Schema).

Other example:

Person     Æ MPerson | FPerson
MPerson Æ person[Name, gender[Male], FSpouse?, Children?]
FPerson Æ person[Name, gender[Female], MSpouse?, Children?]
Male Æ male[]
Female Æ female[]
FSpouse Æ spouse[Name, gender[Female]]
MSpouse Æ spouse[Name, gender[Male]]
Children    Æ children[Person+]

a person’s spouse must have
opposite gender.

competing

BUT, is this even a “grammar” in our sense?

Reg Expr
… but  not in a content …
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prev. example: 
probably,  not expressable in single-type (XML Schema).

Other example:

Person     Æ root[MPerson | FPerson]
MPerson Æ person[Name, gender[Male], FSpouse?, Children?]
FPerson Æ person[Name, gender[Female], MSpouse?, Children?]
Male Æ male[]
Female Æ female[]
FSpouse Æ spouse[Name, gender[Female]]
MSpouse Æ spouse[Name, gender[Male]]
Children    Æ children[Person+]

a person’s spouse must have
opposite gender.

competing Reg Expr
… in a content …

BUT, is this even a “grammar” in our sense?
NO!     
Æ Reg Expr only allowed inside a content (“under an element name”).
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Classes XML Type Formalisms

local no competing TYPE names!     (DTDs)

single-type TYPE names in the  same content model do not compete!

regular  no restriction… (RELAX NG)
(XML Schema’s)

Increasing Expressivness
of defining sets of trees (“tree languages”)

Questions

Given two DTDs D1 and D2 can we check if 
Æ all documents valid for D1 are also valid for D2?         (DTD inclusion problem)
Æ D1 and D2 describe the same set of documents?        (DTD equality problem)

Given a Relax NG grammar G, can we check if 
Æ there exists any document that is valid for G?              (emptiness problem)
Æ there is a document valid for G and valid for G2?        (intersection & emptiness)
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Classes XML Type Formalisms

local no competing TYPE names!     (DTDs)

single-type TYPE names in the  same content model do not compete!

regular  no restriction… (RELAX NG)
(XML Schema’s)

Increasing Expressivness
of defining sets of trees (“tree languages”)

Questions

Given two DTDs D1 and D2 can we check if 
Æ all documents valid for D1 are also valid for D2?         (DTD inclusion problem)
Æ D1 and D2 describe the same set of documents?        (DTD equality problem)

Given a Relax NG grammar G, can we check if 
Æ there exists any document that is valid for G?              (emptiness problem)
Æ there is a document valid for G and valid for G2?        (intersection & emptiness)

If we can do it for regular tree grammars, then also works
for single-type/local!!
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Questions

Given two DTDs D1 and D2 can we check if 
Æ all documents valid for D1 are also valid for D2?         (DTD inclusion problem)
Æ D1 and D2 describe the same set of documents?        (DTD equality problem)

Given a Relax NG grammar G, can we check if 
Æ there exists any document that is valid for G?              (emptiness problem)
Æ there is a document valid for G and valid for G2?        (intersection & emptiness)

If we can do it for regular tree grammars, then also works
for single-type/local!!

All of the checks can be done automatically, for regular tree grammars!  

equivalent to tree automata

Tree Automata:  very powerful framework,

Æ Have all the good properties of string automata!
Æ Yet, they are more expressive!
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All of the checks can be done automatically, for regular tree grammars!  

equivalent to tree automata

Note

String automata are  not  sufficient to check DTDs / Schemas!
Even if we only consider well-bracketed strings!

Example 1

c  Æ c[ a, c, b ]
a  Æ empty
b  Æ empty
c  Æ empty

Example 2

a  Æ a[ c, a ]
a  Æ a[ a, b ]
a / b / c  Æ empty

Tree Automata:  very powerful framework,

Æ Have all the good properties of string automata!
Æ Yet, they are more expressive!
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Finite-state automata are important:

Æ Think you are in a maze, with only fixed memory and you can only read
the maze (cannot mark anything).

Model by finite automaton. In state q1, (to [N|S|E|W],       )  Æ ( q2, [N|S|E|W] )
q2, (to [N|S|E|W],       )  Æ ( q3, [N|S|E|W] )

constant memory
computation

q1

wall

empty

…

… …

Can an automaton search the maze?

All of the checks can be done automatically, for regular tree grammars!  

equivalent to tree automata
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q1

wall

empty

…

… …

Can an automaton search the maze?

No!!    Æ need markers (“pebbles”). 
How many?  5?  2? 

All of the checks can be done automatically, for regular tree grammars!  

equivalent to tree automata

Finite-state automata are important:

Æ Think you are in a maze, with only fixed memory and you can only read
the maze (cannot mark anything).

Model by finite automaton. In state q1, (to [N|S|E|W],       )  Æ ( q2, [N|S|E|W] )
q2, (to [N|S|E|W],       )  Æ ( q3, [N|S|E|W] )

constant memory
computation
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Finite-state automata are important:

In our context, e.g., for

Æ KMP (efficient string matching)  [Knuth/Morris/Pratt]
generalization using automata. Used, e.g., in  grep

Æ Compression

Æ Static analysis of schemas & queries
(=  “everything you can do *before* before

running over the actual data”)

All of the checks can be done automatically, for regular tree grammars!  

equivalent to tree automataconstant memory
computation
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4.  Static Methods, based on Tree Automata

Person Æ MPerson | FPerson
MPerson Æ person [Name, gender[Male], FSpouse?]
FPerson Æ person [Name, gender[Female], MSpouse?]

Regular Tree Grammar

Rules of the form      TypeName Æ Tree

Leaves may be labeled
by TypeNames

person

Name gender   FSpouse

Male

person

Name gender

Male

Alternatively, regular tree languages are defined by  Tree Automata.

state, element-name  Æ state1, state2 conventionally, defined 
for  binary/ranked trees.
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4.  Static Methods, based on Tree Automata

Alternatively, regular tree languages are defined by  Tree Automata.

state, element-name  Æ state1, state2 conventionally, defined 
for  binary/ranked trees.

Given grammars D1 and D2 can we check if 
Æ all documents valid for D1 are also valid for D2?          (inclusion problem) 
Æ D1 and D2 describe the same set of documents?         (equality problem)
Æ does there exists any document that is valid for D1?      (emptiness problem)
Æ there is a document valid for D1 *and* valid for D2?       (intersection & emptiness)

ALL these checks are possible for  regular tree grammars!!

Î hence, they are also solvable for  DTDs / XML Schemas / RELAX NG’s

(1) use binary tree encodings
(2) translate XML Type Definition to a Tree Grammar  (easy)
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4.  Static Methods, based on Tree Automata
Given grammars D1 and D2 can we check if 
Æ all documents valid for D1 are also valid for D2?          (inclusion problem) 
Æ D1 and D2 describe the same set of documents?         (equality problem)
Æ does there exists any document that is valid for D1?      (emptiness problem)
Æ there is a document valid for D1 *and* valid for D2?       (intersection & emptiness)

Î The checks above give rise to 
very powerful optimization procedures for XML Databases!

ALL these checks are possible for  regular tree grammars!!

For example: 
documents d_1, d_2, …, d_n are valid for your schema “Small_xhtml”.

Are they also valid for schema XHTML?

Î Check  inclusion problem for Small_html and XHTML!
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on words
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Automata
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Automata

1
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on words
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Automata

1
b

a

b

3

a

a

2
b  b  a  b  a  a  a  a  a  a 

2 1  2  3  3  3  3 3

word is accepted
by the automatonExpressiveness      deteterministic = nondeterministic

left-to-right = right-to-left

exp. 
blow-up

exp. more
succinct

on words
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Automata

1
b

a

b

3

a

a

2
b  b  a  b  a  a  a  a  a  a 

2 1  2  3  3  3  3 3

word is accepted
by the automatonExpressiveness      deteterministic = nondeterministic

left-to-right = right-to-left

exp. 
blow-up

exp. more
succinct

on words

Automata on trees

AND

OR

OR

0 1

0

1

1.  bottom-up LABEL( state1, state2 ) Æ state

TF

0()  Æ F
1()  Æ T
OR( F, F ) Æ F
OR( F, T ) Æ T
…
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Automata

1
b

a

b

3

a

a

2
b  b  a  b  a  a  a  a  a  a 

2 1  2  3  3  3  3 3

word is accepted
by the automatonExpressiveness      deteterministic = nondeterministic

left-to-right = right-to-left

exp. 
blow-up

exp. more
succinct

on words

Automata on trees

AND

OR

OR

0 1

0

1

1.  bottom-up LABEL( state1, state2 ) Æ state

TF

T F

0()  Æ F
1()  Æ T
OR( F, F ) Æ F
OR( F, T ) Æ T
…



73
Automata

1
b

a

b

3

a

a

2
b  b  a  b  a  a  a  a  a  a 

2 1  2  3  3  3  3 3

word is accepted
by the automatonExpressiveness      deteterministic = nondeterministic

left-to-right = right-to-left

exp. 
blow-up

exp. more
succinct

on words

Automata on trees

AND

OR

OR

0 1

0

1

1.  bottom-up LABEL( state1, state2 ) Æ state

TF

T F

TF 0()  Æ F
1()  Æ T
OR( F, F ) Æ F
OR( F, T ) Æ T
…

0()  Æ F
1()  Æ T
OR( F, F ) Æ F
OR( F, T ) Æ T
…
AND( T, F ) Æ F
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Automata

1
b

a

b

3

a

a

2
b  b  a  b  a  a  a  a  a  a 

2 1  2  3  3  3  3 3

word is accepted
by the automatonExpressiveness      deteterministic = nondeterministic

left-to-right = right-to-left

exp. 
blow-up

exp. more
succinct

on words

Automata on trees

AND

OR

OR

0 1

0

1

1.  bottom-up LABEL( state1, state2 ) Æ state

TF

T F

F T Accepting States = { T }0()  Æ F
1()  Æ T
OR( F, F ) Æ F
OR( F, T ) Æ T
…
AND( T, F ) Æ F

T

tree is accepted by the automaton
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Automata

1
b

a

b

3

a

a

2
b  b  a  b  a  a  a  a  a  a 

2 1  2  3  3  3  3 3

word is accepted
by the automatonExpressiveness      deteterministic = nondeterministic

left-to-right = right-to-left

exp. 
blow-up

exp. more
succinct

on words

Automata on trees

AND

OR

OR

0 1

0

1

1.  bottom-up LABEL( state1, state2 ) Æ state

TF

T F

F T Accepting States = { T }0()  Æ F
1()  Æ T
OR( F, F ) Æ F
OR( F, T ) Æ T
…
AND( T, F ) Æ F

T

tree is accepted by the automaton

This automaton is
deterministic.

nondeterminism
LABEL( st1, st2 ) Æ { st3, … }
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Automata on trees

AND

OR

OR

0 1

0

1

1.  bottom-up LABEL( state1, state2 ) Æ state

TF

T F

F T Accepting States = { T }0()  Æ F
1()  Æ T
OR( F, F ) Æ F
OR( F, T ) Æ T
…
AND( T, F ) Æ F

T

tree is accepted by the automaton

This automaton is
deterministic.

nondeterminism
LABEL( st1, st2 ) Æ { st3, … }

Question

How much memory do you need exactly, to run
such a bottom-up tree automaton?
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Similarly as for word automata:

For every  nondeterministic bottom-up tree automaton 
there is an equivalent  deterministic bottom-up tree automaton.

Again, the construction can cause exponential size blow-up.

2.   top-down state, LABEL  Æ (state1, state2)

a

b

a

a

must contain a $-leaf a,b  =  binary node labels
e,$  =  leaf node labels

“top-most a-node on the left-most path
must have a right-subtree which contains a $-node.”
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Similarly as for word automata:

For every  nondeterministic bottom-up tree automaton 
there is an equivalent  deterministic bottom-up tree automaton.

Again, the construction can cause exponential size blow-up.

2.   top-down state, LABEL  Æ (state1, state2)

a

b

a

a

must contain a $-leaf a,b  =  binary node labels
e,$  =  leaf node labels

“top-most a-node on the left-most path
must have a right-subtree which contains a $-node.”

begin, a      Æ (any, find$)
begin, b      Æ (begin, any)
find$, a/b    Æ { (find$, any), (any, find$) }
find$, $       Æ ACC
find$, e       Æ REJ
any, a/b      Æ (any,any)
any, $/e      Æ ACC

nondeterministic

Æ accept tree if there
exists an accepting run
(= all leaves go to ACC)
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For every  nondeterministic bottom-up tree automaton 
there is an equivalent  deterministic bottom-up tree automaton.

2.   top-down state, LABEL  Æ (state1, state2)

a

b

a

a

must contain a $-leaf a,b  =  binary node labels
e,$  =  leaf node labels

“top-most a-node on the left-most path
must have a right-subtree which contains a $-node.”

begin, a      Æ (any, find$)
begin, b      Æ (begin, any)
find$, a/b    Æ { (find$, any), (any, find$) }
find$, $       Æ ACC
find$, e       Æ REJ
any, a/b      Æ (any,any)
any, $/e      Æ ACC

nondeterministic

Æ accept tree if there
exists an accepting run

Question
Can you find an equivalent bottom-up automaton for this example?
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For every  nondeterministic bottom-up tree automaton 
Æ there is an equivalent  deterministic bottom-up tree automaton, and
Æ there is an equivalent  nondeterministic top-down tree automaton.

2.   top-down state, LABEL  Æ (state1, state2)

a

b

a

a

must contain a $-leaf a,b  =  binary node labels
e,$  =  leaf node labels

“top-most a-node on the left-most path
must have a right-subtree which contains a $-node.”

begin, a      Æ (any, find$)
begin, b      Æ (begin, any)
find$, a/b    Æ { (find$, any), (any, find$) }
find$, $       Æ ACC
find$, e       Æ REJ
any, a/b      Æ (any,any)
any, $/e      Æ ACC

nondeterministic

Æ accept tree if there
exists an accepting run

Î Yes!    you can… ☺
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For every  nondeterministic bottom-up tree automaton 
Æ there is an equivalent  deterministic bottom-up tree automaton, and
Æ there is an equivalent  nondeterministic top-down tree automaton.

2.   top-down state, LABEL  Æ (state1, state2)

a

b

a

a

must contain a $-leaf a,b  =  binary node labels
e,$  =  leaf node labels

“top-most a-node on the left-most path
must have a right-subtree which contains a $-node.”

begin, a      Æ (any, find$)
begin, b      Æ (begin, any)
find$, a/b    Æ { (find$, any), (any, find$) }
find$, $       Æ ACC
find$, e       Æ REJ
any, a/b      Æ (any,any)
any, $/e      Æ ACC

nondeterministic

Æ accept tree if there
exists an accepting run

Question
Is there an equivalent  deterministic top-down automaton??
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For every  nondeterministic bottom-up tree automaton 
Æ there is an equivalent  deterministic bottom-up tree automaton, and
Æ there is an equivalent  nondeterministic top-down tree automaton.

Question
Is there an equivalent  deterministic top-down automaton??

Î NO!   /

name

first last

name

last first

This set of two trees canNOT be recognized
by any  determinstic top-down tree automaton!!

Why?
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For every  nondeterministic bottom-up tree automaton 
Æ there is an equivalent  deterministic bottom-up tree automaton, and
Æ there is an equivalent  nondeterministic top-down tree automaton.

Question
Is there an equivalent  deterministic top-down automaton??

Î NO!   /

Questions

What about  local tree languages  (defined by DTDs).
Æ Can they be accepted by  deterministic top-down automata?

What about  single-type tree languages  (defined by XML Schema’s)
Æ Can they be accepted by deterministic top-down automata?



84

For every  nondeterministic bottom-up tree automaton 
Æ there is an equivalent  deterministic bottom-up tree automaton, and
Æ there is an equivalent  nondeterministic top-down tree automaton.

Question
Is there an equivalent  deterministic top-down automaton??

Î NO!   /

Yes!
Hence, there is  no  DTD / Schema for   { name[first,last], name[last,first] }

Questions

What about  local tree languages  (defined by DTDs).
Æ Can they be accepted by  deterministic top-down automata?

What about  single-type tree languages  (defined by XML Schema’s)
Æ Can they be accepted by deterministic top-down automata?
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For every deterministic bottom-up tree automaton
there exists a minimal unique equivalent one!

Æ Equivalence is decidable

In fact,  YOU  have already produced 
minimal bottom-up tree automata!

The minimal DAG of a tree t can be seen as the minimal unique
tree automaton that only accepts the tree t.
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For every deterministic bottom-up tree automaton
there exists a minimal unique equivalent one!

Æ Equivalence is decidable

In fact,  YOU  have already produced 
minimal bottom-up tree automata!

The minimal DAG of a tree t can be seen as the minimal unique
tree automaton that only accepts the tree t.

Question

How expensive (complexity)  to find mininmal one?

ÆSame as for word automata?
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Tree Automata are a very useful concept in CS!

Æ Heavily used in verification
“Derive a property of a complex object 

from the properties of its constituents…”

g1

h1 h2

g1

glue1

glue2

g  =  glue1( g1, glue2( h1, h2 ) )

h1 h2

Use the hierarchical construction history of an object, in order to
work on a “parse” tree instead of a complex graph.
From there, use tree automata. ☺

Î Do all graphs / chip-layouts produced in this way, have property P?

Many NP-complete graph problems become 
tractable on  “bounded-treewidth “ graphs!
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XML Tree Automata play crucial rule for

Î Efficient validators against XML Types

Æ Optimizations   If doc1 is of TYPE1, then no need to validate 
against TYPE2, if we know TYPE2 included in TYPE1

- if only “slightly different” then only need to validate “there”
- incremental validation against updates
- etc, etc.

Î Efficient query evaluators, use richer automata which can
select nodes and produce query answers

Æ Optimizations     If answer of QUERY1 is in cache, then no need to 
evaluate QUERY2, if  “included” in QUERY1.

- if every possible answer set to QUERY1 (of TYPE X)
is EMPTY, then no need to evaluate on the real data!

Î XML Type Checking for Programming Languages
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The Future

In 5-10 years from now:    ☺

You can write a function in Programming Language X

Function foo(XML document D: TYPE1):  TYPE2
{

traverse D 
& compute output;

. 

. 

.
return output

}

Compiler (XML Type Checker) will complain, if your
function does not compute documents of TYPE2.

Î If no complaint, then guaranteed: 
ALL outputs are ALWAYS of correct type!!)



90
The Future

In 5-10 years from now:    ☺

You can write a function in Programming Language X

Function foo(XML document D: TYPE1):  TYPE2
{

traverse D 
& compute output;

. 

. 

.
return output

}

Compiler (XML Type Checker) will complain, if your
function does not compute documents of TYPE2.

Î If no complaint, then correct type guaranteed. 

Compilers will have to be able to give static guarantees about input/output
behaviour of program! 

Experimental PL’s 
In this direction:
ÆCDuce
ÆXDuce
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END
Lecture 5


