
1

XML and Databases

Sebastian Maneth
NICTA and UNSW

Lecture 4
DTDs, Schemas, Regular Expressions, Ambiguity

CSE@UNSW   -- Semester 1, 2009

2

Outline

0.    Comments about PRE/POST encoding
& about Assignment 3  (map XML to a DB)

1.     DTDs

2.     Regular Expressions

3.     Finite-State Automata  /  Glushkov Automaton

3
Some  XPath Axes

Æ the  following axis contains all nodes in the same document as the 
context node that are after the context node in document order, 
excluding any descendants and excluding attribute nodes and namespace nodes

Æ the  preceding axis contains all nodes in the same document as the 
context node that are before the context node in document order,
excluding any ancestors and excluding attribute nodes and namespace
nodes

See        http://www.w3.org/TR/xpath#axes

NOTE:   The ancestor, descendant, 
following, preceding and self axes

partition a document  (ignoring attribute and namespace nodes): 
they do not overlap and together   
they contain all the nodes in the document.

4

ancestor( n ) = { nodes on the path from n to the root (wo node n)}
descendant( n ) = { nodes in the subtree rooted at n (wo node n) }
preceding( n ) = { nodes to the left of n (wo node n) and wo ancestor & descendant}
following( n ) = { nodes to the right of n (wo node n) and wo ancestor & descendant}

1 a

2 b 3 a 9 b 10 c

8 b

6 c 7 c

4 c 5 d

Some  XPath Axes
See        http://www.w3.org/TR/xpath#axes

ancestor(5) = { 1, 3 }

5

1 a

2 b 3 a 9 b 10 c

8 b

6 c 7 c

4 c 5 d

Some  XPath Axes
See        http://www.w3.org/TR/xpath#axes

ancestor(5) = { 1, 3 }

descendant(5) = { 6, 7 }

ancestor( n ) = { nodes on the path from n to the root (wo node n)}
descendant( n ) = { nodes in the subtree rooted at n (wo node n) }
preceding( n ) = { nodes to the left of n (wo node n) and wo ancestor & descendant}
following( n ) = { nodes to the right of n (wo node n) and wo ancestor & descendant}

6

1 a

2 b 3 a 9 b 10 c

8 b

6 c 7 c

4 c 5 d

Some  XPath Axes
See        http://www.w3.org/TR/xpath#axes

ancestor(5) = { 1, 3 }

descendant(5) = { 6, 7 }

preceding(5) = { 2, 4 }

ancestor( n ) = { nodes on the path from n to the root (wo node n)}
descendant( n ) = { nodes in the subtree rooted at n (wo node n) }
preceding( n ) = { nodes to the left of n (wo node n) and wo ancestor & descendant}
following( n ) = { nodes to the right of n (wo node n) and wo ancestor & descendant}



2

7

1 a

2 b 3 a 9 b 10 c

8 b

6 c 7 c

4 c 5 d

Some  XPath Axes
See        http://www.w3.org/TR/xpath#axes

ancestor(5) = { 1, 3 }

descendant(5) = { 6, 7 }

preceding(5) = { 2, 4 }

following(5) = { 8, 9, 10 }

self(5) = { 5 }

ancestor( n ) = { nodes on the path from n to the root (wo node n)}
descendant( n ) = { nodes in the subtree rooted at n (wo node n) }
preceding( n ) = { nodes to the left of n (wo node n) and wo ancestor & descendant}
following( n ) = { nodes to the right of n (wo node n) and wo ancestor & descendant}

8

Pre/Post Encoding

PRE POST lab
-------------
1    10    a
2     1    b
3     7    a
4     2    c
5     5    d
6     3    c
7     4    c
8     6    b
9     8    b
10    9    c

1 a

2 b 3 a 9 b 10 c

8 b

6 c 7 c

4 c 5 d
2

3 4

5

1 7

6

8 9

10Î Add  POST order

Descendants( Pre, Post ) =

SELECT r1.pre FROM DOCtable r1, 
WHERE r1.pre > Pre 
AND r1.post < Post

“structural join”

Descendants(5,5)

9

pre 

post

descendant

ancestor

10

pre 

post

descendant

ancestor

following

preceding

11

firstChild( pr, po ) = ?

pre 

post

descendant

ancestor

following

preceding

12

firstChild( pr, po ) = left-most node,
below and to the right of (pr,po)

or, equivalently

node (pr+1, p)  with  p < po, if it exists.pre 

post

descendant

ancestor

following

preceding



3

13

pre 

post

descendant

ancestor

following

preceding
lastChild( pr, po ) =

node (p, po-1)  with  p > pr, if it exists.

firstChild( pr, po ) = left-most node,
below and to the right of (pr,po)

or, equivalently

node (pr+1, p)  with  p < po, if it exists.

14

firstChild( pr, po ) = left-most node,
below and to the right of (pr,po)

nextSibling( pr, po ) = 
left-most node,

Æ to the right
Æ up

such that …?

pre 

post

descendant

ancestor

following

preceding

15

firstChild( pr, po ) = left-most node,
below and to the right of (pr,po)

nextSibling( pr, po ) = 
left-most node ( pr2, po2 ),

Æ to the right
Æ up

such that there is no node 
with post value  > po and  < po2

to the left.

e.g.,  not c- and  d-node
(because b-node is inbetween..)

pre 

post

descendant

ancestor

following

preceding

16

Questions

If you know the  size-of-subtree at each node, then
how can you determine  nextSibling( pr, po, size )?

If you know the  level of each node, then how can you
determine  parent( pr, po, level )?     
And how  children(pr, po, level)?

If you do not know size, but know 
the  level of a node,
then how can you determine 
size-of-subtree?

If you know  pre/post/parent,
does that also give you level
and  size-of-subtree?

firstChild( pr, po ) = left-most node,
below and to the right of (pr,po)

nextSibling( pr, po ) = 
left-most node ( pr2, po2 ),

Æ to the right
Æ up

such that there is no node 
with post value  > po and  < po2

to the left.

e.g.,  not c- and  d-node
(because b-node is inbetween..)

17 18
Assignment 3

Write a program that 
Æ reads an XML document, and a file with SQL queries
Æ sends a PRE/POST/LEVEL encoding to the DB (e.g., MySQL)
Æ sends the queries to the DB
Æ receives the answers and prints/evaluates them

Æ Only element/text nodes!

Nice JDBC+MySQL tutorial: 
http://www.developer.com/java/data/article.php/3417381



4

19

Æ Only element/text nodes!

PLUS  attributes

<a color=“green”>
...
</a>

Assignment 3

Write a program that 
Æ reads an XML document, and a file with SQL queries
Æ sends a PRE/POST/LEVEL encoding to the DB (e.g., MySQL)
Æ sends the queries to the DB
Æ receives the answers and prints/evaluates them

Nice JDBC+MySQL tutorial: 
http://www.developer.com/java/data/article.php/3417381

20

21

<a> 
<b>Hello World</b> 
<c></c>

</a> 

pre|post |level| tag  | text 
--------------------------------
1 |  4  |  1  | "a"  | null 
2 |  2  |  2  | "b"  | null 
3 |  1  |  3  | null | "Hello World" 
4 |  3  |  2  | "c"  | null 

INSERT INTO book_tbl (pre,post,tag,text) 

VALUE (1, 12, "book", null);

Assignment 3 Generate  (pre,post,tag,text)-table

from the document, generate SQL insert statements

22

<a> 
<b>Hello World</b> 
<c></c>

</a> 

INSERT INTO book_tbl (pre,post,tag,text) 

VALUE (1, 12, "book", null);

Assignment 3 Generate  (pre,post,tag,text)-table  &  (pre,attr,value)-table

from the document, generate SQL insert statements

<a>
<b>Hello World</b>
<c a1="123"></c>

</a>

pre | attr | value
------------------
4 |  a1  | "123" 

INSERT INTO book_tbl (pre,post,tag,text) 

VALUE (1, 12, "book", null);

pre|post |level| tag  | text 
--------------------------------
1 |  4  |  1  | "a"  | null 
2 |  2  |  2  | "b"  | null 
3 |  1  |  3  | null | "Hello World" 
4 |  3  |  2  | "c"  | null 

23

nextSibling( pr, po, LE ) = 
left-most node ( pr2, po2, LE2 ),

Æ to the right
Æ up

such that there is no node 
with post value  > po  and  < po2.pre 

post

descendant

ancestor

following

preceding

24

nextSibling( pr, po, LE ) = 
left-most node ( pr2, po2, LE2 ),

Æ to the right
Æ up

such that there is no node 
with post value  > po  and  < po2.

if  (LE == LE2)

pre 

post

descendant

ancestor

following

preceding



5

25

nextSibling( pr, po, LE ) = 
left-most node ( pr2, po2, LE2 ),

Æ to the right
Æ up

such that there is no node 
with post value  > po  and  < po2.

if  (LE == LE2)

pre 

post

descendant

ancestor

following

preceding

nextSibling( pr, po, pa ) = (pr2, po2, pa)
such that  pr<pr2  and there is no
(pr3, po3, pa)  with  pr<pr3<pr2

26

nextSibling( pr, po, LE ) = 
left-most node ( pr2, po2, LE2 ),

Æ to the right
Æ up

such that there is no node 
with post value  > po  and  < po2.

if  (LE == LE2)

nextSibling( pr, po, pa ) = (pr2, po2, pa)
such that  pr<pr2  and there is no
(pr3, po3, pa)  with  pr<pr3<pr2

Using
(pre, SIZE, LEVEL)-encoding:

Æ How to compute 
all children of a node (p,s,l)?

Æ Can you compute the post value
from given (pre, size, level)?

27

Later in this course, we will use the PRE/POST encoding again.

Æ We will find a systematic way to  map queries on XML (Xpath)
into  XQL queries.

Assignment 5 is about programming this mapping.

28

Outline - Lectures

1. Introduction to XML, Encodings, Parsers
2. Memory Representations for XML: Space vs Access Speed
3. RDBMS Representation of XML

4. DTDs, Schemas, Regular Expressions, Ambiguity

5. Node Selecting Queries: XPath
6. Efficient XPath Evaluation
7. XPath Properties: backward axes, containment test
8. Streaming Evaluation: how much memory do you need?
9. XPath Evaluation using RDBMS
10. XSLT
11. XSLT & XQuery
12. XQuery & Updates

29

Outline - Assignments

1. Read XML, using DOM parser. Create document statistics.

2. SAX Parse into memory structure: Tree and DAG

3. Map XML into RDBMS                         Æ 27. April

4. XPath evaluation                                  Æ 11. May

5. XPath into SQL Translation               Æ 25. May

30

Lecture 4

DTDs & Reg. Exprs



6

31

Today
XML type definition languages

want to specify a certain subset of XML doc’s  =  a “type” of XML documents

Remember
The specification/type definition should be simple, so that 

Æ a  validator can be built automatically (and efficiently)
Æ the  validator runs efficient on any XML input

(similar demands as for a  parser)

Î Type def. language must be SIMPLE!

(similarly:  parsers generators use EBNF or smaller subclasses)

O(n^3) parsing

32

XML Type Definition Languages

DTD  (Document Type Definition, W3C)
Originated from SGML.  Now part of XML  

ÆDTD may appear at the beginning of an XML document

XML Schema  (W3C)
Now at version 1.1 
HUGE language, many built-in simple types

ÆSchemas themselves: written in XML

See the “Schema Primer” at  http://www.w3.org/TR/xmlschema-0/

RELAX NG (Oasis)
For tree structure definition, more powerful than DTDs & Schemas

33

DTDs

(also next 4 slides)

if the attribute type is not CDATA

34

DTDs

(also next 4 slides)

if the attribute type is not CDATA

Or:  
Store DTD in  gr.dtd,  and use:

<!DOCTYPE greeting SYSTEM “gr.dtd”>

35

There are 
two kinds of
recursion here..

Do you see them?

Example DTD 36



7

37 38

Some examples of attribute defs:

(1) Fixed default attribute value

Syntax:
<!ATTLIST element-name attribute-name attribute-type #FIXED "value">

DTD example: 
<!ATTLIST sender company CDATA #FIXED "Microsoft"> 

XML example: 
<sender company="Microsoft"> 

Use if you want an attribute to have a fixed value 
without allowing the author to change it. 

If an author includes another value, the XML parser will return an error. 

39

Some examples of attribute defs:

(2)  Variable attribute value (with default)

Syntax:
<!ATTLIST element-name attribute-name attribute-type "value">

DTD example: 
<!ATTLIST payment type CDATA "check"> 

XML example: 
<payment type=“check”> 

Use if you want the attribute to be present with the default value,
even if the author did not include it.

40

Some examples of attribute defs:

(2b)  Enumerated attribute type

Syntax:
<!ATTLIST element-name attribute-name (value_1|value_2|..) “value”>

DTD example: 
<!ATTLIST payment type (cash|check) "cash"> 

XML example: 
<payment type="check"> 
or <payment type="cash"> 

Use enumerated attribute values when 
you want the attribute values to be one of a fixed set of legal values. 

41

Some examples of attribute defs:

(3)  Required attribute

Syntax:
<!ATTLIST element-name attribute_name attribute-type #REQUIRED>

DTD example: 
<!ATTLIST person securityNumber CDATA #REQUIRED> 

XML example: 
<person securityNumber=“3141593"> 

Use a required attribute if you don't have an option for a default value, 
but still want to force the attribute to be present. 

If an author forgets a required attribute, the XML parser will return an error.

must be included

42

Some examples of attribute defs:

(4)  Implied attribute

Syntax:
<!ATTLIST element-name attribute_name attribute-type #IMPLIED>

DTD example: 
<!ATTLIST contact fax CDATA #IMPLIED> 

XML example: 
<contact fax=“555-667788"> 

Use an implied attribute if you don't want to force the author to include 
the attribute,  and you don't have a default value either.

may be included



8

43 44

How??

45

Î It should be clear how to check validity of Mixed Content!

The Definition of Mixed Content

• Mixed content is described by a repeatable OR 
group

(#PCDATA | element-name | …)*

– Inside the group, no regular expressions –
just element names

– #PCDATA must be first, followed by 0 or 
more element names that are separated by |

– The group can be repeated 0 or more times

46

Most interesting content mode:

Regular Expression

47

Most interesting content mode:

Regular Expression

1. What is a  regular expression?
Given a reg. expr. how can we match a string against it?

2.   What is a  finite-state automaton?

3.   What is a deterministic regular expression?

4.   What is a 1-unambiguous regular expression?

48



9

49 50

51

Regular Expressions are a very useful concept.

Æused in EBNF, for defining the syntax of PLs

Æused in various unix tools  (e.g., grep)

Æused in Perl,Tcl, text editors (like ed,emacs, …)

ÆOld classical concept in CS  (Stephen Kleene, 1950’s)

How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

Example
e = (ab | b)* a* a

w = a b b a a b a

52

Regular Expressions are a very useful concept.

Æused in EBNF, for defining the syntax of PLs

Æused in various unix tools  (e.g., grep)

Æused in Perl,Tcl, text editors (like ed,emacs, …)

ÆOld classical concept in CS  (Stephen Kleene, 1950’s)

ÎConstruct a Finite-State Automaton

b

a

b

How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

Example
e = (ab | b)* a* a

w = a b b a a b a

a

a

53

Finite-State Automata (FA)  even more useful concept!

Æthey truly incarnate constant memory computation.

Ælike Turing Machines, but read-only and one-way (left-to-right)

Æfor every Reg Exp there is a FA (and vica versa)

Æuseful in many, many areas of CS (verification, compilers, learning,
hardware, linguistics, UML, etc, etc)

ÎConstruct a Finite-State Automaton

b

a

b

How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

Example
e = (ab | b)* a* a

w = a b b a a b a

a

a

54

Finite-State Automata (FA)  even more useful concept!

Æthey truly incarnate constant memory computation.

Ælike Turing Machines, but read-only and one-way (left-to-right)

Æfor every Reg Exp there is a FA (and vica versa)

Æfor every FA there is an equivalent  deterministic FA
(=  per letter at most one outgoing edge)

ÎConstruct a Finite-State Automaton

b

a

b

How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

Example
e = (ab | b)* a* a

w = a b b a a b a

a

a NOT
deterministic



10

55

Finite-State Automata (FA)  even more useful concept!

Æthey truly incarnate constant memory computation.

Ælike Turing Machines, but read-only and one-way (left-to-right)

Æfor every Reg Exp there is a FA (and vica versa)

Æfor every FA there is an equivalent  deterministic FA
(=  per letter at most one outgoing edge)

ÎConstruct a Finite-State Automaton

b

a

b

How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

Example
e = (ab | b)* a* a

w = a b b a a b a

a

a

deterministic

56

Finite-State Automata (FA)  even more useful concept!

Æthey truly incarnate constant memory computation.

Ælike Turing Machines, but read-only and one-way (left-to-right)

Æfor every Reg Exp there is a FA (and vica versa)

Æfor every FA there is an equivalent  deterministic FA
(=  per letter at most one outgoing edge)

ÎConstruct a Finite-State Automaton

b

a

b

How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

deterministic FA:   run on w takes 
time linear in length(w)
and constant space (#states, e.g., 3 Æ) a

a

deterministic

57

Finite-State Automata (FA)

Æ For every FA you can build and equivalent deterministic FA ☺
But, could become exponentially larger, /

sometimes unavoidable  (FA is more succinct)

Æ For every deterministic FA you can build a minimal unique equivalent one
Thus, equivalence is decidable! ☺
Very rare!   --- E.g., equivalence of EBNF’s is NOT decidable.

ÎConstruct a Finite-State Automaton

b

a

b

How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

deterministic FA:   run on w takes 
time linear in length(w)
and constant space (#states, e.g., 3 Æ) a

a

deterministic

58

Finite-State Automata (FA)

Æ For every FA you can build and equivalent deterministic FA ☺
But, could become exponentially larger, /

sometimes unavoidable  (FA is more succinct)

Æ For every deterministic FA you can build a minimal unique equivalent one
Thus, equivalence is decidable! ☺
Very rare!   --- E.g., equivalence of EBNF’s is NOT decidable.

ÎConstruct a Finite-State Automaton

b

a

b

How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

deterministic FA:   run on w takes 
time linear in length(w)
and constant space (#states, e.g., 3 Æ) a

a

deterministic

Why?
Can you find an example?

59

How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

deterministic FA:   run on w takes 
time linear in length(w)

Algorithm

FA = BuildFA(e);
DFA = BuildDFA(FA);

Size of FA is linear in size(e)=m
Size of DFA is exponential in m

Total Running time O(n + 2^m)n = length(w)

Finite-State Automata (FA)

Æ For every FA you can build and equivalent deterministic FA ☺
But, could become exponentially larger, /

sometimes unavoidable  (FA is more succinct)

Æ For every deterministic FA you can build a minimal unique equivalent one
Thus, equivalence is decidable! ☺
Very rare!   --- E.g., equivalence of EBNF’s is NOT decidable.

60

How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

deterministic FA:   run on w takes 
time linear in length(w)

Total Running time O(n + 2^m)n = length(w)

Æ Other alternative:  O(nm)

Algorithm

FA = BuildFA(e);
DFA = BuildDFA(FA);

Size of FA is linear in size(e)=m
Size of DFA is exponential in m

Finite-State Automata (FA)

Æ For every FA you can build and equivalent deterministic FA ☺
But, could become exponentially larger, /

sometimes unavoidable  (FA is more succinct)

Æ For every deterministic FA you can build a minimal unique equivalent one
Thus, equivalence is decidable! ☺
Very rare!   --- E.g., equivalence of EBNF’s is NOT decidable.



11

61

How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

deterministic FA:   run on w takes 
time linear in length(w)

Total Running time O(n + 2^m)n = length(w)

Æ Other alternative:  O(nm)

Algorithm

FA = BuildFA(e);
DFA = BuildDFA(FA);

Size of FA is linear in size(e)=m
Size of DFA is exponential in m

To avoid these expensive running times

W3C simply requires that  FA=BuildFA(e) must be deterministic already!

Is small!   ☺
size is only O(m)  

W3C
DTD-defin.

62

How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

deterministic FA:   run on w takes 
time linear in length(w)

Total Running time O(n + 2^m)n = length(w)

Æ Other alternative:  O(nm)

Algorithm

FA = BuildFA(e);
DFA = BuildDFA(FA);

Size of FA is linear in size(e)=m
Size of DFA is exponential in m

To avoid these expensive running times

W3C simply requires that  FA=BuildFA(e) must be deterministic already!

Is small!   ☺
size is only O(m)  

Unfortunately, we will loose some regular expressions
(which hence are  not allowed to appear in a DTD!!)

W3C
DTD-defin.

63

How can you  implement a regular expression?

Input:          Reg Expr e,  string w
Question:    Does w match e?

deterministic FA:   run on w takes 
time linear in length(w)

Total Running time O(n + 2^m)n = length(w)

Æ Other alternative:  O(nm)

Algorithm

FA = BuildFA(e);
DFA = BuildDFA(FA);

Size of FA is linear in size(e)=m
Size of DFA is exponential in m

To avoid these expensive running times

W3C simply requires that  FA=BuildFA(e) must be deterministic already!

Is small!   ☺
size is only O(m)  

How does  BuildFA(e) work?
“Glushkov automaton” = “position automaton”

/  more details later,  if time permits

64

65 66



12

67

(a|b)*a(a|b)

68

To summarize

In order to check whether a (large) document
is  valid  wrt to a given  DTD (“it validates”)
you need to

Æ Check if children lists match the given Reg Expr’s

This can be done efficiently, using finite-automata!

To check if a Reg Expr is allowed in a DTD
we have to construct a particular finite automaton:  the Glushkov automaton.

69

To summarize

Next, let us look at some other (minor) issues

Æ Unordered lists (permutations)
Æ Recursive DTDs

70

71 72



13

73 74

75

• The XML specification restricts regular expressions in 
DTDs to be deterministic (1-unambiguous).

• Unambiguous regular expression: “each word is witnessed 
by at most one sequence of positions of symbols in the expression 
that matches the word“ .[Brüggemann-Klein, Wood 1998]

9 Ambiguous expression

9 For aaa  three witnesses:   a1a1a2 a1a2a3 a2a3a3

9 Unambiguous equivalent expression :   (a + b)*a

Document Type Definitions (DTDs)

(a + b)*aa* (a1 + b1)*a2a3*mark with
subscripts

(this and next 2, from: www.infosys.uni-sb.de/teaching/streams0506/slides/stoyan.mutafchiev.slides.ppt

76

• Is it enough for our purpose if the regular expression is
unambiguous ?

• the same unambiguous regular expression:

• consider :   baa 
9 one witness: b1a1a2 (unambiguous)
9 it is not possible to decide  b1a? without looking ahead

• Without looking beyond that symbol in the input word
[1-unambiguous]

Document Type Definitions (DTDs)

(a + b)*a (a1 + b1)*a2
mark with
subscripts

No, it is not enough

(a + b)*a ≡ ?
unambiguous 1-unambiguous

Can you find a
1-unambiguous Reg Exp
for (a + b)*a
… not so easy…. ☺

77

• Is it enough for our purpose if the regular expression is
unambiguous ?

• the same unambiguous regular expression:

• consider :   baa 
9 one withness: b1a1a2 (unambiguous )
9 it is not possible to decide  b1a? without looking ahead

• Without looking beyond that symbol in the input word
[1-unambiguous]

Document Type Definitions (DTDs)

(a + b)*a (a1 + b1)*a2
mark with
subscripts

No, it is not enough

(a + b)*a ≡ b*a(b*a)*
unambiguous 1-unambiguous

78

Document Type Definitions (DTDs)

[Brüggemann-Klein, Wood 1998]:
• Can we recognize deterministic regular expressions?

9 A regular expression is deterministic (one-unambiguous) iff its 
Glushkov  automaton is deterministic.

9 The Gluschkov automaton can be computed in time quadratic in 
the size of the regular expression

a

a

a

a

a

b

b
a

b a

aa

b
b

b

(a+b)*a+ε (b*a)*



14

79

Following slides from:  http://www.cs.ut.ee/~varmo/tday-rouge/tammeoja-slides.pdf

80

81 82

83 84



15

85 86

87 88

89 90



16

91 92

93

Questions

E =   ( a1? a2? a3? … an? )*               1)  Does E contain:   w = a1 a3 a2 a1

2) Construct the Glushkov automaton for E.

3) How many transitions (edges) does this automaton have?

4) Is there a smaller automaton which recognizes 
the same set of strings?

5) What is the smallest equivalent automaton?   (Æ merge states)

94

Questions

E =   ( a1? a2? a3? … an? )*               1)  Does E contain:   w = a1 a3 a2 a1

2) Construct the Glushkov automaton for E.

3) How many transitions (edges) does this automaton have?

4) Is there a smaller automaton which recognizes 
the same set of strings?

5) What is the smallest equivalent automaton?   (Æ merge states)

F = ( a1? a2? a3? … an? c )*

How many transitions are in the Glushkov automaton for F?

And how many in F’s minimal automaton? 

Does F contain:  v = a3 a2 c

95

Question

Why does it take quadratic time, to construct 
the Glushkov automaton for a given regular expression E?

O(n2),  where  n is the  length of the regular expression E.

Given an  input string  w of length m, it takes us time
O(n2 + m)   to check  w against  E.

Can this be improved for the case the m is small (non-quadratic)
with resepect to n?   

Æ do not want to construct the full automaton, because
that is too expensive..

96

END
Lecture 4


