XML and Databases

Lecture 4
DTDs, Schemas, Regular Expressions, Ambiguity

Sebastian Maneth
NICTA and UNSW

CSE@UNSW -- Semester 1, 2009

Outline

0. Comments about PRE/POST encoding
& about Assignment 3 (map XML to a DB)

1. DTDs
2. Regular Expressions

3. Finite-State Automata / Glushkov Automaton

Some XPath Axes
See http://www.w3.0org/TR/xpath#axes

- the following axis contains all nodes in the same document as the
context node that are after the context node in document order,
excluding any descendants and excluding attribute nodes and namespace nodes

- the preceding axis contains all nodes in the same document as the
context node that are before the context node in document order,
excluding any ancestors and excluding attribute nodes and namespace
nodes

NOTE: The ancestor, descendant,
following, preceding and self axes
partition a document (ignoring attribute and namespace nodes):
they do not overlap and together
they contain all the nodes in the document.

Some XPath Axes
See http://www.w3.org/TR/xpath#axes
ancestor(n) ={nodes on the path from n to the root (wo node n)}
descendant(n) = { nodes in the subtree rooted at n (wo node n) }

preceding(n) ={nodes to the left of n (wo node n) and wo ancestor & descendant}
following(n)={nodes to the right of n (wo node n) and wo ancestor & descendant}

ancestor(5) ={ 1,3}

/N
G @

Some XPath Axes
See http://www._w3.org/TR/xpath#axes
ancestor(n) ={nodes on the path from n to the root (wo node n)}
descendant(n) = {nodes in the subtree rooted at n (wo node n) }
preceding(n) ={nodes to the left of n (wo node n) and wo ancestor & descendant}
following(n)={nodes to the right of n (wo node n) and wo ancestor & descendant}
ancestor(5) ={1,3}

descendant(5) = {6, 7}

Some XPath Axes
See http://www.w3.0org/TR/xpath#axes

ancestor(n) ={nodes on the path from n to the root (wo node n)}

descendant(n) = { nodes in the subtree rooted at n (wo node n) }

preceding(n) ={nodes to the left of n (wo node n) and wo ancestor & descendant}
Following(n)={nodes to the right of n (wo node n) and wo ancestor & descendant}

ancestor(5) ={ 1,3}

@f descendant(5) = {6, 7}

preceding(5) ={2,4}

Some XPath Axes
See http://www.w3.0org/TR/xpath#axes

ancestor(n)={nodes on the path from n to the root (wo node n)}

Pre/Post Encoding

= Add POST order 10 PRE POST lab

descendant(n) = { nodes in the subtree rooted at n (wo node n) } 1 10 a
preceding(n) ={nodes to the left of n (wo node n) and wo ancestor & descendant} 1 7 8 9 g % b
following(n)={nodes to the right of n (wo node n) and wo ancestor & descendant - ._.- a
()= i v o) G Go—Gorwe’ 3] 8
l / \ / 5 5 d
= 5 6 3 c
ancestor(5) ={1,3} b 2 c
2 6 8 6 b
d dant(5) = {6, 7
escendant(5) = { 6,7} 9 8 b
preceding(5)={2,4} 10 9 c
Descendants(5,5
following(5) ={ 8,9, 10} ¢.9
self(5) = {5} Descendants(Pre, Post) =
SELECT rl.pre FROM DOCtable ri,
WHERE rl.pre > Pre “structural join”
AND ril.post < Post
9 10
post post
o 1. o 1.
e e e e
b_- [S i b_- [S wi
s/] S e) S/] S e)
4 . £ o £ - f oh
<N | i | g <N |]
g h 3 | ‘b *d g h 3 |
0,0y T4 pre (0.0
ancestor post ancestor post
+ +
: i following
----------- D pre B pre
5 preceding 5
' descendant ' descendant
1 12
post
a Ta a
S od e
b_- I i b I
5/ i s -} oo 5/ i
< <N | i Ko c <N |
g h] | S g h]
.nln-l{ali-!----:'rpre
ancestor post FirstChild(pr, po)="? ancestor _ post FirstChild(pr, po) = left-most node,
H H below and to the right of (pr,po)
i following i following
H H or, equivalently
i ,: ___________ > pre TS ,: ___________ > pre node (pr+1, p) with p < po, if it exists.
preceding 5 preceding E
' descendant ' descendant

13 14
post post
o 1. é o 1. é
b—" |H"‘H-,__he 3 i b_—" |H"‘H-,__he 3 i
i . i .
5/ i ——--i_}——! 5/ i ——--i_}——!
c N | d..éh c N | d..éh
od od
g e | b J g b 3] b J
(0.0) & pre (0,04 pre
ancestor post FirstChild(pr, po) = left-most node, ancestor post FirstChild(pr, po) = left-most node,
* below and to the right of (pr,po) * below and to the right of (pr,po)
i following i following
H or, equivalently | nextSibling(pr,po)=
: : left-most node,
AL T > pre node (pr+1, p) with p < po, if it exists. AT S > pre - to the right
! ' > up
5 lastChild(pr, po) = ; such that ...?
preceding ! preceding !
E node (p, po-1) with p > pr, if it exists. E
' descendant ' descendant
15 16
post Questions
o 1. I
5 “‘“‘--E__H__e "é_ i If you know the size-of-subtree at each node, then
T i o] how can you determine nextSibling(pr, po, size)?
5/ i s .-a_} S
g AN | | .g.h If you know the level of each node, then how can you
g h J ‘|>-h *d | determine parent(pr, po, level)?
00— fdiieis pre And how children(pr, po, level)?
ancestor post FirstChild(pr, po) = left-most node, If you do not know size, but know FirstChild(pr, po) = left-most node,
t below and to the right of (pr,po) the level of a node, below and to the right of (pr,po)
! following then how can you determine
H nextSibling(pr,po)= size-of-subtree? nextSibling(pr,po)=
E left-most node (pr2, po2), left-most node (pr2, po2),
P P Y + pre > tothe right If you know pre/post/parent, - to the right
! > up does that also give you level > up
' such that there is no node and size-of-subtree? such that there is no node
preceding E with post value >po and < po2 with post value >po and < po2
' to the left. to the left.
I descendant e.g., not c- and d-node e.g., not c- and d-node

(because b-node is inbetween..)

(because b-node is inbetween..)

XPath Accelerator encoding

APatn Accelerstor Encoding

XML fragment f and its skeleton tree

<a>

c
<l==d-->

<e><f><g/><Th?>< /1>

<i>j</i>
<fe>

Pre/post encoding of f: table accel

DX NOO S W

=~ W00 R O D)

Scholl (DBIS,

Uni KN}

Assignment 3

Write a program that

- reads an XML document, and a file with SQL queries
- sends a PRE/POST/LEVEL encoding to the DB (e.g., MySQL)

- sends the queries to the DB

- receives the answers and prints/evaluates them

WE~NDOh WO

I
w

N WOON O Y

- Only element/text nodes!

Nice JDBC+MySQL tutorial:
http://www.developer.com/java/data/article.php/3417381

19 20
Assignment 3
Write a program that XML Database - Table Storage
- reads an XML document, and a file with SQL queries
- sends a PRE/P_OST/LEVEL encoding to the DB (e.g., MySQL) Pre/Post Plane:
-> sends the queries to the DB
- receives the answers and prints/evaluates them POST
himl
S vody
. — - div
. & a0 8, . ul
1 1 - Only element/text nodes! ald #i8 - e i
2 | 0 LT AT E
3 2 PLUS attributes i L. 8
4 8 b
5 5 i ».
e a A
T 4 .- 4 !
8 T head
9] a4 title
. . = 2 4 &8 B 1 14 PRE
Nice JDBC+MySQL tutorial:
http://ww.developer.com/java/data/article.php/3417381
21 22
Assignment 3 Generate (pre,post,tag,text)-table Assignment 3 Generate (pre,post,tag,text)-table & (pre,attr,value)-table
pre]post |level| tag | text pre]post |level| tag | text
<a> <a>
Hello World 1] 4] 1 | ™" | null Hello World 1] 4] 1 | " | null
<c></c> 21 2 | 2 | "™ | null <c></c> 21 2 | 2 | "™ | null
 3] 1 | 3 | null | "Hello World" 3] 1 | 3 | null | "Hello World"
41 3 | 2 | "¢ | null 41 3 | 2 | "¢ | null
\from the document, generate SQL insert statements \from the document, generate SQL insert statements
INSERT INTO book_tbl (pre,post,tag,text) INSERT INTO book_tbl (pre,post,tag,text)
VALUE (1, 12, "book™, null); VALUE (1, 12, "book™, null);
<a>
Hello World ff_l_?fff_!__’i‘!f
<c al="123"></c> 4] a1 | "123"

INSERT INTO book_tbl (pre,post,tag, text)
VALUE (1, 12, "book™, null);
23 24
post post
a +a . +a .
e .e = .e
b_— — . b_— — .i
s/\j __._.:}___ S/\j __._}__'!
- 'f «h - h
£ A i 3 e i | Jl 3
=d =d
g e] o1 . g b 3] b .
Dn{%l‘ ----- ¥ pre 0n{a|‘ » pre
ancestor post ancestor post
* nextSibling(pr, po, LE) = + nextSibling(pr, po, LE) =
i following left-most node (pr2, po2, LE2), ! following left-most node (pr2, po2, LE2),
E - to the right E - to the right
. > up ! > up
| SU i | SU i
D ,. """""" > pre Wi alue > po D ,. """""" > pre Wi alue > po
preceding | preceding ! if (LE == LE2)
' descendant ' descendant

post
a Q'ra
i~ At
i ~—__ 8 .
- : s
i e B -
c N | ‘:
g . 3ES
n.nl t
. nextSibling(pr, po, LE) =
(pre, SIZE, LEVEL)-encoding: left-most node (pr2, po2, LE2),
- to the right
- How to compute > up
all children of a node (p,s,l)? 3 is
Wi alue > po
-> Can you compute the post value
from given (pre, size, level)? if (LE == LE2)

25
post
a +a
- e
b_- — 8 1
i =t ¥
g7 i T
< SN | :
g s A 1575
L T
0,0,
ancestor post
i nextSibling(pr, po, LE)=
! fol lowing left-most node (pr2, po2, LE2),
: - to the right
' > up
| S is
D ", """""" * pre Wi alue > po
preceding | if (LE == LE2)
H nextSibling(pr, po, pa) = (pr2, po2, pa)
i such that pr<pr2 and there is no
descendant

(pr3, po3, pa) with pr<pr3<pr2

nextSibling(pr, po, pa) = (pr2, po2, pa)
such that pr<pr2 and there is no
(pr3, po3, pa) with pr<pr3<pr2

27 28
Outline - Lectures
Later in this course, we will use the PRE/POST encoding again.
1. Introduction to XML, Encodings, Parsers
- We will find a systematic way to map queries on XML (Xpath) 2. Memory Representations for XML: Space vs Access Speed
into XQL queries. 3. RDBMS Representation of XML
4. DTDs, Schemas, Regular Expressions, Ambiguity
Assignment 5 is about programming this mapping.
5. Node Selecting Queries: XPath
6. Efficient XPath Evaluation
7. XPath Properties: backward axes, containment test
8. Streaming Evaluation: how much memory do you need?
9. XPath Evaluation using RDBMS
10. XSLT
11. XSLT & XQuery
12. XQuery & Updates
29 30

Outline - Assignments

1. Read XML, using DOM parser. Create document statistics.

2. SAX Parse into memory structure: Tree and DAG

3. Map XML into RDBMS > 27. April
4. XPath evaluation - 11. May

5. XPath into SQL Translation - 25. May

Lecture 4

DTDs & Reg. Exprs

31 32
Today XML Type Definition Languages
XML type definition languages L
DTD (Document Type Definition, W3C)
want to specify a certain subset of XML doc’s = a “type” of XML documents Originated from SGML. Now part of XML
->DTD may appear at the beginning of an XML document
Remember
The specification/type definition should be simple, so that
XML Schema (W3C)
- a validator can be built automatically (and efficiently) Now at version 1.1 o
> the validator runs efficient on any XML input HUGE language, many built-in simple types
(similar demands as for a parser) ->Schemas themselves: written in XML
See the “Schema Primer” at http://www.w3.org/TR/xmlschema-0/
= Type def. language must be SIMPLE!
RELAX NG (Oasis)
L For tree structure definition, more powerful than DTDs & Schemas
(similarly: parsers generators use EBNF or smaller subclasses)
O(n*3) parsing
2 3 " 4
SGML relics SGML relics
= only & faol does not fear “exiemal general parsed sntities” = only & faol does not fear “exiemal general parsed sntities”
As an unfortuniate hedtage from SGML, the header of an XML document may contain a document type declaration. As an unfortuniate hedtage from SGML, the header of an XML document may contain a document type declaration.
<7uml version="1.0"7> <7uml version="1.0"7>
<1DOCTYPE gres ng [<1DOCTYFE g ing [
<!ELEMENT ¢ ng (#PCDATA) > <!ELEMENT ¢ ting [(#PCOATA)>
<IATTLIST gew ag atyls (biglamall) <IATTLIST ¢ ing style (bigim all=>
<IENTITY hi ello"> <IENTITY hi "Hello">
> , 1> , Or:
< > &hi; 1dY <, 13 > &hi; 1d1 13 .
i e e e Store DTD in gr.dtd, and use:
This part can contain: This part can contain:
« DTD (Document Type Defintin) infarmaticn « DTD (Document Type Defintin) infarmaticn <IDOCTYPE greeting SYSTEM “gr.dtd”>
alement typs declarabons (ELEMENT) alement typs declarabons (ELEMENT)
attribute-list declarations (ATTLIST) attribute-list declarations (ATTLIST)
ideacribed later .| ideacribed later .|
» entity declarations (ENTITY) - & simple macro mechanism » entity declarations (ENTITY) - & simple macro mechanism
* notasion - data format * notasion - data format
Avald 81 thess Teatures whenever possiblel Avald 81 thess Teatures whenever possiblel
Unfartunately, they cannct ahways be ignored - 8 XML processors (even non-validating ones) ane required to Unfartunately, they cannct ahways be ignored - 8 XML processors (even non-validating ones) ane required to
» pomalize stiribite values (prune whits-space et | «— if the attribute type is not CDATA = romalize sliribite values (prune white-space et | «— if the attribute type is not CDATA
= hanchs intemal entity references (6.0 8xpand ind; In gresting) = hanchs intemal entity references (6.0 8xpand ind; In gresting)
* ingart default atribute values (8 9. INMeM style="small” N greeting) * ingart default atribute values (8 9. INMeM style="small” N greeting)
steonding to the documant type decianation. I & such & presant steonding to the documant type decianation. I & such & presant
COPTRIGHT € 20002000 AKDERS MOLLER & MICHAEL | SCMAARTIIACH I:D COPTRIGHT € 20002000 AKDERS MOLLER & MICHAEL | SCMAARTIIACH I:D
(also next 4 slides) (also next 4 slides)
35 36

Example DTD

A DT for our (acips colections, recipes .dtd
<IELEMENT collaction (descriptien,recipe®)>
<VELEMENT description ANY>

<!ELEMENT recipe (title,ingredient®, preparation,comment?,mitrition)s

There are

two kinds of
recursion here..

<!ELEMENT title [#PCDATA)>

<! ELEMENT (ingredient® L
<IATTLIST ingredisnt nase COATA WREQUIRED
amount COATA $IMPLIED
unit COATA WIMPLIED>

Do you see them?
<!ELEMERT preparation (step®)>

<VELEMENT atep (#PCDATA)>
<IELEMENT comment {NPCDATA)>

<'ELEMENT nutrition EMPTY>

<IATTLIST nutrition protein CDATA #REGUIRED
carbohydrates COATA #REQUIRED

COATA WREQUIRED

calories COATA SREQUIRED

alechol COATA #IMFLIED>

By insening
<!DOCTYPE collection SYSTEM “recipes.dtd">

in the headers of recipe collection documents, we state that they are inended 1o conform 10 pecipes . ded

1lection
<VELEMENT deseription ANY>
<IELEMENT recipe (title, ingredient®,preparation,comsent?, mutcition)»
<VELEMENT title (#PCDATA)>

< ELEMENT I .

<!ATTLIST ingredient name COATA WREQUIRE

amcunt COATA #IMPLIED
anit COATA #IMPLIED>

<IELEMENT preparation (step*)>
<!ELEMENT step [#PCDATA)>
<VELEMENT comment (NPCDATA}>

< VELEMENT nutrition ENPTY»

<IATTLIST muteition protein COATA WHEQUIRED
carbohydrates COATA SREQUIRED
fat COATA SREQUIRED
calories COATA PREQUIRED
aleshol CDATA #IMPLIED>

This grarmmatical description has some obvious shorcomings:

= we cannot express that. e.g. protein. must contain a non-negative number

» unit should only be allowed when amsunt is presant

= the comment elemant should be allowed to appear anywhere

» nested ingredient elements should only be allowed when ameunt |s absent

* <'DOCTYPE root-element | doctype-declaration... |» 37
determines the name of the root slement and contains the document type declarations

* <IELEMENT element-name contemt-model»
associates a content moded 10 all skements of The gven name

content models:

EMPTY: no content is aliowed

ANY: ey content is alcwed

(4PCOATA| e lement -namel . . .} *: "Mixod conbent”, artirary sequence of character data and ksted

whmants

delerministic reguiar SXpYBSS0N oVer slement names sequence of skements matching the expression
= cheice: (...

® <{ATTLIST slement-name atfr-name sffr-type aftr-defauit . >
deciwres Which Snbutes ane Jowed of reqUIRED In Which elements

atinbure types

reque (consn “slsment idenity™), IDREF atintans vahies

must match some | it
S, NNTOKEN. NHTOKENS, BOTATICS just Iorgel hess. . (corsioer Ihem deprecaled)

atinbune detauns

SRECUENED. e atinbate must be explcity provided
BINFLIED Attribeso 15 optional, no defaull provided

“xaluw i n0k @upbomy peovioed, This vakus nserted Dy defaut
SFIXED “walue® 25 above bul only ihis vake i allowed

This is a simple subset of SGML DTD.

Validty can be checked by a simple top-down traversal of the XML document (followed by a check of IDREF

38

Some examples of attribute defs:
(1) Fixed default attribute value

Syntax:
<IATTLIST element-name attribute-name attribute-type #FIXED "value">

DTD example:

<IATTLIST sender company CDATA #FIXED crosoft”>

XML example:

<sender company= crosoft'>

requinements)

Use if you want an attribute to have a fixed value
without allowing the author to change it.

If an author includes another value, the XML parser will return an error.

39 40
Some examples of attribute defs: Some examples of attribute defs:
(2) Variable attribute value (with default) (2b) Enumerated attribute type
Syntax: Syntax:
<IATTLIST element-name attribute-name attribute-type "value'> <IATTLIST element-name attribute-name (value_1|value_2]..) “value”>
DTD example: DTD example:
<IATTLIST payment type CDATA 'check'> <IATTLIST payment type (cash|check) "cash">
XML example: XML example:
<payment type=‘‘check”> <payment type="check'>
or <payment type="cash'>
Use if you want the attribute to be present with the default value, Use enumerated attribute values when
even if the author did not include it. you want the attribute values to be one of a fixed set of legal values.
4 42

Some examples of attribute defs:
(3) Required attribute

Syntax:
<IATTLIST element-name attribute name attribute-type #REQUIRED>

DTD example:
<IATTLIST person securityNumber CDATA #REQUIRED>

XML example:
<person securityNumber=+3141593"">

!

must be included

Some examples of attribute defs:
(4) Implied attribute

Syntax:
<IATTLIST element-name attribute _name attribute-type #IMPLIED>

DTD example:
<IATTLIST contact fax CDATA #IMPLIED>

XML example:
<contact fax=“555-667788">

!

may be included

Use a required attribute if you don't have an option for a default value,
but still want to force the attribute to be present.

If an author forgets a required attribute, the XML parser will return an error.

Use an implied attribute if you don't want to force the author to include
the attribute, and you don't have a default value either.

* <IDOCTYPE root-element | doctype-declaration... | 43

* <'DOCTYPE rovt-element | doctype-declaration... |> 44
determines the name of the root slement and contains the document type declaraions determines the name of the root slement and contains the document type declaraions
* <IELENENT element-name ocontent-models * <ELEMENT element-name content-models
associates 3 confent model 10 2l elaments of e given name asscciates 3 content moder 10 all thements of The given name
content models. conient models.
EMPTY. no content is allowed EMpTY. o confent 18 aliowed
ANY: aey content is alowed ARY. ary condent is alowed
(EPCOATA leloment-name| . .} * “Mixed content”, artilrary sequence of chasracter dats and ligted (APCOATA | eloment -name] . .} ¥ “mived confent” Mbirary sequence of characier data and lnted
o ks e e s S L S L5t regUlar sxpvessicn o st riames Sequence ol shments malching The sxpressin
& choice: (...} iy fiaadiay
. agUence. {. ., o 4
= optional . . ¥
* <'ATTLIST element-name attr-npame attr-type attr-default ... > * <'ATTLIST element-name attr-npame attr-type attr-default ... >
ockares which afiibutes 2 kv or raquird Ve semonts ockares which afiibutes 2 kv or raquird Ve semonts
atiriase types: atiriase types:
COATA vy valus s aliovwed (the default) COATA ary viblue (s alkwed (the default)
(value| ...} erumeration of alowed vakes (value| ...} erumeration of alowed vakes
1D, IDREF, Imﬁ_ !:l AEribULe values MUt Be unique (contain “slement identity”), IDREF attritate values 1D, IDREF, Imﬁ_ !:l AEribULe values MUt Be unique (contain “slement identity”), IDREF attritate values
EACLA T, A TTETES, MR, Mt oA, SEREECH: ot gt Eore...(comshe e dspracend) EACLA T, A TTETES, MR, Mt oA, SEREECH: ot gt Eore...(comshe e dspracend)
attnbute defaults: attnbute defaults:
SREQUIRED: the atiribate must be explcitly provided SREQUIRED: the atiribate must be explcitly provided
SIMFLIED afinbute is optional, no default proviced SIMFLIED afinbute is optional, no default proviced
=value": if not exphcy provided, this value inserted by defaut =value": if not exphcy provided, this value inserted by defaut How??
SFINED “wal as above, but only this vaiue i allowed SFIXED *walue”: s above, but only this valse 5 allowed
This is a simple subset of SGML DTD. This is a simple subset of SGML DTD. /
Vahdty can be checked by a simple top-down traversal of the XML document (followed by a check of IDREF Walidity can be checked by a simple top-gown fraversal of the XML document {Toliwed by a check of IDREF
requinements | requiremEnts)
45 46
. . Most interesting content mode:
The Definition of Mixed Content
Regular Expression
Mixed content is described by a repeatable OR An Address-Book XML Document
group with an Internal DTD
*
(#PCDATA | element-name | ...) <l version="1.0" encoding="UTF &> [T ———
<IDOCTYPE addressbook | sm— .
the DTD is
<IELEMENT addressbook (person®)> addressbook
— Inside the group, no regular expressions — <IELEMENT person
: (name, greet?, address®, (fax | tel)*, email*)>
just element names <IELEMENT name (#PCDATA)>
— #PCDATA must be first, followed by 0 or <IELEMENT greet (#PCDATA)> | The syntax
| t that ted b <IELEMENT address ~ (#PCDATA)> |of a DTD is
more element names that are separate Yy | <IELEMENT tel (HPCDATA)> not XML
— The group can be repeated 0 or more times <IELEMENT fax (#PCDATA)> syntax
<IELEMENT email (#PCDATA)>
.)]>| “Internal” means that the DTD and the
= It should be clear how to check validity of Mixed Content! XML Document are in the same file
47 48

Most interesting content mode:
Regular Expression
1. Whatis a regular expression?
Given a reg. expr. how can we match a string against it?

2. Whatis a finite-state automaton?

3. What is a deterministic regular expression?

4. What is a 1-unambiguous regular expression?

Specifying the Structure
(cont'd)

* addr* to specify 0 or more address

lines
+ tel | fax atel orafax element
+ (tel | fax)* 0 or more repeats of tel or fax

+ email* 0 or more email elements

2005 hitp:fwww.c3. huji ac. ili-dbi

Specifying the Structure
(cont'd)

+ So the whole structure of a person entry
is specified by

name, greet?, addr*, (tel | fax)*, email*

= This is known as a regular expression
« Why is it important?

005 http:iiwww cs.huji.ac.ilf-dbi 34

Summary of Regular Expressions

+ A The tag (i.e., element) A occurs

» e1,e2 The expression e1 followed by
e2

- e* 0 or more occurrences of e
. e? Optional: 0 or 1 occurrences
. e+ 1 or more occurrences

+ el1|e2 eitherel ore2
+ (e) grouping

2005 hitp:ffaww.cs huji.ac.ili-dbi 35

51

Regular Expressions are a very useful concept.
-used in EBNF, for defining the syntax of PLs
->used in various unix tools (e.g., grep)

-used in Perl,Tcl, text editors (like ed, emacs, ...)

-0Id classical conceptin CS (Stephen Kleene, 1950's)

52

Regular Expressions are a very useful concept.
-used in EBNF, for defining the syntax of PLs
-used in various unix tools (e.g., grep)

-used in Perl,Tcl, text editors (like ed,emacs, ...)

-0Id classical conceptin CS (Stephen Kleene, 1950's)

How can you implement a regular expression?

Input: Reg Expr e, stringw
Question: Does w match e?

Example
e=(ab|b)*a*a

w=abbaaba

How can you implement a regular expression?

Input: Reg Expr e, string w =»Construct a Finite-State Automaton
Question: Does w match e?

Example
e=(ab|b)*a*a

w=abbaaba

Finite-State Automata (FA) even more useful concept!
-they truly incarnate constant memory computation.
-like Turing Machines, but read-only and one-way (left-to-right) ===

->for every Reg Exp there is a FA (and vica versa)

-useful in many, many areas of CS (verification, compilers, learning,
hardware, linguistics, UML, etc, etc)

Finite-State Automata (FA) even more useful concept!
-they truly incarnate constant memory computation.

->like Turing Machines, but read-only and one-way (left-to-right) =~

->for every Reg Exp there is a FA (and vica versa)

->for every FA there is an equivalent deterministic FA
(= per letter at most one outgoing edge)

How can you implement a regular expression?

Input: Reg Expr e, string w =»Construct a Finite-State Automaton
Question: Does w match e?

Example
e=(ab|b)*a*a

w=abbaaba

How can you implement a regular expression?

Input: Reg Expr e, string w = Construct a Finite-State Automaton
Question: Does w match e?

NOT
Example deterministic

a
e=(ab|b)*a*a at
~C=—=0
w=abbaaba b

0

Finite-State Automata (FA) even more useful concept!
-they truly incarnate constant memory computation.

->like Turing Machines, but read-only and one-way (left-to-right) “

->for every Reg Exp there is a FA (and vica versa)

->for every FA there is an equivalent deterministic FA
(= per letter at most one outgoing edge)

Finite-State Automata (FA) even more useful concept!
-they truly incarnate constant memory computation.

-like Turing Machines, but read-only and one-way (left-to-right) ===

->for every Reg Exp there is a FA (and vica versa)

->for every FA there is an equivalent deterministic FA
(= per letter at most one outgoing edge)

How can you implement a regular expression?

Input: Reg Expr e, stringw
Question: Does w match e?

Oy
Example

e=(ab|b)*a*a

w=abbaaba t) b
b

=>Construct a Finite-State Automaton

deterministic

How can you implement a regular expression?

Input: Reg Expr e, string w

Question: Does w match e? =>Construct a Finite-State Automaton

deterministic FA: run on w takes a
time linear in length(w)

and constant space (#states, e.g., 3)
t)b deterministic

57
Finite-State Automata (FA)

-> For every FA you can build and equivalent deterministic FA ©
But, could become exponentially larger, ®
sometimes unavoidable (FA is more succinct)

-> For every deterministic FA you can build a minimal unique equivalent one
Thus, equivalence is decidable! ©
Very rare! --- E.g., equivalence of EBNF’s is NOT decidable.

Why? i

Finite-State Automata (FA) Can you find an example?

-> For every FA you can build and equivalent deterministic FA ©
But, could become|exponentially larger, ®
sometimes unavoidable (FA is more succinct)

-> For every deterministic FA you can build a minimal unique equivalent one
Thus, equivalence is decidable! ©
Very rare! --- E.g., equivalence of EBNF’s is NOT decidable.

How can you implement a regular expression?

Input: Reg Expr e, string w

Question: Does w match e? =>Construct a Finite-State Automaton

deterministic FA: run on w takes a
time linear in length(w)

and constant space (#states, e.g., 3)

r->b deterministic

How can you implement a regular expression?

Input: Reg Expr e, string w

Question: Does w match e? =>Construct a Finite-State Automaton

deterministic FA: run on w takes a
time linear in length(w)

and constant space (#states, e.g., 3 =)
r->b deterministic

59
Finite-State Automata (FA)

-> For every FA you can build and equivalent deterministic FA ©
But, could become exponentially larger, ®
sometimes unavoidable (FA is more succinct)

-> For every deterministic FA you can build a minimal unique equivalent one
Thus, equivalence is decidable! ©
Very rare! --- E.g., equivalence of EBNF’s is NOT decidable.

Finite-State Automata (FA)

-> For every FA you can build and equivalent deterministic FA ©
But, could become exponentially larger, ®
sometimes unavoidable (FA is more succinct)

-> For every deterministic FA you can build a minimal unique equivalent one
Thus, equivalence is decidable! ©
Very rare! --- E.g., equivalence of EBNF’s is NOT decidable.

How can you implement a regular expression? Algorithm
Input: Reg Expr e, string w

. FA = BuildFA(e);
Question: Does w match e?

DFA = BuildDFA(FA);

deterministic FA: run on w takes

time linear in length(w) Size of FA is linear in size(e)=m

Size of DFA is exponential in m

n =length(w) Total Running time O(n + 2"m)

How can you implement a regular expression? Algorithm
Input: Reg Expr e, string w

. FA = BuildFA(e);
Question: Does w match e?

DFA = BuildDFA(FA);

deterministic FA: run on w takes

time linear in length(w) Size of FA is linear in size(e)=m

Size of DFA is exponential in m

n =length(w) Total Running time O(n + 2"m)

- Other alternative: O(nm)

10

To avoid these expensive running times

61

W3C simply requires that FA=Bui IldFA(e) must be deterministic already!

Is small!

©

size is only O(m)

w3C
DTD-defin.

To avoid these expensive running times

W3C simply requires that FA=Bui IdFA(e) must be deterministic already!

Is smalll ©
size is only O(m)

Unfortunately, we will loose some regular expressions Ww3cC
(which hence are not allowed to appear in a DTD!!) DTD-defin.

How can you implement a regular expression?

Input: Reg Expr e, string w
Question: Does w match e?

deterministic FA: run on w takes
time linear in length(w)

n = length(w)

Algorithm

FA = BuildFA(e);
DFA = BuildDFA(FA);

Size of FAis linear in size(e)=m
Size of DFA is exponential in m

Total Running time O(n + 2*m)

-> Other alternative: O(nm)

How can you implement a regular expression?

Input:
Question:

Algorithm
Reg Expr e, string w FA = BuildFA(e);
Does w match e? DFA = Bui IdDFA(FA);

deterministic FA: run on w takes
time finear in length(w)

Size of FAis linear in size(e)=m
Size of DFA is exponential in m

n =length(w) Total Running time O(n + 2"m)

-> Other alternative: O(nm)

63 64
To avoid these expensive running times Re u |a r EX re SS|On S
W3C simply requires that FA=Bui IdFA(e) must be deterministic already! g p
Is smalll © » Each regular expression determines a
size is only O(m) . -y
corresponding finite-state automaton
How does BuildFA(e) work? . L t, th . | I R
“Glushkov automaton” = “position automaton” et's start wi a simpler example: [a double
/ more details later, if time permits name addr* email circle
i 1 denotes an
How can you implement a regular expression? Algorithm addr accepting
AT state
Ianut: I;eg Expre, f]"i”?g w FA = BuildFA(e); I:’ |
uestion: oes w match e? DFA = BuildDFA(FA); — — .
: N Ty email o
{ W — ('_)]
deterministic FA: run on w takes Size of FA is linear in size(e)=m ! ~ {-"
ims e I ool Size of DFA is exponential in m . . .
This suggests a simple parsing program
n =length(w) Total Running time O(n + 2"m)
> Other alternative: O(nm) 2005 http-tww . ce_huji.ac.ilf-dbi 40
65 66

Another Example

name,address*,(tel | fax)*,email*

email

5,

. y
N fax email

Adding in the optional greet further

complicates things

2005 htp:fwwar o= huji ac. ilf-dbi 41

Deterministic Requirement:

Content Models must be Deterministic

If element-type declarations are

deterministic, it is easier to parse XML
documents

W3C XML recommendation requires the

Glushkov automaton to be deterministic
* The states of this automaton are the
positions of the regular expression
(semantic actions)
* The transitions are based on the “follows
set”

2005

hitpciiuww.c5.huji.ac. Il-dbi £

11

Deterministic Requirement
(cont’d)
» The associated automata are succinct

» A regular language may not have an
associated deterministic grammar, e.g.,
<I[ELEMENT ndeter

((movie|director)*,movie,(movie|director))>

| This is not allowed in a DTD|

(alb)*a(alb)

2005 hitp: /i o= huji.ac.il'-dbi 43

To summarize

In order to check whether a (large) document
is valid wrttoagiven DTD (“it validates”)
you need to

-> Check if children lists match the given Reg Expr's

This can be done efficiently, using finite-automata!

To check if a Reg Expr is allowed in a DTD
we have to construct a particular finite automaton: the Glushkov automaton.

69

To summarize
Next, let us look at some other (minor) issues

-> Unordered lists (permutations)
- Recursive DTDs

Some Things are Hard to Specify

Each employee element should contain name,
age and ssn elements in some order

<IELEMENT employee
((name, age, ssn) | (age, ssn, name) |
(ssn, name, age) | ...
)>

Suppose that there were many more fields!

2005 htip:ifaww.cs.huji.ac. il'-dbi a4

71

Recursive DTDs

<DOCTYPE genealogy [
<IELEMENT genealogy (person*)>
<IELEMENT person (

name,
dateOfBirth,
person, -- mother
person)> --father

=
What is the problem with this?
A parser does not notice it!

2005 htp-www.cs.huji.ac.ili-dbi 50

Recursive DTDs

<DOCTYPE genealogy [

<IELEMENT genealogy (person*)> | Each person
<IELEMENT person (should have
name, a father and a
dateOfBirth, mother. This
person, - mother | |eads to either
person)> - father linfinite data or
a person that
P> is a descendent
What is the problem with this? of herself.
A parser does not notice it!
2005 hitip-ifwww s huji.ac.il’~dbi 50

12

73

Recursive DTDs (cont'd)

<DOCTYPE genealogy [
<IELEMENT genealogy (person*)>
<IELEMENT person (
name,
dateOfBirth,
person?, -- mother
person?)> --father

1=

What is now the problem with this?

2005 hitp:ifwwiwcs huji ac. ii~dbi

74

Recursive DTDs (cont'd)

<DOCTYPE genealogy [
<IELEMENT genealogy (person*)>
<IELEMENT person (

If a person only
has a mother,

name, . how can you
dateOfBirth, tell that he has
person?, —mother |3 mother and

person?)> —father | does not have

a father?

1=

What is now the problem with this?

2005 hitp:ifwwiwcs huji ac. ii~dbi

75

Document Type Definitions (DTDs)

» The XML specification restricts regular expressions in
DTDs to be deterministic (1-unambiguous).

» Unambiguous regular expression: “each word is witnessed
by at most one sequence of positions of symbols in the expression
that matches the word* .[Briiggemann-Klein, Wood 1998]

v Ambiguous expression (g + b)raa* -MaKWI_, (o, b yegyas¢
subscripts

v For aaa —»three witnesses: aiataz aiazas acasas

v Unambiguous equivalent expression : (a +b)*a

(this and next 2, from: www.infosys.uni-sb.de/teachir i iev.slides.ppt

Document Type Definitions (DTDs)

« Is it enough for our purpose if the regular expression is
unamblguous ? No, it is not enough
- the same unambiguous regular expression:

mark with
subscripts

* consider: baa
v one witness: b:a:a: (unambiguous)
v itis not possible to decide b+a? without looking ahead

« Without looking beyond that symbol in the input word
[1-unambiguous]

(a+b)a (a1 + b1)*az

Canyou find a
1-unambiguous Reg Exp
for (a+ bya

..notsoeasy.. ©

(a+b)a = ?

unambiguous 1-unambiguous

7

Document Type Definitions (DTDs)

« Is it enough for our purpose if the regular expression is
unamblguous ? No, it is not enough
- the same unambiguous regular expression:

mark with
subscripts

(a+b)a (a1 + b1)*az

* consider: baa
¥ one withness: b-a:a. (unambiguous)
v itis not possible to decide b+a? without looking ahead

« Without looking beyond that symbol in the input word
[1-unambiguous]

(a+b)a = b*a(b*a)*

Document Type Definitions (DTDs)

[Briiggemann-Klein, Wood 1998]:
« Can we recognize deterministic regular expressions?
v" A regular expression is deterministic (one-unambiguous) iff its
Glushkov automaton is deterministic.
v' The Gluschkov automaton can be computed in time quadratic in
the size of the regular expression

13

iGlushkov's automaton

R(E|G)(EX)*

Following slides from: http://www.cs.ut.ee/~varmo/tday-rouge/tammeoja-slides.pdf

10

iGlushkov's automaton

= Character in RE = state in automaton

R(E|G)(EX)*

11

iGlushkov's automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

R(E|G)(EX)*

12

iGlushkov's automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*

@ ® ® © &

13

iGlushkov's automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

RCEJTG)(EX)™

@ ® ® © & &

14

iGlushkov's automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

RCEJTG)(EX)™

15

14

iGlushkov's automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*

iGlushkov's automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

can precede each other

R(E|G)(EX)*

= Transitions show which characters/positions

R _E R _E
@ ® ® ® & R @ © ®
g RE.: M RE...
3 RG... G_
16 17
iGlushkov's automaton iGlushkov's automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*

R E. —= B B
R ® © B R & @ B &
N A REE... \ NS RGE...
g 6 .
i8 19
iGlushkov's automaton iGlushkov's automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

RCEJTG)(EX)™

R B E 3
‘T LT ke
N ® © @
\ AN A A RGEX...
— _G_ E

20

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

RCEJTG)(EX)™

R B E ___ E
A L1 wy
R) &) (&) I(E
P AN RGEXE...
&~ E

21

15

Glushkov’'s automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*

Glushkov’'s automaton

= All labels entering a node are labeled by the
same character

for example after reading character 'E’
only states with label ‘E’ can be active

R —
e 1y
g R : E
22 25
93 94
Questions Questions
E = (a;?a,?a;?...a,?)" 1) Does E contain: w=a; aza,a; E = (a;?a,?a;?...a,?)" 1) Does E contain: w=a; aza,a;
2) Construct the Glushkov automaton for E. 2) Construct the Glushkov automaton for E.
3) How many transitions (edges) does this automaton have? 3) How many transitions (edges) does this automaton have?
4) Is there a smaller automaton which recognizes 4) Is there a smaller automaton which recognizes
the same set of strings? the same set of strings?
5) What is the smallest equivalent automaton? (> merge states) 5) What is the smallest equivalent automaton? (> merge states)
F =(a;?a,?a3?...a,7¢c)"
How many transitions are in the Glushkov automaton for F?
And how many in F’s minimal automaton?
Does F contain: v=aja,c
95 9

Question

Why does it take quadratic time, to construct
the Glushkov automaton for a given regular expression E?

0O(n?), where n is the length of the regular expression E.

Given an input string w of length m, it takes us time
O(n?+m) tocheck w against E.

Can this be improved for the case the m is small (non-quadratic)
with resepect to n?

- do not want to construct the full automaton, because
that is too expensive..

END
Lecture 4

16

