XML and Databases

Lecture 4
DTDs, Schemas, Regular Expressions, Ambiguity

Sebastian Maneth
NICTA and UNSW

CSE@UNSW -- Semester 1, 2009

Outline

0. Comments about PRE/POST encoding
& about Assignment 3 (map XML to a DB)

1. DTDs
2. Regular Expressions

3. Finite-State Automata / Glushkov Automaton

Some XPath Axes

See http://www.w3.0rg/TR/Xpath#axes

- the Tollowing axis contains all nodes in the same document as the
context node that are after the context node in document order,
excluding any descendants and excluding attribute nodes and namespace nodes

- the preceding axis contains all nodes in the same document as the
context node that are before the context node in document order,
excluding any ancestors and excluding attribute nodes and namespace

nodes

NOTE: The ancestor, descendant,
following, preceding and self axes
partition a document (ignoring attribute and namespace nodes):
they do not overlap and together
they contain all the nodes in the document.

Some XPath Axes

See http://www.w3.0rg/TR/Xxpath#axes

ancestor(n) = {nodes on the path from n to the root (wo node n)}

descendant(n) = { nodes in the subtree rooted at n (wo node n) }

preceding(n) = { nodes to the left of n (wo node n) and wo ancestor & descendant}
following(n) = {nodes to the right of n (wo node n) and wo ancestor & descendant}

ancestor(5)={1, 3}

Some XPath Axes

See http://www.w3.0rg/TR/Xxpath#axes

ancestor(n) = {nodes on the path from n to the root (wo node n)}

descendant(n) = { nodes in the subtree rooted at n (wo node n) }

preceding(n) = { nodes to the left of n (wo node n) and wo ancestor & descendant}
following(n) = {nodes to the right of n (wo node n) and wo ancestor & descendant}

ancestor(5)={1, 3}

‘0{ descendant

o e

(5)=1{6,7}

Some XPath Axes

See http://www.w3.0rg/TR/Xxpath#axes

ancestor(n) = {nodes on the path from n to the root (wo node n)}

descendant(n) = { nodes in the subtree rooted at n (wo node n) }

preceding(n) = { nodes to the left of n (wo node n) and wo ancestor & descendant}
following(n) = {nodes to the right of n (wo node n) and wo ancestor & descendant}

ancestor(5)={1, 3}

descendant(5) = {6, 7 }

(1)
/ @ preceding(d) ={2,4}
<
(8 0>

G a

Some XPath Axes

See http://www.w3.0rg/TR/Xxpath#axes

ancestor(n)=
descendant(n
preceding(n)
following(n)

{ nodes on the path from n to the root (wo node n)}

) = { nodes in the subtree rooted at n (wo node n) }

= { nodes to the left of n (wo node n) and wo ancestor & descendant}
= { nodes to the right of n (wo node n) and wo ancestor & descendant}

ancestor(5)={1, 3}

o descendant(5) = {6, 7 }
preceding(d) ={2,4}

-~

.

following(5) ={ 8,9, 10 }

self(5) = {5}

AL

g
g

Pre/Post Encoding

=» Add POST order 10 PRE POST lab
\ 1 10 a
2 1 b
4 2 C
/ \ / 5 5 d
5 6 3 C
! 4 C
8 6 b
9 8 b
10 9 C

Descendants(5,5)

Descendants(Pre, Post) =

SELECT rl.pre FROM DOCtable ri1,
WHERE rl.pre > Pre “structural join”
AND rl._.post < Post

a
b//d‘\e
| g/”’\\\i
C / \ |
g h]
ancestor pOSt
'
"""""" JQI""""---* pre

descendant

ancestor post

preceding

4

following

descendant

10

post

{a |
1 od
- | . i -
r_ . _
T |f eh
1 | .g
— ® d |
4 .b

0.0y T4+ pre

11

post

a ia é|
b///c,1 ‘ \e :: | i
‘ £ \i L3
c ? T |f eh

N T e
g h] Ty °d |
0.0y T4+ pre
N firstChild(pr, po) = ?
. following
D "I -------- +> pre

preceding E

descendant

ancestor post

preceding

4

following

descendant

post
{a |
1 od
- | .i -
r_ . _
T |f eh
1 | .g
— .d |
__.b
0.0y T4+ pre

FirstChild(pr, po) = left-most node,
below and to the right of (pr,po)

or, equivalently

node (pr+1, p) with p < po, if it exists.

12

ancestor post

preceding

4

following

descendant

13

post
{a |
1 od
- | .i -
r_ . _
T |f eh
1 | .g
— .d |
__.b
0.0y T4+ pre

FirstChild(pr, po) = left-most node,
below and to the right of (pr,po)

or, equivalently

node (pr+1, p) with p < po, if it exists.

lastChild(pr,po)=

node (p, po-1) with p > pr, if it exists.

ancestor post

preceding

4

following

descendant

post

{a |
1 od
- | . i -
r_ . _
T |f eh
1 | .g
— ® d |
4 .b

0.0y T4+ pre

FirstChild(pr, po) = left-most node,
below and to the right of (pr,po)

nextSibling(pr, po)=
left-most node,
- to the right
- up
such that ...?

14

ancestor post

preceding

4

following

descendant

15

post
{a |
1 d
— | .i '
R R
T |f eh
—_ | ‘g
—_ .d |
__.'b |
(0,0) & HtTt+—++ pre

FirstChild(pr, po) = left-most node,
below and to the right of (pr,po)

nextSibling(pr, po) =
left-most node (pr2, po2),
—> to the right
- up
such that there is no node
with post value > po and < poZ2
to the left.

e.g., not c- and d-node
(because b-node is inbetween..)

Questions

16

If you know the size-of-subtree at each node, then
how can you determine nextSibling(pr, po, size)?

If you know the level of each node, then how can you

determine parent(pr, po, level)?
And how children(pr, po, level)?

If you do not know size, but know
the level of a node,

then how can you determine
size-of-subtree?

If you know pre/post/parent,
does that also give you level
and size-of-subtree?

FirstChild(pr, po) = left-most node,
below and to the right of (pr,po)

nextSibling(pr, po) =
left-most node (pr2, po2),
—> to the right
- up
such that there is no node
with post value > po and < poZ2
to the left.

e.g., not c- and d-node
(because b-node is inbetween..)

XPath Accelerator Encoding

XPath Accelerator encoding

XML fragment f and its skeleton tree

<a>
c
<l-—=d-->

<e><E><g/><Th?></f> é:

<i>j</i>
</e>

Pre-Order and Post-Crder Traversal Ranks

Pre/post encoding of f: table accel

pre post par
NULL

elem
elem
text
com
elem
elem
elem
pi
elem
text

N WO O -0

O~k WNE—O

NSO RO N - NeNel e

kind tag

a
b
NULL
NULL
e
f

g
NULL
i
NULL

text
NULL
NULL
c
d
NULL
NULL
NULL
h
NULL

J

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

353

Assignment 3

Write a program that
- reads an XML document, and a file with SQL queries
- sends a PRE/POST/LEVEL encoding to the DB (e.g., MySQL)
- sends the queries to the DB
- receives the answers and prints/evaluates them

18

Qoo Nk WO

= Only element/text nodes!

AN WOoN OO

Nice JDBC+MySQL tutorial:
http://www.developer.com/java/dataZarticle.php/3417381

19
Assignment 3

Write a program that
- reads an XML document, and a file with SQL queries
- sends a PRE/POST/LEVEL encoding to the DB (e.g., MySQL)
- sends the queries to the DB
- receives the answers and prints/evaluates them

= Only element/text nodes!
PLUS attributes

Qoo Nk WO
DN WOON OO

Nice JDBC+MySQL tutorial:
http://www.developer.com/java/dataZarticle.php/3417381

20

XML Database - Table Storage

Pre/Post Plane:

nemt W
Wy o~ R,
head 8 B pogy | e
n '-_ e - T '-_m‘
Hitle hy B B g
o H 0 et . m|
nx:.: Dutabugea a, 7 W ¥
Srnanpy XM Ih ﬂ s Sl N
- assmmonts Wy g R I l'll
m o m
Exerc Bxwmise &
<htmi>
<head>
<titlesXML< [titles
</head>

<body bgeolor="#FFFFFF" text = "#000000">
<hl>Databases f& XML</hl>
<div align="right">
<b»Assignments
<ul=
<lisBxercise 1</1i>
<lisHxercise 2</1i>
<ful=
</divs
</body=>
</html>

POST

14 -

12 A

10 A

Assignment 3 Generate (pre,post,tag,text)-table

21

pre|post |level] tag | text

<a> . mmmmm e
Hello World 11 4 1 1 | "a” | null
<c></c> 21 2 | 2 | "b" | null

 3] 1] 3 | null | "Hello World"
41 3 | 2 | "c" | null

from the document, generate SQL insert statements

INSERT INTO book tbl (pre,post,tag, text)
VALUE (1, 12, "book™, null);

22

Assignment 3 Generate (pre,posttag,text)-table & (pre,attr,value)-table

pre|post |level] tag

null
"Hello World"

> > e e e
Hello World i1 4 | 1 | ™"a"
<c></c> 21 2 | 2 | "b"
 31 1] 3 | null
41 3 | 2 | "c"

from the document, generate SQL insert statements

INSERT INTO book_ tbl (pre,post,tag, text)
VALUE (1, 12, "book™, null);

null

<a> pre | attr | value
Hello World =~
<C a1:"123"></C> 4 I al I ll123Il

INSERT INTO book tbl (pre,post,tag,text)
VALUE (1, 12, "book"™, null);

ancestor post

preceding

following

descendant

23

post
{a |
1 d
— | .i '
R R
T |f eh
—_ | ‘g
—_ .d |
__.'b |
(0,0) & HtTt+—++ pre

nextSibling(pr, po, LE) =
left-most node (pr2, po2, LE2),
- to the right
- up
su IS €
Wi alue >po

ancestor post

preceding

4

following

descendant

24

post
{a |
1 d
— | .i '
R R
T |f eh
—_ | ‘g
—_ .d |
__.'b |
(0,0) & HtTt+—++ pre

nextSibling(pr, po, LE) =
left-most node (pr2, po2, LE2),
- to the right
- up
su IS €
Wi alue >po

!

if (LE == LE2)

ancestor post

preceding

4

following

descendant

25

post
{a |
1 d
— | .i '
R R
T |f eh
—_ | ‘g
—_ .d |
__.'b |
(0,0) & HtTt+—++ pre

nextSibling(pr, po, LE) =
left-most node (pr2, po2, LE2),
- to the right
- up
su IS €
Wi alue >po

!

if (LE == LE2)

nextSibling(pr, po, pa) = (pr2, po2, pa)
such that pr<pr2 and there is no
(pr3, po3, pa) with pr<pr3<pr2

b//d\\e
| £ \i
c N

g h]

Using
(pre, SIZE, LEVEL)-encoding:

- How to compute
all children of a node (p,s,|)?

- Can you compute the post value
from given (pre, size, level)?

26

nextSibling(pr, po, LE) =
left-most node (pr2, po2, LE2),
- to the right
- up
su IS €
Wi alue >po

!

if (LE == LE2)

nextSibling(pr, po, pa) = (pr2, po2, pa)
such that pr<pr2 and there is no
(pr3, po3, pa) with pr<pr3<pr2

Later in this course, we will use the PRE/POST encoding again.

- We will find a systematic way to map queries on XML (Xpath)
into XQL queries.

Assignment 5 is about programming this mapping.

27

Outline - Lectures

—

Introduction to XML, Encodings, Parsers

2. Memory Representations for XML: Space vs Access Speed
3. RDBMS Representation of XML
4. DTDs, Schemas, Regular Expressions, Ambiguity

5. Node Selecting Queries: XPath

6. Efficient XPath Evaluation

7. XPath Properties: backward axes, containment test

8. Streaming Evaluation: how much memory do you need?
9. XPath Evaluation using RDBMS

10. XSLT

11. XSLT & XQuery

12. XQuery & Updates

28

Outline - Assignments

. Read XML, using DOM parser. Create document statistics.

. SAX Parse into memory structure: Tree and DAG

. Map XML into RDBMS - 27. April
. XPath evaluation -2 11. May

. XPath into SQL Translation - 25. May

29

Lecture 4

DTDs & Reg. Exprs

Today

XML type definition languages

want to specify a certain subset of XML doc’s = a “type” of XML documents
Remember

The specification/type definition should be simple, so that

—> a validator can be built automatically (and efficiently)
- the validator runs efficient on any XML input

(similar demands as for a parser)

31

= Type def. language must be SIMPLE!

(similarly: parsers generators use EBNF or smaller subclasses)

\

O(n"3) parsing

XML Type Definition Languages

DTD (Document Type Definition, W3C)
Originated from SGML. Now part of XML

—->DTD may appear at the beginning of an XML document
XML Schema (W3C)

Now at version 1.1

HUGE language, many built-in simple types

- Schemas themselves: written in XML

See the “Schema Primer” at http://www.w3.org/TR/xmlschema-0/

RELAX NG (Oasis)
For tree structure definition, more powerful than DTDs & Schemas

32

"3

SGML relics

- only a fool does not fear "external general parsed entities”

As an unfortunate heritage from SGML, the header of an XML document may contain a document type declaration:

<?xml version="1.0"7>

<!DOCTYPE greeting [
<!ELEMENT greeting (#PCDATA)>
<IATTLIST greeting style (kig|small) "small">
<!ENTITY hi "Hello">

1>

<greeting> &hi; world! </greeting>

This part can contain:

e DTD (Document Type Definition) information:
o element type declarations (ELEMENT)
o attribute-list declarations (ATTLIST)
(described later...)
» entity declarations (ENTITY) - a simple macro mechanism
* notation declarations (NOTATION) - data format specifications

Avoid all these features whenever possible!

Unfortunately, they cannot always be ignored - all XML processors (even non-validating ones) are required to:

¢ normalize attribute values (prune white-space etc.) «— if the attribute type is not CDATA
¢ handle internal entity references (e.g. expand &hi; in greeting)
¢ insert default attribute values (e.g. insert style="small" in greeting)

according to the document type declaration, if a such is present.

<j COPYRIGHT @ 2000-2002 ANDERS M@LLER & MICHAEL |. SCHWARTZBACH |:l‘>

(also next 4 slides)

"4

SGML relics

- only a fool does not fear "external general parsed entities”

As an unfortunate heritage from SGML, the header of an XML document may contain a document type declaration:

<?xml version="1.0"7>

<!DOCTYPE greeting [
<!ELEMENT greeting (#PCDATA)>
<IATTLIST greeting style (kig|small) "small">
<!ENTITY hi "Hello">

1> Or:
<greeting> &hi; world! </greeting> .
Store DTD in gr.dtd, and use:

This part can contain:

e DTD (Document Type Definition) information: <IDOCTYPE greeti ng SYSTEM “gr-dtd”>
o element type declarations (ELEMENT)
o attribute-list declarations (ATTLIST)

(described later...)
» entity declarations (ENTITY) - a simple macro mechanism
* notation declarations (NOTATION) - data format specifications

Avoid all these features whenever possible!

Unfortunately, they cannot always be ignored - all XML processors (even non-validating ones) are required to:

¢ normalize attribute values (prune white-space etc.) «— if the attribute type is not CDATA
¢ handle internal entity references (e.g. expand &hi; in greeting)
¢ insert default attribute values (e.g. insert style="small" in greeting)

according to the document type declaration, if a such is present.

<j COPYRIGHT @ 2000-2002 ANDERS M@LLER & MICHAEL |. SCHWARTZBACH |:l‘>

(also next 4 slides)

35

Example DTD

A DTD for our recipe collections, recipes.dtd:

<!ELEMENT collection (description,recipe¥*)>
<!ELEMENT description ANY>

<!ELEMENT recipe (title,ingredient*,preparation,comment?,nutrition)>

There are
two kinds of

<!ELEMENT title (#PCDATA)>

<!ELEMENT ingredient (ingredient*,preparation)?> .
<!ATTLIST ingredient name CDATA #REQUIRED recursion here"
amount CDATA #IMPLIED
unit CDATA #IMPLIED>
Do you see them?

<!ELEMENT preparation (step¥*)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT comment (#PCDATAZA)>

<!ELEMENT nutrition EMPTY>

<!ATTLIST nutrition protein CDATA #REQUIRED
carbohydrates CDATA #REQUIRED
fat CDATA #REQUIRED
calories CDATA #REQUIRED
alcohol CDATA #IMPLIED>

By inserting:

<IDOCTYPE collection SYSTEM "recipes.dtd">

in the headers of recipe collection documents, we state that they are intended to conform to recipes.dtd.

<!'ELEMENT collection (description,recipe*)>

<!ELEMENT description ANY>

<!ELEMENT recipe (title,ingredient* preparation,comment?,nutrition)>
<!ELEMENT title (#PCDATA)>

<!ELEMENT ingredient (ingredient¥*,preparation) ?>
<!ATTLIST ingredient name CDATA #REQUIRED

amount CDATA #IMPLIED

unit CDATA #IMPLIED>

<!ELEMENT preparation (step¥*)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT comment (#PCDATA)>

<!ELEMENT nutrition EMPTY>

<!ATTLIST nutrition protein CDATA #REQUIRED
carbohydrates CDATA #REQUIRED
fat CDATA #REQUIRED
calories CDATA #REQUIRED
alcohol CDATA #IMPLIED>

This grammatical description has some obvious shortcomings:

we cannot express that, e.g. protein, must contain a non-negative number
unit should only be allowed when amount is present

the comment element should be allowed to appear anywhere

nested ingredient elements should only be allowed when amount is absent

L]

e <!DOCTYPE root-element [doctype-declaration...]1>
determines the name of the root element and contains the document type declarations

¢ <!ELEMENT element-name content-model>
associates a content model to all elements of the given nhame

content models:

o EMPTY: nho content is allowed
o ANY: any content is allowed

o (#PCDATA|element-name]| . ..)*:"mixed content", arbitrary sequence of character data and listed
elements
o deterministic regular expression over element names. sequence of elements matching the expression
mchoice: (...|...[...)
msequence: (...,...,...)
m optional: .. .?
m Zeroor more: .. .*
m Ohe or more: ...+

e <!ATTLIST element-name attr-name attr-type attr-default ...
declares which attributes are allowed or required in which elements

attribute types:

o CDATA: any value is allowed (the default)

o (wvalue| .. .):enumeration of allowed values

o ID, IDREF, IDREFS: ID attribute values must be unique (contain "element identity"), IDREF attribute values
must match some ID (reference to an element)

o ENTITY, ENTITIES, NMTOKEN, NMTOKENS, NOTATION: just forget these... (consider them deprecated)

attribute defaults:

#REQUIRED: the attribute must be explicitly provided
#IMPLIED: attribute is optional, no default provided

"value": if not explicitly provided, this value inserted by default
#FIXED "value": as above, but only this value is allowed

o o 0 o

This is a simple subset of SGML DTD.

Validity can be checked by a simple top-down traversal of the XML document (followed by a check of IDREF
requirements).

37

Some examples of attribute defs:
(1) Fixed default attribute value

Syntax:
<IATTLIST element-name attribute-name attribute-type #FIXED "value''>

DTD example:
<IATTLIST sender company CDATA #FIXED "*Microsoft'>

XML example:
<sender company=""Microsoft'>

38

Use if you want an attribute to have a fixed value
without allowing the author to change it.

If an author includes another value, the XML parser will return an error.

Some examples of attribute defs:
(2) Variable attribute value (with default)

Syntax:
<IATTLIST element-name attribute-name attribute-type "value'>

DTD example:
<IATTLIST payment type CDATA 'check''>

XML example:
<payment type=“check’”>

39

Use if you want the attribute to be present with the default value,
even if the author did not include it.

40
Some examples of attribute defs:

(2b) Enumerated attribute type

Syntax:
<IATTLIST element-name attribute-name (value 1|value 2]..) *“value”>

DTD example:
<IATTLIST payment type (cash]check) '"cash'>

XML example:
<payment type=''check">
or <payment type='‘cash''>

Use enumerated attribute values when
you want the attribute values to be one of a fixed set of legal values.

Some examples of attribute defs:
(3) Required attribute

Syntax:
<IATTLIST element-name attribute name attribute-type #REQUIRED>

DTD example:
<IATTLIST person securityNumber CDATA #REQUIRED>

XML example:
<person securityNumber=3141593"">

T

must be included

41

Use a required attribute if you don't have an option for a default value,
but still want to force the attribute to be present.

If an author forgets a required attribute, the XML parser will return an error.

Some examples of attribute defs:
(4) Implied attribute

Syntax:
<IATTLIST element-name attribute name attribute-type #IMPLIED>

DTD example:
<IATTLIST contact fax CDATA #IMPLIED>

XML example:
<contact fax=“555-667788"">

T

may be included

42

Use an implied attribute if you don't want to force the author to include
the attribute, and you don't have a default value either.

e <!DOCTYPE root-element [doctype-declaration...]1> 43
determines the name of the root element and contains the document type declarations

e <!ELEMENT element-name content-model>
associates a content model to all elements of the given name

content models:

o EMPTY: ho content is allowed
o ANY: any content is allowed
0 (#PCDATA|element-name| .. .) *: "mixed content", arbitrary sequence of character data and listed

elements
o deterministic regular expression over element names. sequence of elements matching the expression
e (]
faenee ¢]

ZEIO OFIhote: . %
one or more. ...+

e <!ATTLIST element-name attr-name attr-type attr-default ...>
declares which attributes are allowed or required in which elements

attribute types:

o CDATA: any value is allowed (the default)

o (value]| .. .):enumeration of allowed values

o ID, IDREF, IDREFS: ID attribute values must be unique (contain "element identity"), IDREF attribute values
must match some ID (reference to an element)

o ENTITY, ENTITIES, NMTOKEN, NMTOKENS, NOTATION: just forget these... (consider them deprecated)

attribute defaults:

#REQUIRED: the attribute must be explicitly provided
#IMPLIED: attribute is optional, no default provided

"value": if not explicitly provided, this value inserted by default
#FIXED "value": as above, but only this value is allowed

o o O O

This is a simple subset of SGML DTD.

Validity can be checked by a simple top-down traversal of the XML document (followed by a check of IDREF
requirements).

e <!DOCTYPE root-element [doctype-declaration...]1> 44
determines the name of the root element and contains the document type declarations

e <!ELEMENT element-name content-model>
associates a content model to all elements of the given name

content models:

o EMPTY: ho content is allowed
o ANY: any content is allowed
o (#PCDATA|element-name| .. .)*: "mixed content’, arbitrary sequence of character data and listed
elements
o deterministic regular expression over element names. sequence of elements matching the expression
e ¢ 1] 1
seuEnce ()

=
|
NFefoormore %
B Ohe or more: ...+

e <!ATTLIST element-name attr-name attr-type attr-default ...>
declares which attributes are allowed or required in which elements

attribute types:

o CDATA: any value is allowed (the default)

o (value]| .. .):enumeration of allowed values

o ID, IDREF, IDREFS: ID attribute values must be unique (contain "element identity"), IDREF attribute values
must match some ID (reference to an element)

o ENTITY, ENTITIES, NMTOKEN, NMTOKENS, NOTATION: just forget these... (consider them deprecated)

attribute defaults:

#REQUIRED: the attribute must be explicitly provided
#IMPLIED: attribute is optional, no default provided
"value": if not explicitly provided, this value inserted by default H OW? 7

#FIXED "value": as above, but only this value is allowed
This is a simple subset of SGML DTD.

Validity can be checked by a simple top-down traversal of the XML document (followed by a check of IDREF
requirements).

o o O O

The Definition of Mixed Content

* Mixed content is described by a repeatable OR
group
(#PCDATA | element-name | ...)*

— Inside the group, no regular expressions —
just element names

— #PCDATA must be first, followed by O or
more element names that are separated by |

— The group can be repeated O or more times

=» It should be clear how to check validity of Mixed Content!

45

Most interesting content mode:

Regular Expression

An Address-Book XML Document
with an Internal DTD

<?xml version="1.0" encoding="UTF-8"7=

<IDOCTYPE addressbook [«
<IELEMENT addressbook (person®)=
<IELEMENT person

(name, greet?, address®, (fax | tel)*, email*)=

<IELEMENT name (#PCDATA)=
<IELEMENT greet (#PCDATA)=> The syntax
<IELEMENT address (#PCDATA)> |[of @ DTD is
<IELEMENT tel (HPCDATA)> not XML
<IELEMENT fax (#PCDATA)= syntax
<IELEMENT email (#PCDATA)=

The name of
the DTD is
addressbook

1 “Internal” means that the DTD and the
XML Document are in the same file

Most interesting content mode:
Regular Expression
1. What is a regular expression?
Given a reg. expr. how can we match a string against it?

2. What is a finite-state automaton?

3. What is a deterministic regular expression?

4. What is a 1-unambiguous regular expression?

47

2005

Speciftying the Structure
(cont'd)

addr” to specify 0 or more address
lines

tel | fax a tel ora fax element
(tel | fax)* O or more repeats of tel or fax

email”® 0 or more email elements

hitp:/fwwee.cs_huji.ac.ilf'-dbi

48

Specitying the Structure
(cont'd)

» So the whole structure of a person entry
Is specified by

name, greet?, addr”, (tel | fax)*, email”

* This is known as a regular expression
« Why is it important?

2005 http:ifeaw.cs hup.ac.il’-dbi iz

49

Summary of Reqular Expressions

« A The tag (i.e., element) A occurs

« e1,e2 The expression e1 followed by
e2

e £ 0 or more occurrences of e
. 7 Optional: 0 or 1 occurrences
e o+ 1 or more occurrences

« e1|e2 eitherel ore?
+ (e) grouping

2005 hitp: ffwww s huji.ac.ili-dbi

0

Regular Expressions are a very useful concept.
—>used in EBNF, for defining the syntax of PLs
—>used in various unix tools (e.g., grep)

—-used in Perl,Tcl, text editors (like ed,emacs, ...)

—0ld classical concept in CS (Stephen Kleene, 1950’s)

51

How can you implement a regular expression?

Input: Reg Expr e, stringw
Question: Does w match e?

Example
e=(ab|b)*a*a

w=abbaaba

Regular Expressions are a very useful concept.

—>used in EBNF, for defining the syntax of PLs

—>used in various unix tools (e.g., grep)

—-used in Perl,Tcl, text editors (like ed,emacs, ...)

—0ld classical concept in CS (Stephen Kleene, 1950’s)

How can you implement a regular expression?

Input: Reg Expr e, stringw
Question: Does w match e?
Example

e=(ab|b)*a*a

w=abbaaba

=» Construct a Finite-State Automaton

Finite-State Automata (FA) even more useful concept!
—>they truly incarnate constant memory computation.
—like Turing Machines, but read-only and one-way (left-to-right)

—>for every Reg Exp there is a FA (and vica versa)

transition condition

—>useful in many, many areas of CS (verification, compilers, learning,

hardware, linguistics, UML, etc, etc)

How can you implement a regular expression?

Input: Reg Expr e, stringw
Question: Does w match e?
Example

e=(ab|b)*a*a

w=abbaaba

=» Construct a Finite-State Automaton

Finite-State Automata (FA) even more useful concept!
—>they truly incarnate constant memory computation.
—like Turing Machines, but read-only and one-way (left-to-right)

—>for every Reg Exp there is a FA (and vica versa)

transition condition

—>for every FA there is an equivalent deterministic FA

(= per letter at most one outgoing edge)

How can you implement a regular expression?

Input: Reg Expr e, stringw
Question: Does w match e?
Example

e=(ab|b)"a*a

w=abbaaba

=» Construct a Finite-State Automaton

. NOT
deterministic
-1 a
=
DI
b

Finite-State Automata (FA) even more useful concept!

—>they truly incarnate constant memory computation.

transition condition

—like Turing Machines, but read-only and one-way (left-to-right)

—>for every Reg Exp there is a FA (and vica versa)

entry action

—>for every FA there is an equivalent deterministic FA
(= per letter at most one outgoing edge)

How can you implement a regular expression?

Input: Reg Expr e, string w =>» Construct a Finite-State Automaton
Question: Does w match e?

Example
e=(ab|b)"a*a . a
=0

w=abbaaba O b
b deterministic

Finite-State Automata (FA) even more useful concept!

—>they truly incarnate constant memory computation.

transition condition

—like Turing Machines, but read-only and one-way (left-to-right)

—>for every Reg Exp there is a FA (and vica versa)

entry action

—>for every FA there is an equivalent deterministic FA
(= per letter at most one outgoing edge)

How can you implement a regular expression?

Input: Reg Expr e, stringw

Question: Does w match e? = Construct a Finite-State Automaton
deterministic FA: run on w takes a

time linear in length(w)

and constant space (#states, e.g., 3)] 6
<
% —(
b deterministic

Finite-State Automata (FA)

- For every FA you can build and equivalent deterministic FA ©
But, could become exponentially larger, ®
sometimes unavoidable (FA is more succinct)

- For every deterministic FA you can build a minimal unique equivalent one
Thus, equivalence is decidable! ©
Very rare! --- E.g., equivalence of EBNF’s is NOT decidable.

o7

How can you implement a regular expression?

Input: Reg Expr e, stringw

Question: Does w match e? = Construct a Finite-State Automaton
deterministic FA: run on w takes a

time linear in length(w)

and constant space (#states, e.g., 3)] 6
\4
% —(
b deterministic

Finite-State Automata (FA)

-~

Why?
Can you find an example?

- For every FA you can build and equivalent deterministic FA ©
But, could become|exponentially larger, ®
sometimes unavoidable (FA is more succinct)

- For every deterministic FA you can build a minimal unique equivalent one

Thus, equivalence is decidable! ©

Very rare! --- E.g., equivalence of EBNF’s is NOT decidable.

How can you implement a regular expression?

Input: Reg Expr e, stringw
Question: Does w match e?

deterministic FA: run on w takes
time linear in length(w)
and constant space (#states, e.g., 3 2)

=» Construct a Finite-State Automaton

t)b deterministic

59

Finite-State Automata (FA)

- For every FA you can build and equivalent deterministic FA ©

But, could become exponentially larger, ®
sometimes unavoidable (FA is more succinct)

- For every deterministic FA you can build a minimal unique equivalent one

Thus, equivalence is decidable! ©
Very rare! --- E.g., equivalence of EBNF’s is NOT decidable.

How can you implement a regular expression? Algorithm
Input: Reg Expr e, stringw FA = BuildFA(e);
Question: Does w match e? DEA = BUi IdDFA(I,:A) i

deterministic FA: run on w takes

time linear in length(w) Size of FA is linear in size(e)=m

Size of DFA is exponential in m

n =length(w) Total Running time O(n + 2*m)

60

Finite-State Automata (FA)

- For every FA you can build and equivalent deterministic FA ©

But, could become exponentially larger, ®
sometimes unavoidable (FA is more succinct)

- For every deterministic FA you can build a minimal unique equivalent one

Thus, equivalence is decidable! ©
Very rare! --- E.g., equivalence of EBNF’s is NOT decidable.

How can you implement a regular expression? Algorithm
Input: Reg Expr e, stringw FA = BuildFA(e);
Question: Does w match e? DEA = BUi IdDFA(I,:A) i

deterministic FA: run on w takes

time linear in length(w) Size of FA is linear in size(e)=m

Size of DFA is exponential in m

n =length(w) Total Running time O(n + 2*m)

—> Other alternative: O(nm)

61
To avoid these expensive running times

W3C simply requires that FA=Bui ldFA(e) must be deterministic already!

N

Is small! ©
size is only O(m)

W3C
DTD-defin.
How can you implement a regular expression? Algorithm
Input: Reg Expr e, stringw FA = BuildFA(e);
Question: Does w match e? DEA = BUi IdDFA(I,:A) i

deterministic FA: run on w takes

time linear in length(w) Size of FA is linear in size(e)=m

Size of DFA is exponential in m

n =length(w) Total Running time O(n + 2*m)

—> Other alternative: O(nm)

62
To avoid these expensive running times

W3C simply requires that FA=Bui ldFA(e) must be deterministic already!

N

Is small! ©
size is only O(m)

Unfortunately, we will loose some regular expressions W3C
(which hence are not allowed to appearin a DTD!!) DTD-defin.
How can you implement a regular expression? Algorithm
Input: Reg Expr e, stringw FA = BuildFA(e);
Question: Does w match e? DEA = BUi IdDFA(I,:A) i

deterministic FA: run on w takes

time linear in length(w) Size of FA is linear in size(e)=m

Size of DFA is exponential in m

n =length(w) Total Running time O(n + 2*m)

—> Other alternative: O(nm)

63
To avoid these expensive running times

W3C simply requires that FA=Bui ldFA(e) must be deterministic already!

N

Is small! ©
size is only O(m)

How does Bui ldFA(e) work?
“Glushkov automaton” = “position automaton”
/ more details later, if time permits

How can you implement a regular expression? Algorithm
Input: Reg Expr e, stringw FA = BuildFA(e);
Question: Does w match e? DEA = BUi IdDFA(I,:A) i

deterministic FA: run on w takes

time linear in length(w) Size of FA is linear in size(e)=m

Size of DFA is exponential in m

n =length(w) Total Running time O(n + 2*m)

—> Other alternative: O(nm)

Regular

64

—Xpressions

» Each regular expression determines a
corresponding finite-state automaton

» Let’'s start with a simpler example: [4 goupie

. ircl
name, addr*, email denotes an
addr accepting
T, state

i
II

e

'|
/Ty |name [y email Cﬁ'
L 'y

This suggests a simple parsing program

2005 http:{fwaw s huji.ac. il'-dhbi 20

65

Another Example

name,address”,(tel | fax)*,email*

address tel efnla_i_lﬂ
P AT } ™
tel |0y C)

"-u.___- !
O namé&ﬁ“ﬁ > —~<Temail |13
N — 'fl'\lk:jz.‘l r \H-/I
*, fax ™
%, I"‘» r

~

= 'I-I:.r
S~ fax en{ail

Adding in the optional greet further
complicates things

2005 hitp: ffwwscs huji.ac.il’-dbi 41

Deterministic Requirement:
Content Models must be Deterministic

» |f element-type declarations are
deterministic, it is easier to parse XML
documents

« W3C XML recommendation requires the
Glushkov automaton to be deterministic

* The states of this automaton are the
positions of the regular expression
(semantic actions)

» The transitions are based on the “follows
set”

2005 hitp-/fwanw cs huji.ac.il'-dbi

66

Deterministic Requirement
(cont'd)
» The associated automata are succinct

« A regular language may not have an

associated deterministic grammar, e.g.,
<|[ELEMENT ndeter

((movie|director)”,movie,(movie|director))>

This is not allowed ina DTD

(alb)*a(alb)

2005 hitp:/faww cs huji.ac.il’-dbi

67

To summarize

In order to check whether a (large) document
is valid wrttoagiven DTD (“it validates”)
you need to

- Check if children lists match the given Reg Expr’s

This can be done efficiently, using finite-automatal

68

To check if a Reg Expr is allowed in a DTD

we have to construct a particular finite automaton: the Glushkov automaton.

To summarize

Next, let us look at some other (minor) issues

- Unordered lists (permutations)
- Recursive DTDs

69

Some Things are Hard to Specify

Each employee element should contain name,
age and ssn elements in some order

<I[ELEMENT employee
((name, age, ssn) | (age, ssn, name) |
(ssn, name, age) | ...
)=

Suppose that there were many more fields!

2005 hitp- i ce.huj.ac. il -dbi

70

Recursive DTDs

<DOCTYPE genealogy |
<I[ELEMENT genealogy (person*)=
<I[ELEMENT person (

name,
dateOfBirth,

person, - mother
person)= --father

1>
What is the problem with this?
A parser does not notice it!

2005 hitp-ifaanw . ce hup.ac.il’-dbi

50

71

72

Recursive DTDs

<DOCTYPE genealogy |
<IELEMENT genealogy (person*)> | Each person

<IELEMENT person should have
name, a father and a
dateOfBirth, mother. This
person, —mother I |eads to either
person)> —father linfinite data or
a person that
> is a descendent

What is the problem with this? of herself.
A parser does not notice it!

2005 hitp-ifaanw . ce hup.ac.il’-dbi 50

Recursive

<DOCTYPE genealogy [

DT

Ds (cont'd)

<|IELEMENT genealogy (person*)=

<I[ELEMENT person |
name,

dateOfBirth,

person’?,

person?)=

1=

-- mother

- father

What is now the problem with this?

2005 hitp:/hwww cs. huji.ac.il’~dbi

73

Recursive

<DOCTYPE genealogy [
<IELEMENT genealogy (person*)= If a person only

has a mother,
how can you

<I[ELEMENT person |
name,

DT

dateOfBirth,

person’?,

person?)=

1=

Ds (cont'd)

tell that he has

- mother |3 mother and

—father | does not have

a father?

What is now the problem with this?

2005 hitp:/hwww cs. huji.ac.il’~dbi

74

75

Document Type Definitions (DTDs)

« The XML specification restricts regular expressions in
DTDs to be deterministic (1-unambiguous).

« Unambiguous regular expression: “each word is witnessed

by at most one sequence of positions of symbols in the expression
that matches the word*” .[Briiggemann-Klein, Wood 1998]

v' Ambiguous expression (a + b)*aa* -T2 W o + bi)*azas*
subscripts

v For aaa —» three withesses: aiaiaz atazas azasas

v" Unambiguous equivalent expression : (a + b)*a

(this and next 2, from: www.infosys.uni-sb.de/teaching/streams0506/slides/stoyan.mutafchiev.slides.ppt

76

Document Type Definitions (DTDs)

Is it enough for our purpose if the regular expression is

' ?
unambiguous * No, it is not enough

the same unambiguous regular expression:

o by IS (b

consider : baa

v one witness: bsaia: (unambiguous)

v it is not possible to decide bia? without looking ahead
Without looking beyond that symbol in the input word

[1-unambiguous]
Can you find a

(a + b)*a = ? 1-unambiguous Reg Exp

for (a + b)*a
.. not so easy.... ©

unambiguous 1-unambiguous

Document Type Definitions (DTDs)

Is it enough for our purpose if the regular expression is

' ?
unambiguous * No, it is not enough

the same unambiguous regular expression:

o by IS (b

consider : baa
v one withness: bia:a: (unambiguous)
v it is not possible to decide bia? without looking ahead

Without looking beyond that symbol in the input word
[1-unambiguous]

(a + b)*a b*a(b*a)*

unambiguous 1-unambiguous

77

78

Document Type Definitions (DTDs)

[Bruggemann-Klein, Wood 1998]:

« Can we recognize deterministic regular expressions?

v A regular expression is deterministic (one-unambiguous) iff its
Glushkov automaton is deterministic.

v The Gluschkov automaton can be computed in time quadratic in
the size of the regular expression

i Glushkov’s automaton

R(E|G)(EX)*

Following slides from: http://www.cs.ut.ee/~varmo/tday-rouge/tammeoja-slides.pdf

10

i Glushkov’s automaton

s Character in RE = state in automaton

R(E[G)(EX)*

'| | / II".
I| | H".

l/" b

|
v
i \
\ b ¥ % i ™ d \
R € G E X
| | | | A | |) |)
- e _/" e ____/I b T |

11

i Glushkov’'s automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

R(E|G)(EX)*
0® ® @ ® @

12

i Glushkov’'s automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*

/o ™ -\ o A
R & @ &

13

i Glushkov’'s automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*

Y
/o ™ -\ o A
R & @ &

14

i Glushkov’'s automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*

B e B X

15

i Glushkov’'s automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*

e - e Fongr S
OEORONS
% RE...

- RG...

16

i Glushkov’'s automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*

e B X

[><_J \R)

RE;:

17

i Glushkov’'s automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*

T S,
6 (E) X

REE...

18

i Glushkov’'s automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*
R
> ® ©

G

ot

RGE...

19

i Glushkov’'s automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*
R
> ® ©

G

20

i Glushkov’'s automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*

[><_J R} (E) CG'

G

E X
21

i Glushkov’'s automaton

= Character in RE = state in automaton
+ one state for the beginning of the RE

= Transitions show which characters/positions
can precede each other

R(E|G)(EX)*

R s E
S p
2 x\@;@

22

i Glushkov’'s automaton

= All labels entering a node are labeled by the
same character

for example after reading character ‘E’
onhly states with label 'E’ can be active

29

93

Questions

E = (a,?7a,?7a3?...a,?)" 1) Does E contain: w=a; az;a, a,
2) Construct the Glushkov automaton for E.

3) How many transitions (edges) does this automaton have?

4) Is there a smaller automaton which recognizes
the same set of strings?

5) What is the smallest equivalent automaton? (= merge states)

Questions

E = (a,?7a,?7a3?...a,?)" 1) Does E contain: w=a; az;a, a,
2) Construct the Glushkov automaton for E.

3) How many transitions (edges) does this automaton have?

4) Is there a smaller automaton which recognizes
the same set of strings?

5) What is the smallest equivalent automaton? (= merge states)

94

F=(a;?7a,?7a3?...a,?¢c)*
How many transitions are in the Glushkov automaton for F?
And how many in F’'s minimal automaton?

Does F contain: v=aja,c

Question

Why does it take quadratic time, to construct
the Glushkov automaton for a given regular expression E?

O(n?), where n is the length of the regular expression E.

95

Given an input string w of length m, it takes us time
O(n®+ m) tocheck w against E.

Can this be improved for the case the m is small (non-quadratic)
with resepect to n?

- do not want to construct the full automaton, because
that is too expensive..

END
L ecture 4

