XML and Databases

Lecture 2
Memory Representations for XML: Space vs Access Speed

Sebastian Maneth
NICTA and UNSW

CSE@UNSW -- Semester 1, 2009

Reminder

You can freely choose to program your assignments in
> C/C++, or
-> Java

However, your code must compile with gcc /g++, javac,
as installed on CSE linux systems!

Assignment 1 is due Monday 23:59, 25t of March!
Submit your code using

% give cs4317 assl filename.cpp

% give cs4317 assl filename.java

Lecture 2

XML into Memory

Problem with DOM

- Uses massive amounts of memory.

- Even if application touches only a single element node, the
DOM API has to maintain a data structure that
represents the whole XML input document.

Example

XML size DOM process size

81M Xz, 164M Text only, with one embracing element
x13.1 .

52M === 680M Treebank, deep tree structure with

short texts

Usually: more than 10-times blow up!!

To remedy the memory hunger of DOM ...

Preprocess (i.e., filter) the input XML document to reduce its overall size.

- Use an XPath/XSLT processor to
preselect interesting document regions.

- CAVE: no updates on the input XML document are possible

- CAVE: make sure the XPath/XSLT processor is not implemented
on top of DOM!

To remedy the memory hunger of DOM ...

Preprocess (i.e., filter) the input XML document to reduce its overall size.

- Use an XPath/XSLT processor to
preselect interesting document regions.

- CAVE: no updates on the input XML document are possible

- CAVE: make sure the XPath/XSLT processor is not implemented
on top of DOM!

= Use a completely different approach to XML processing (=2 SAX)

“design your own XML data structure
and fill in with what you need...”

= Use a completely different approach to XML processing (> SAX)

“design your own XML data structure
and fill in with what you need...”

Outline

1. Tree Pointer Structures

2. Binary Tree Encodings

3. Minimal Unique DAGs

4. How to use SAX

1. Tree pointer structures

1. Consider binary trees

Type Node { right
label : String,
left : Node,
right : Node @
3} left

How much memory for n-node binary tree?

9 10
1. Tree pointer structures y._tree 1. Tree pointer structures y._tree
1. Consider binary trees 1. Consider binary trees
Type Node { Type Node {
label : String, label : String,
left : Node, left : Node,
right : Node right : Node
How much memory for n-node binary tree? How much memory for n-node binary tree?
cadrl: my_tree: cadrl tadrl tadr2 my_tree: cadrl tadrl tadr2
cadr2: tadrl: cadr2 tadr3 tadr4 tadrl: cadr2 tadr3 tadr4
length(label_1) + 1 3 * length(pointer) * n length(label_1) + 1 3 * length(pointer) * n
+ length(label_2) + 1 + length(label_2) + 1
+ ... + length(label_n) +1 + ... + length(label_n) +1 typical: 4 bytes
11 12

Tree pointer structures

1. Consider binary trees

Type Node {
label : String,
left : Node,

right : Node

Tree pointer structures

1. Consider binary trees

Type Node {
label : String,
left : Node,

right : Node

How much memory for n-node binary tree?

- Whatever is needed for the labels
PLUS 12 bytes per node.

length(label_1) + 1
+ length(label_2) + 1
+ ... + length(label_n) +1

3 * length(pointer) * n

X typical: 4 bytes

How much memory for n-node binary tree?
Can easily be optimized:

- Whatever is needed for the labels 00

PLUS 12 bytes per node. E.g., store each distinct

string only once!

length(label_1) + 1
+ length(label_2) + 1
+ ... + length(label_n) +1

3 * length(pointer) * n

X typical: 4 bytes

13 14
Tree pomter structures my_tree Tree pomter structures my_tree
1. Consider binary trees 1. Consider binary trees
Type Node { right Type Node { Byte right
label : String, label : Steirg,
left : Node, left : Node,
right : Node @ right : Node @
3} left o 3} left .
Serialization to XML Often #distinct node labels is small, *100. -> Fits in one Byte
Then, only 9 bytes per node.
<library><book>< .. > .. </book></library>
~ ~ ~ ~ 2 MEM(n-node binary tree pointer struc, *256 labels)
= SIZE(n-node binary tree in XML, average label length=2)
#characters per node: 5 + 2 * Length(label)
> E.g., one node w. 4-character ASCI label: 13 bytes (assuming UTF-8!) #characters per node: 5+ 2 * Length(label)
- One node w. 2-character ASCI label: 9 bytes (assuming UTF-8!)
15 16
Tree pointer structures Tree pointer structures
my_tree
Nice 1. Consider binary trees
Following pointers is fast! @
>much higher access speed! Plain no attributes, no text nodes, ... left right
(than on doc seen as string..)
Eg. Question
at root, get right-child. . _
Using a (top-down) pointer structure, as the one above,
how can you implement a DOM interface?
/Often #distinct node labels is small, -100. -> Fits in one Byte
Then, only 9 bytes per node. Node nodeName : DOMString
. . parentNode : Node
= MEM(n-node binary tree pointer struc, -256 labels) firstChild : Node leftmost child
= SIZE(n-node binary tree in XML, average label length=2) nextSibling : Node returns NULL for root elem
childNodes : NodeList
#characters per node: 5 + 2 * Length(label)
-> One node w. 2-character ASCI label: 9 bytes (assuming UTF-8!)
17 18

Tree pointer structures

1. Consider binary trees

Plain no attributes, no text nodes, ...

Question

Using a (top-down) pointer structure, as the one above,
how can you implement a DOM interface?

Node nodeName : DOMString
parentNode - Node
firstChild : Node leftmost child
nextSibling : Node returns NULL for root elem
childNodes : NodeList

= Atrun-time anode is represented as a pointer, PLUS a stack of

pointers of all its ancestors.

(Node, [parent(Node)::parent(parent(Node)):: ::root-node])

Tree pointer structures

Access speed of parentNode should be approx same, as in a native DOM.
- What about access speed of nextSibling?

What is the run-time size of our “binary DOM-tree” data structure? (WC/average)

Question

Using a (top-down) pointer structure, as the one above,
how can you implement a DOM interface?

Node nodeName : DOMString
parentNode - Node
firstChild : Node leftmost child
nextSibling : Node returns NULL for root elem
childNodes : NodeList

= Atrun-time anode is represented as a pointer, PLUS a stack of

pointers of all its ancestors.

(Node, [parent(Node)::parent(parent(Node)):: ::root-node])

interface Node { // NodeType
const unsigned short ELEMENT_NODE =
const unsigned short ATTRIBUTE_NODE
const unsigned short TEXT_NODE = 3;
const unsigned short CDATA_SECTION_NODE = 4
const unsigned short ENTITY_REFERENCE_NODE
const unsigned short ENTITY_NODE = 6;
const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
const unsigned short COMMENT_NODE = 8;
const unsigned short DOCUMENT_NODE = 9
const unsigned short DOCUMENT_TYPE_NODE = 1
const unsigned short DOCUMENT_FRAGMENT_NODE
const unsigned short NOTATION_NODE = 12;
readonly attribute DOMString nodeName;
attribute DOMString nodevValue; // raises(DOMException) on setting
/7 raises(DOMException) on retrieval
unsigned short nodeType;
Node parenthode;
readonly attribute NodeList childNodes;
readonly atti Node firstCh
readonly att
readonly atti
readonly atti ng;
readonly atti NamedNodeMap attributes:
readonly attribute Document ownerDocument;
Node insertBefore Node newCl d, in Node refChild) raises(DOMExcep
Node replaceChi d, in Node oldChild) raises(DOMException);
Node removeChild(in Node oldChild) raises(DOMException);
Node appendChild(in Node newChild) raises(DOMException);
boolean hasChildNodes(); Node cloneNode(in boolean deep); };

5;

11;

20

Tree pointer structures

To slash memory hunger (of, e.g., DOM...)

LESSON 1

- Avoid all backward pointers (build them online, dynamically)

Tree pointer structures
1. Consider binary trees

Type Node {
label : String,
left : Node,
right : Node

right

Cotec)

left \{iﬁht

22

binary trees DOM

P - childNodes

Ffirstchild
&parent

astChil
&parent

firstChild
&parent

How much memory for n-node binary tree?

How to add attributes and text nodes ?

- e.g., “into the label” ...

Tree pointer structures

2. Consider unranked trees

firstChild lastChi

unranked = no a priori bound on #children of a node.

Tree structure of XML: unranked trees! (not binary)

Type Node {
label : String,
children : List[Node]
ks

Tree pointer structures

2. Consider unranked trees

firstChild

unranked = no a priori bound on #children of a node.

lastChild

Tree structure of XML: unranked trees! (not binary)

Type Node {
label : String,
children : List[Node]
ks

- How much memory for List[Node] of n nodes?

24

- How much memory for List[Node] of n nodes?

Tree pointer structures

2. Consider unranked trees

firstChild lastChild

unranked = no a priori bound on #children of a node.

Tree structure of XML: unranked trees!

Typically
Type Node { next
label String, E}
children : List[Node]
3
N1 N2

- How much memory for List[Node] of n nodes?

Tree pointer structures

2. Consider unranked trees

firstChild lastChild

unranked = no a priori bound on #children of a node.

Tree structure of XML: unranked trees!

Typically
Type Node { next
label String,
children : List[Node]
3
N1 N2

- How much memory for List[Node] of n nodes? 2*n pointers

26

Tree pointer structures

2. Consider unranked trees

- In this way, a node of a binary tree needs 5 pointers ®

(plus label info/pointer..)

unranked = no a priori bound on #children of a node.

Tree structure of XML: unranked trees!

Typically
Type Node { next
label String, E|
children : List[Node]
¥ N1 N2

- How much memory for List[Node] of n nodes? 2*n pointers

Tree pointer structures
2. Consider unranked trees
- In this way, a node of a binary tree needs 5 pointers ®
(plus label info/pointer..)
More efficient possibilities:

(1) Use arrays. Store #children (e.g., in label). N pointers + (log d) Bits

(2) Encode tree as binary tree.

Typically
Type Node { next
label String,
children : List[Node]
¥ N1 N2

- How much memory for List[Node] of n nodes? 2*n pointers

28

Tree pointer structures
2. Consider unranked trees
- In this way, a node of a binary tree needs 5 pointers ®
(plus label info/pointer..)
More efficient possibilities:

(1) Use arrays. Store #children (e.g., in label). N pointers + (log d) Bits

(2) & Encode tree as binary tree. €

Typically
Type Node { next
label String, E|
children : List[Node]
¥ N1 N2

2*n pointers

2. Binary Tree Encodings
Any unranked tree can be encoded as a binary tree.

Popular encoding: “firstChild/nextSibling” encoding.

The “firstChild”
The “nextSibling”

becomes the left pointer
becomes the right pointer

30

31

2. Binary Tree Encodings
Any unranked tree can be encoded as a binary tree.
Popular encoding: “firstChild/nextSibling” encoding.

The “firstChild” becomes the left pointer
The “nextSibling” becomes the right pointer

@ Gy -G
N
GG

firstChild

@ 5 e
Coor-Caa)

2. Binary Tree Encodings
Any unranked tree can be encoded as a binary tree.
Popular encoding: “firstChild/nextSibling” encoding.

The “firstChild” becomes the left pointer
The “nextSibling” becomes the right pointer

oS Qv Qe (v (v (e
® CORCPRCTY

33
2. Binary Tree Encodings

Any unranked tree can be encoded as a binary tree.
Popular encoding: “firstChild/nextSibling” encoding.

The “firstChild” becomes the left pointer
The “nextSibling” becomes the right pointer

firstChild

|
@

2. Binary Tree Encodings
Any unranked tree can be encoded as a binary tree.

Popular encoding: “firstChild/nextSibling” encoding.

rore S

The “firstChild” becomes the left pointer
The “nextSibling” becomes the right pointer

35
Binary Tree Encodings

Any unranked tree can be encoded as a binary tree.
Popular encoding: “firstChild/nextSibling” encoding.

The “firstChild” becomes the left pointer
The “nextSibling” becomes the right pointer

left @ right
NIL

~

Binary Tree Encodings
Any unranked tree can be encoded as a binary tree.

n-node “firstChild/nextSibling” encoding
unranked tree

n-node
binary tree

decoding

Questions

- Time overhead for simulating lastChild access,
on the binary encoding?

- Can you think of other binary tree encodings?

- How to simulate preceding-sibling?

38

37
Binary Tree Encodings

Any unranked tree can be encoded as a binary tree.

“firstChild/nextSibling” encoding n-node

n-node
binary tree

unranked tree

decoding

Any unranked tree can be encoded as a binary tree.

n-node
unranked tree

Binary Tree Encodings

“firstChild/nextSibling” encoding n-node
binary tree

decoding

Good Property of the firstChild/nextSibling encoding:

-> XML types (e.g., DTD, XML Schema, Relax NG)
are preserved when going from unranked to binary (and vice versa).

Good Property of the firstChild/nextSibling encoding:

-> XML types (e.g., DTD, XML Schema, Relax NG)

LESSON 2 ... against memory hunger ...

- Use binary trees instead of unranked trees.

are preserved when going from unranked to binary (and vice versa).

(... or use efficient arrays)

+ Fast child-m access
- Expensive to update (insert/delete)

39 40
. .. . L1: no backward
Tree Pointer Structures 3. Minimal Unique DAGS pointers
L2: use binary trees
Question Type Node { or efficient arrays
label : Byte, binary tree
) .) . left Node, 2 pointers per node
Give a datatype for binary trees which stores only non-NIL pointers. right : Node
Then, n-node tree: <n pointers i X
Can we do with even less pointers?
Type Node {
label : String,
left : Node,
right : Node
41 42
.. . L1: no backward .. .
3. Minimal Unique DAGS pointers 3. Minimal Unique DAGs
L2: use binary trees
Type Node { or efficient arrays Type Node {
label : Byte, binary tree label : Byte, binary tree
left Node, 2 pointers per node left Node, 2 pointers per node
right : Node

right : Node
Can we do with even less pointers?

n-node tree: 2n pointers

Can we do with even less pointers?

n-node tree: 2n pointers YES! > Directed Acyclic Graph DAG

left /C\I:ight Ieft/c\right
c d d

/NN N
a ac (o} Cc

VAN share N

a a/c\ d identical \/d

bi
s a/<\/c\ subtrees c)
a aa a <a>

43 44
3. Minimal Unique DAGs 3. Minimal Unique DAGs
Type Node {
label : Byte, binary tree .
left - Node. 2 pointers per node A DAG representation of a tree has always
right : Node
3 -> Less than or equal #nodes than the tree
Can we do with even less pointers? - Less than or equal #pointers than the tree.
n-node tree: 2n pointers YES! > Directed Acyclic Graph DAG
C A C -
Ieft/ \I:Ight Ieft/ \rlght
c d d
/NN N
a ac C Cc
VANV share N
a ac d identical /d
/N /N subtrees
a ac ¢ c)
/N /N
18/19 pointers/nodes a aa a ;g4 pointers/nodes @
45 46
3. Minimal Unique DAGs 3. Minimal Unique DAGs
Loeal optimizations Local optimizations
Consicler the expression: a +a * (b-c¢c)+ (b-¢c) *d Common subexpressions (CSE)
Tree Directed acyelic graph ® portion of expressions
. todd multiple times
® compaites same value
o can rense previons]y computed valse
- e Directed acyclic graph {DAG)
® Progra representation
.I : . o nocdes can bave mnltiple parents
' o o eveles allowed
P . & exoses common subexpressions
' ' N o Building a DAG for an expression
p . . » aintain ha able for beafs, exprossions
' ') L ® unio e Do each node — its value number
@ reiee peales fonmd in hash tabile
47 48

3. Minimal Unique DAGs

(minimal) DAGs have many applications!

- CSE (Common Subexpression Elimination)
for efficient evaluation of expressions
(do “term graph” rewriting, instead of term rewriting)

- Model checking with BDDs
Binary Decision Diagrams
for efficient evaluation of logic formulas

-> Efficient XML query evaluation

3. Minimal Unique DAGs

(minimal) DAGs have many applications!

- CSE (Common Subexpression Elimination)
for efficient evaluation of expressions
(do “term graph” rewriting, instead of term rewriting)

- Model checking with BDDs
Binary Decision Diagrams
for efficient evaluation of logic formulas

-> Efficient XML query evaluation

Btw, inside of a DAG, you have “referential completeness”
-> structural equality = equality of pointers ©

49 50
3. Minimal Unique DAGs 3. Minimal Unique DAGs
. : . . : .
-Every tree has a minimal, unique DAG! Ieft/c\r:ight -Every tree has a minimal, unique DAG! Ieft/c\r:ight
->The DAG is at most exponentially \ d ->The DAG is at most exponentially \ d
smaller than the tree. N smaller than the tree. N
c c
->Building the minimal unique DAG is easy! \\d ->Building the minimal unique DAG is easy! \d
Can be done in (amortized) linear time. / Can be done in (amortized) linear time. /
c) c)
< > How? < >
a a
51 52
3. Minimal Unique DAGs 3. Minimal Unique DAGs
->Every tree has a minimal, unique DAG! Ieft/c\[ight Hash Table HT
>The DAG is at most exponentially | d Hash function f
smaller than the tree. N 1 M
c 2 [c(a,a), c(c(a,a).a)
->Building the minimal unique DAG is easy! \\d i
Can be done in (amortized) linear time. a hash “bucket”
in (ized) li i /) 5
c 6
How?
<a> We want
(even while parsing) -> fdistributes trees uniformly into buckets
->Build a hash table of all subtrees seen so far - testifatree Tis in HT, time O(size(T))
(we don’t want to compare many trees, node by node, later on..)
Question Give a simple hash function that works for the tree above. Question Give a simple hash function that works for the tree above.
53 54

Minimal Unique DAGs
Example “Parse & DAGIfy”

1: startElement(c)

e Cri
Ifct/ \dght hash | content
/NN
a ac c
/NN
a ac d

/N /N

a a c ¢

/N /N

a_aa a

Minimal Unique DAGs

- <bib>
1: bib [2,3,4,5] <book>
2: book [6,7] <author></author>
3: article [8,9] </;§;:ie></““e>
4: book [10,11] <article>
: article [12,13] <author></author>
6: author I<t;gule></tit|e>
- < >
7: title <b:;k; €
: author <price></price>

13:title

<title></title>

</article>
</book>

55 56
Minimal Unique DAGs Minimal Unique DAGs
R <bib> R <bib>
: bib [2,3,4,5] 6 <book> : bib [2,3,4,5] 6 <book>
: book [6,7] <author></author> : book [6,7] <author></author>
- A <title></title> - = <title></title>
3: article [B/,Q] </book> : article [B/ygj‘7/7 </book>
: book [10,11] <articles : book [10,14] <articles
5: article [12,13] <author></author> - article [12,}6/] <author></author>
6: author </;:i§(|j:/title> - author </;:i_(|:i;§/tit|e>
7: title e 7: title :
book> <book>
—8:—author <price></price> —8:—author <price></price>
9: title <title></title> -9 title <title></title>
- A </book> . = </book>
10:zprice <article> 10zprice <article>
11:title <price></price> —Iititle— <price></price>
12:price <title></title> 12:price <title></title>
13-title </article> —ti </article>
</book> </book>
57 58
Minimal Unique DAGs Minimal Unique DAGs
~ <bib> ~ <bib>
1: bib [2,3,4,5] 6 <book> 1: bib [2,3,4,5] 6 <book>
: book [6,7] . — <author></author> : book [6,7] . — <author></author>
- article I;B/ng77 </;;;:ie></t|tle> - article ng77 </;;;:ie></t|tle>
: book [10.341+ % e : book [10.341+ % etes
: article [,,Jzé] <author></author> - article [,j(é] <author></author>
6: author '\ I<ti!|7></litle> 6- author v\ /<ti I7><Ititle>
7: title 10 Sparicle 7: title 10 Sparcicle
book> <book>
—8:+—author <price></price> —8:+—author <price></price>
o title <title></title> —9- title— <title></title>
N /book> N </book>
10:price </boo 10:price °
- <article> <article>
—Ftitle— <price></price> —Sr-erele— <price></price>
—2:price— <title></title> —12:-price— <title></title>
—13-tithe— </article> —43-title </artic
</book> </book>
minimal unique DAG
8nodes (vs 13 nodes in the original tree)
59 60

Minimal Unique DAGs

Example “Parse & DAGIfy”

1: startElement(c)
2: startElement(c)

Minimal Unique DAGs

Example “Parse & DAGIfy”

1: startElement(c)
2: startElement(c)
3: startElement(a)

e Cri € S\
Ifct % \dght content 'fct/ \dght hash | content
P c a ac c
/NN /NN
a ac d a ag
VANEDAN /N /N
a a c¢c ¢ ac g
/N /N /N /N
a_aa a a_3aa a

10

61

Minimal Unique DAGs

Example “Parse & DAGIfy"

1: startElement(c) 1: startElement(c)
2: startElement(c) 2: startElement(c)
3: startElement(a) 1. pi=hashT.find(a) 3: startElement(a) 1. pl=hashT.find(a)
4: endElement(a) —— 2. ¥F(pl==NULL) { pl=new(“a-node” ,NULL,NULL) 4: endElement(a) — 2. #f(pl==NULL) { pl=new(“a-node”,NULL,NULL)
hashT.insert(pl) } hashT.insert(pl) }
C : C : Memory location p1
left right left right
/ \ g hash | content / \ g is a DAG with root
c d c d node a, and
/. VAR /U VAR child1-pointer=NULL
a ac [a ac [child2-pointer=NULL
/NN /NN
a ac d a ac d
/N /N /N /N
a a ¢c Cc a a ¢c Cc
/N /N /N /N
a_aa a a_aa a

62

Minimal Unique DAGs

Example “Parse & DAGIfy"

63 64
Minimal Unique DAGs Minimal Unique DAGs
Example “Parse & DAGIfy” Example “Parse & DAGIfy”
1: startElement(c) 1: startElement(c)
2: startElement(c) 2: startElement(c)
3: startElement(a) 1. pl=hashT.find(a) 3: startElement(a)
4: endElement(a) — 2. if(pl==NULL) { pil=new(*‘a-node” ,NULL,NULL) 4: endElement(a)
hashT. insert(pl) } 5: startElement(a)
= must store children lists: [,[p1] 1
children of root node children of@node
c (so far, none) (so far, one] Memory location p1 c
feft ~\[ignt is a DAG with root feft ~\ [ignt
d node a, and c d
VAR child1-pointer=NULL VNN
a ac Cc child2-pointer=NULL a ac C
/NN /NN
a ac a ac
/N /N /N /N
a a ¢ [a a ¢ [
/N /N /N /N
a_aa a a_aa a
65 66
Minimal Unique DAGs Minimal Unique DAGs
Example “Parse & DAGIfy” Example “Parse & DAGIfy”
1: startElement(c) 1: startElement(c)
2: startElement(c) 2: startElement(c)
3: startElement(a) 3: startElement(a)
4: endElement(a) 4: endElement(a)
5: startElement(a) 1. p2=hashT.find(a) 5: startElement(a) 1. p2=hash?.find(a)=pl
6: endElement(a) —— 2. iF(p2==NULL) { p2=new(“‘a-node”,NULL,NULL) 6: endElement(a) ——— 2. if(p2==NULL)—fp2=new“a-node SNt sNIED)]
hashT.insert(p2) } —hashi—insertp—F—
teft S right teft S right
N N
c d c d
NN NN
a ac C a ac C
/NN /NN
a ac d a ac
/N /N /N /N
a a ¢ [a ¢
/N /N /N /N
a_aa a a_aa a

11

67 68
Minimal Unique DAGs Minimal Unique DAGs
Example “Parse & DAGIfy" Example “Parse & DAGIfy"
1: startElement(c) 1: startElement(c)
2: startElement(c) 2: startElement(c)
3: startElement(a) 3: startElement(a)
4: endElement(a) 4: endElement(a)
5: startElement(a) 1. p2=hashT.find(a)=pl 5: startElement(a)
6: endElement(a) —— 2. if(p2==NULL)—fp2=new(‘a~note T NttNtE) 6: endElement(a)
—hashT—insert(pD—3— 7: endElement(c)
=> store children lists: [0.[p1.p11 1 => store children lists: [O.[p1.p11 1
|eft/°\fight |eft/°\fight
c d c d
a ac C a ac C
/NN /NN
a ac d a ac d
/N /N /N /N
a a ¢c Cc a a ¢c Cc
/N /N /N /N
a_aa a a_aa a
69 70
Minimal Unique DAGs Minimal Unique DAGs
Example “Parse & DAGIfy” Example “Parse & DAGIfy”
1: startElement(c) c 1: startElement(c) c
2: startElement(c) p1<) p1 2: startElement(c) p1<) p1
3: startElement(a) a 3: startElement(a) a
4: endElement(a) 4: endElement(a)
5: startElement(a) t 5: startElement(a) t
6: endElement(a) 1. p=hashT.find(a) \ 6: endElement(a) 1. p=hashT.find(a) \
7: endElement(c) 2. ¥if(p==NULL) { p=new(“c-node”,pl,pl) 7: endElement(c) 2. if(p==NULL) { p=new(‘‘c-
hashT.insert(p) ¥ hashT.insert(p) }
=> store children lists: [D,[pl,\pl] 1 > use children list!! => store children lists: [D,[M] 1 €now update!!
Cri Cri dd last
Ieft/ \':'ght Memory location p Ieft/ \':'ght addp (as last) Memory location p
c d is a DAG with root [d is a DAG with root
VAN node c, and VNN node c, and
a ac c child1-pointer=p1 a ac C child1-pointer=p1
VANV child2-pointer=p1 VANV child2-pointer=p1
a ac a ac
/N /N /N /N
a a ¢ [a a ¢ [
/N /N /N /N
a_aa a a_aa a
71 72

Minimal Unique DAGs

Example “Parse & DAGify” New children lists: [[p] 1

; z;g::g:znzz:gg children of root node

3: startElement(a) (so far, one)

4: endElement(a)

5: startElement(a)

6: endElement(a) 1. p=hashT.find(a)

7: endElement(c) 2. if(p==NULL) { p=new(“c-node”,pl,pl)
hashT.insert(p) }

= store children lists: [[].[2>1 1 €now updatel!

C =
Ieft/ \':Ight add p (as last) Memory location p
c d is a DAG with root
/NN node c, and
a ac Cc child1-pointer=p1
/ \ / \ child2-pointer=p1
a ac d
/N /N
a a ¢ [
/N /N
a_aa a

Minimal Unique DAGs

Example “Parse & DAGify” New children lists: [[p] 1

; z;g::g:znzz:gg children of root node

3: startElement(a) (so far, one)

4: endElement(a)

5: startElement(a)

6: endElement(a) 1. p=hashT.find(a)

7: endelement(c) —* 2. if(p==NULL) { p=new(‘“c-node”,pl.pl)

hashT.insert(p) }

->Assume - 100 element names
Example hash function:

(#elementName
+ 100 * #elementName(1st child)
+ 100 * 100 * #elemNa(2"™ child)
+ 10073 * elemNa(1st child of 1st ch.)
+) MOD sizeOf(hashT)

12

Minimal Unique DAGs

- DOM interfact to the DAG? 'Eﬂ\/c\':;ght

parentNode / p&nsibling as before \C

- Updates can be expensive (copying!) \\d
p

v

How to attach attribute & text nodes to the DAG?

74

Minimal Unique DAGs

-> DOM interfact to the DAG? 'Eﬂ\/c\':;ght

parentNode / p&nsibling as before \C

- Updates can be expensive (copying!) \\d
p

9
How to attach attribute & text nodes to the DAG? a
->Store them seperately in a table.

Index by e.g., Node number (in doc-order)
or number of atr/text nodes

Store index in each DAG node / or compute it online. (pre-traversal)

7

6

Minimal Unique DAGs

What about unranked, vs binary DAGs? Cc ~
Ieft/ \[lght
\ d
firstchild \ lastchild \c
N
CDRCORNCTECT PN

S
a
More precisely,
What about size of minimal-unique-unranked-DAG(Tree)

vs size of minimal-unique-binary-DAG(fCnS-enc(Tree))

firstChild/nextSibling

Minimal Unique DAGs
size of minimal-unique-unranked-DAG(Tree)
vs size of minimal-unique-binary-DAG(fCnS-enc(Tree))
Questions
Give a tree for which first is smaller than the second.

Give a tree for which the second is smaller than the first.

Unranked vs Binary Trees

18/19 3/4
a a
AN N R ‘6
p p p p p p .
AN /A MinDAG /P\
nsnsnsnsnsns

Unranked vs Binary Trees

18/19 3/4
a a
pp//p/w > |6
AN/ /A MinDAG /P\
nsnsnsnsnsns ns

78

_— >
P—p—P—Pp—P—p Min DAG
A A

n-s Nn-s Nn-S N-s nN-S nN-s

Can it be vica versa? (min bin. DAG is smaller)

u
T
P p
//F\ PN PN
xbcbc ybcbc zbchbe

YES!
- Has 18 edges

- DAG of bin.coding only 12 edges

DAG compression is sensible to rank/unrankedness!

13

79 80
Unranked vs Binary Trees 3. Minimal Unique DAGs
Last comment on binary tree encodings / DAGs
YES: the binary trees become very “regular” (deep, to the right)” TP fle Size of free N, binary min_ unranked BFLEX
DA size mDAG size output size
| SwissProl (457 4 MB) 0,003,568 | 1437445 | 13.0% | 1,100,648 | 10.1% | 311,328 | 2.0%
DBLP (103.6 MB) 261183 533,183 | 204% 222,754 85% | 115902 4.4%
Treebank {55.8 MB) 2447727 | 1,454,494 | 50.4% | 1,301,688 | 53.2% | 519,542 | 212%
Items (books/addresses/etc) 1998statistics (657 KB) 28,306 410 | 1.4%
catalog-02 (104M) 2,240.231 26,774 1.2%
12. ‘ 50 > catalog-01 {110} 225,194 a7 1.7%
TTTT T T T I T T T T T I T T T T I T T T TTTIIT] dictionary-02 {104M) 2,731,764 160,328 | 55%
dictionary-01 {11M) 277.072 20150 | 7.3%
JST snp chet (36M) 655,948 12,858 | 18%
JST gene.chrl (11M) 216,401 N | 4,000 1.8%
NCBlLsnp.chrl (190M) 3642225 BO9.304 | 222% 15 | <0.1% 59 | <0.1%
DAG Items (books/addresses/etc) | NCBIgene.chr (24M) 360,350 | 14,356 | 4.0% | 11767 | 3.3% | 7160 | 20%
Items (books/addresses/etc)
DAG w. ‘ 50 50\ Bin tree w
multiplicities multiplicities
" Notional EXI Test Corpus & M t Overvieu
- B otiona est CLorpus easurement Overview
“Efficient XML” & Binary XML Je
Motivation: define consistent EXI terminology for diverse document sets and measurement algorithms
W3C working groups
= = [e m—
1 1 1
-> Efficient XML Interchange Working Group (EXI)
http://www.w3.0org/XML/EX1/
- XML Binary Characterization Working Group
http://www.w3.org/XML/Binary/
The Figure on the next slide is from the “EXI Measurement Note” X
-- new version of the note came out 25 July 2007...!)) e =
- [rev— - Prvow— -
83 84

Minimal Unique DAGs

Assignment 2 build a minimal DAG for a tree (given in XML)

For simplicity, ignore attributes and text values.
- only consider element nodes.

Build the DAG, while parsing the XML!

Construct a hash table which stores
all (complete) distinct subtrees seen so far.

Cleary, we do not want to parse into DOM, and then pull things out of there.

Instead, we need a more flexible parser that gives as the
freedom of what exactly to store, and how.

How to use SAX

Remember one of the promises of XML...

You never need to write a parser again!

14

85

How to use SAX

Remember one of the promises of XML...

You never need to write a parser again!

86

How to use SAX

Remember one of the promises of XML...

You never need to write a parser again!

... but, of course if you want to build up your own (e.g. memory-efficient)
data structure, you need to “talk” to the parser.

You want to tell the parser:

Give me low level access to the data:
-> Bracket by bracket,
- text-node by text-node.

In “document order”.

... but, of course if you want to build up your own (e.g. memory-efficient)
data structure, you need to “talk” to the parser.

You want to tell the parser:

Give me low level access to the data:
-> Bracket by bracket,
- text-node by text-node.

In “document order”.

=2 SAX

[
SAX—Simple AP| for XML

@ SAX" (Simple API for XML) is, unlike DOM, not a W3C standard,
but has been developed jointly by members of the XML-DEV mailing
list (ca. 1998).

@ SAX processors use constant space, regardless of the XML input
document size.

» Communication between the SAX processor and the backend XML
application does not involve an intermediate tree data structure.

= Instead, the SAX parser sends events to the application whenever a
certain piece of XML text has been recognized (i.e., parsed).

» The backend acts on/ignores events by populating a callback
function table.

"http://www.saxproject.org/

XML and Databases

[saxEws]
SAX Events

@ To meet the constant memaory space requirement, SAX reports
fine-grained parsing events for a document:

Event ...reported when seen Parameters sent

startDocument <?xml... 7>
endDocument (EQF)

startElement <t A=V 3SR t{a,v) oo (36 va)
endElement </t> t

characters text content Unicode buffer ptr, length
conment <l-—g--> (-

processinginstruction <7t pit> t. pi

UN.B.: Event startDocument is sent even if the aptional XML text declaration
should be missing

XML and Databases

[
Sketch of SAX's mode of operations

startElementl. _

callback table

_ —characters!

@ A SAX processor reads its input document sequentially and once
only.

e No memory of what the parser has seen so far is retained while
parsing. As soon as a significant bit of XML text has been
recognized, an event is sent.

@ The application is able to act on events in parallel with the parsing

ogres:

XML and Databases

dilbert.xml

1 <?xml encoding="utf-8"7> «;
2 <bubbles> »3
3 <!== Dilbert locks stunned --> =3
1 <bubble speaker='"phb" tos"dilbert"> o4

Tell the truth, but do it in your usual engineering way
[so that no one understands you. #5
7 </bubble> «4
8 </bubbles> 7 »5

Event® 19 Parameters sent
. startDocument
"2 startElement t = "bubbles®
. comment € = ".Dilbert locks stunned."
LN startElement t = "bubble", (“speaker" "phb®), (“to" “dilbert”)
o5 characters buf = "Tell the.. understands you.", len = 99
6 endElement t = "bubble"
-7 endElement t = "bubbles"
o endDecument
TEvents are reported in document reading order «y, +2, .., 5.
"“N.B.: Some events suppressed (white space).

XML and Databases

15

SAX Callbacks

o To provide an efficient and tight coupling between the SAX
frontend and the application backend, the SAX APl employs
function callbacks:*!

@ Before parsing starts, the application registers function references in
a table in which each event has its own slot:

Event Callback Event Calitrack

startEleseat ()
sndElament ()

startElpment ?
endElement ?

@ The application alone decides on the implementation of the functions
it registers with the SAX parser.

@ Reporting an event +; then amounts to call the function (with
parameters) registered in the appropriate table slot.

"Much like in event-based GUI libraries.

XML and Databases

% Java SAX API

In Java, populating the callback table is done via implementation of the
SAX ContentHandler interface: a ContentHandler object represents

the callback table, its methods (e.g., public void endDocument ())

represent the table slots.

Example: Reimplement content.cc shown earlier for DOM (find all XML
text nodes and print their content) using SAX (pseudo code):

content (File f) print Text ((Unicode) buf . Int len)
/[register the callback, Int it
[we ignore all other events !

SAXregister (characters, print Text); foreach i € 1., fen do
SAXparse (f); L print (buf[i]);
return;

return;

XML and Databases

SAX and the XML Tree Structure

@ Looking closer, the order of SAX events reported for a document is
determined by a preorder traversal of its document tree!?:

.,DT:,“
., Elem, ,—a
_ Sample XML document 22 1
=i e -
b} by Elem. g ., Comment . Elem. .
hivey fooey </boeg :
€t--pample--seq

o Text “sample™ ., Elem.,,-d ., Elem. =

"foo" .p Text ops Text

"har® "haz"

N.B.: An Elem [Doc] node is associated with two SAX events, namely startElement
and endElement [startDocument, endDocument).

*Sequences of sibling Char nodes have been collapsed into a single Text node.
XML and Databases

Deadline: 6% April

For Assignment 2, you only need to register
startElement and endElement.

In that way, you automatically receive only element nodes..

94

Of course you can use SAX for other things than building up
a data structure.

E.g.

-> answer path queries while parsing (on a “stream”)
(low memory consumption!)

END
Lecture 2

95

16

