
1

XML and Databases

Sebastian Maneth
NICTA and UNSW

Lecture 1
Introduction to XML

CSE@UNSW - Semester 1, 2009

2

Æ Similar to HTML (Berners-Lee, CERN ÆW3C)
use your own tags.

Æ Amount/popularity of XML data is growing steadily
(faster than computing power)

XML

3

Æ Similar to HTML (Berners-Lee, CERN ÆW3C)
use your own tags.

Æ Amount/popularity of XML data is growing steadily
(faster than computing power)

HTML pages are *tiny* (couple of Kbytes)

XML documents can be huge (GBytes)

XML

Databases

4

XML and Databases
This course will

Æ introduce you to the world of XML and to
the challenges of dealing with XML in a RDMS.

Some of these challenges are

Existing (DB) technology cannot be applied to XML data.

5

XML and Databases
This course will

Æ introduce you to the world of XML and to
the challenges of dealing with XML in a RDMS.

Some of these challenges are

Existing (DB) technology cannot be applied to XML data.

can handle huge amounts of data stored in relations
Æ storage management
Æ index structures
Æ join/sort algorithms
Æ…

6

XML and Databases
This course will

Æ introduce you to the world of XML and to
the challenges of dealing with XML in a RDMS.

Some of these challenges are

Existing (DB) technology cannot be applied to XML data.

can handle huge amounts of data stored in relations
Æ storage management
Æ index structures
Æ join/sort algorithms
Æ…

tree structured

2

7

XML and Databases
This course will

Æ introduce you to the world of XML and to
the challenges of dealing with XML in a RDMS.

Some of these challenges are

Existing (DB) technology cannot be applied to XML data.

can handle huge amounts of data stored in relations
Æ storage management
Æ index structures
Æ join/sort algorithms
Æ…

tree structured

How to store a tree, in a DB table/relation??

1

2 3 4

5 6

node fchild nsib
1 2 -
2 - 3
3 - 4
4 5 -
5 - 6
6 - -

tree
table

“shredding”

8

XML and Databases
This course will

Æ introduce you to the world of XML and to
the challenges of dealing with XML in a RDMS.

Some of these challenges are

Existing (DB) technology cannot be applied to XML data.
Æ how do we store trees?
Æ can we benefit from index structures?
Æ how to implement tree navigation?

Additional challenges posed by W3C’s XQuery proposal.
Æ a notion of order
Æ a complex type / schema system
Æ possibility to construct new tree nodes on the fly.

tree structured

9

XML and Databases
This course will

Æ introduce you to the world of XML and to
the challenges of dealing with XML in a RDMS.

Some of these challenges are

Existing (DB) technology cannot be applied to XML data.
Æ how do we store trees?
Æ can we benefit from index structures?
Æ how to implement tree navigation?

Additional challenges posed by W3C’s XQuery proposal.
Æ a notion of order
Æ a complex type / schema system
Æ possibility to construct new tree nodes on the fly.

tree structured

XML = Threat to Databases… ?!

10

XML and Databases
This course will

Æ introduce you to the world of XML and to
the challenges of dealing with XML in a RDMS.

Some of these challenges are

Existing (DB) technology cannot be applied to XML data.
Æ how do we store trees?
Æ can we benefit from index structures?
Æ how to implement tree navigation?

Additional challenges posed by W3C’s XQuery proposal.
Æ a notion of order
Æ a complex type / schema system
Æ possibility to construct new tree nodes on the fly.

tree structured

XML = Threat to Databases !!

11

XML and Databases
This course will

Æ introduce you to the world of XML and to
the challenges of dealing with XML in a RDMS.

You will learn about

Æ Tree structured data (XML)
Æ XML parsers & efficient memory representation

Æ Query languages for XML (XPath, XQuery, XSLT…)
Æ Efficient evaluation using finite-state automata

Æ Mapping XML to databases
Æ Advanced topics (query optimizations,

access control,
update languages…)

12

This course will

Æ introduce you to the world of XML and to
the challenges of dealing with XML in a RDMS.

You will learn about

Æ Tree structured data (XML)
Æ XML parsers & efficient memory representation

Æ Query Languages for XML (XPath, XQuery, XSLT…)
Æ Efficient evaluation using finite-state automata

Æ Mapping XML to databases
Æ Advanced Topics (query optimizations,

access control,
update languages…)

You will NOT learn about

ÆHacking CGI scripts
ÆHTML
ÆJava
…

XML and Databases

3

13

About XML

Æ XML is the World Wide Web Consortium’s (W3C, http://www.w3.org/)
Extensible Markup Language

Æ We hope to convince you that XML is not yet another hyped TLA,
but is useful technology.

Æ You will become best friends with one of the most important data
structures in Computing Science, the tree.
XML is all about tree-shaped data.

Æ You will learn to apply a number of closely related XML standards:

> Representing data: XML itself, DTD, XMLSchema, XML dialects
> Interfaces to connect PLs to XML: DOM, SAX
> Languages to query/transform XML: XPath, XQuery, XSLT.

14

About XML

We will talk about algorithms and programming techniques to
efficiently manipulate XML data:

Æ Regular expressions can be used to validate XML data

Æ Finite state automata lie at the heart of highly efficient
XPath implementations

Æ Tree traversals may be used to preprocess XML trees in order to
support XPath evaluation, to store XML trees in databases, etc.

In the end, you should be able to digest the thick pile of related W3C
X___ standards.

(like, XQuery, XPointer, XLink, XHTML, XInclude, XML Base, XML Schema, …

15

Course Organization

Lecture Thursday, 15:00 – 18:00
Central Lecture Block 4 (K-E19-G05)

Lecturer Sebastian Maneth
Consult Friday, 11:00-12:00 (E508, L5)
All email to cs4317@cse.unsw.edu.au

Tutorial
Monday, 11:00-13:00 @ Quadrangle G045 (K-E15-G045)
Tuesday, 11:00-13:00 @ Quadrangle G045 (K-E15-G045)
Tuesday, 16:00-18:00 @ Quadrangle G026 (K-E15-G026)
Wednesday, 16:00-18:00 @ Quadrangle G040 (K-E15-G040)

Tutors Andrew Clayphan, Kim Nguyen

All email to cs4317@cse.unsw.edu.au

16

Course Organization

Lecture Thursday, 15:00 – 18:00
Central Lecture Block 4 (K-E19-G05)

Lecturer Sebastian Maneth
Consult Friday, 11:00-12:00 (E508, L5)
All email to cs4317@cse.unsw.edu.au

Book None!

Course slides of Marc Scholl, Uni Konstanz
http://www.inf.uni-konstanz.de/dbis/teaching/ws0506/database-xml/XMLDB.pdf

Theory / PL oriented, book draft:
http://arbre.is.s.u-tokyo.ac.jp/~hahosoya/xmlbook/

Suggested reading material:

17

Course Organization

Lecture Thursday, 15:00 – 18:00
Central Lecture Block 4 (K-E19-G05)

Lecturer Sebastian Maneth
Consult Friday, 11:00-12:00 (E508, L5)
All email to cs4317@cse.unsw.edu.au

Programming Assignments

5 assigments, due every other Monday. (1st is due 25th March
2nd is due 6th April …)

Per assignment: 12 points (total: 60 points)

Final exam: 40 points (must get 40% to pass!)

18

Outline - Lectures

1. Introduction to XML, Encodings, Parsers
2. Memory Representations for XML: Space vs Access Speed
3. RDBMS Representation of XML
4. DTDs, Schemas, Regular Expressions, Ambiguity
5. Node Selecting Queries: XPath
6. Efficient XPath Evaluation
7. XPath Properties: backward axes, containment test
8. Streaming Evaluation: how much memory do you need?
9. XPath Evaluation using RDBMS
10. XSLT
11. XSLT & XQuery
12. XQuery & Updates

4

19

Outline - Assignments

You can freely choose to program your assignments in

Æ C / C++, or
Æ Java

However, your code must compile with gcc / g++, javac,
as installed on CSE linux systems!!

Send your source code by Monday 23:59 (every other week)
to

cs4317@cse.unsw.edu.au

20

Outline - Assignments

1. Read XML, using DOM parser. Create document statistics

2. SAX Parse into memory structure: Tree vs DAG

3. Map XML into RDBMS

4. XPath evaluation over main memory structures
(+ streaming support)

5. XPath into SQL Translation

12 days

2 weeks

1 week (+ break)

3 weeks

2 weeks

21

Outline - Assignments

1. Read XML, using DOM parser. Create document statistics

2. SAX Parse into memory structure: Tree vs DAG

3. Map XML into RDBMS

4. XPath evaluation over main memory structures
(+ streaming support)

5. XPath into SQL Translation

12 days

2 weeks

1 week (+ break)

3 weeks

2 weeks

Hashing/hash code’s (A2)

Finite automata (A4)

22

Lecture 1

XML Introduction

23

Outline

1. Three motivations for XML
(1) religious
(2) practical
(3) theoretical / mathematical

2. Well-formed XML

3. Character Encodings

4. Parsers for XML

Æ parsing into DOM (Document Object Model)

24

XML Introduction

Religious motivation for XML:

to have one language to speak about data.

5

25 26

Æ XML is a Data Exchange Format

1974 SGML (Charles Goldfarb at IBM Research)

1989 HTML (Tim Berners-Lee at CERN/Geneva)

1994 Berners-Lee founds Web Consortium (W3C)

1996 XML (W3C draft, v1.0 in 1998)

XML Motivation (religious cont.)

27

Æ XML is a Data Exchange Format

1974 SGML (Charles Goldfarb at IBM Research)

1989 HTML (Tim Berners-Lee at CERN/Geneva)

1994 Berners-Lee founds Web Consortium (W3C)

1996 XML (W3C draft, v1.0 in 1998)

XML Motivation (religious cont.)

http://www.w3.org/TR/REC-xml/

28

(2) Practical XML = data

Text file

Tom Henzinger
EPFL
Tom.Henzinger@epfl.ch

…

Helmut Seidl
TU Munich
seidl@inf.tum.de

29

Tom Henzinger
EPFL
Tom.Henzinger@epfl.ch

…

Helmut Seidl
TU Munich
seidl@inf.tum.de

Text file

<Related>
<colleague>
<name>Tom Henzinger</name>
<affil>EPFL</affil>
<email>
Tom.Henzinger@epfl.ch
</email></colleague>
</colleague>
…
<friend>
<name>Helmut Seidl</name>
<affil>TU Munich</affil>
<email>seidl@inf.tum.de
</email>
</friend>
</Related>

XML document

“mark
it

up!”

(2) Practical XML = data + structure
30

Tom Henzinger
EPFL
Tom.Henzinger@epfl.ch

…

Helmut Seidl
TU Munich
seidl@inf.tum.de

Text file

<Related>
<colleague>
<name>Tom Henzinger</name>
<affil>EPFL</affil>
<email>
Tom.Henzinger@epfl.ch
</email></colleague>
</colleague>
…
<friend>
<name>Helmut Seidl</name>
<affil>TU Munich</affil>
<email>seidl@inf.tum.de
</email>
</friend>
</Related>

XML document

“mark
it

up!”

(2) Practical XML = data + structure

Is this a good “template”?? What about last/first name?
Several affil’s / email’s…?

6

31

XML Documents

Æ Ordinary text files (UTF-8, UTF-16, UCS-4 …)

Æ Originates from typesetting/DocProcessing community

Æ Idea of labeled brackets (“mark up”) for structure is not new!
(already used by Chomsky in the 1960’s)

Æ Brackets describe a tree structure

Æ Allows applications from different vendors to exchange data!

Î standardized, extremely widely accepted!

32

XML Documents

Æ Ordinary text files (UTF-8, UTF-16, UCS-4 …)

Æ Originates from typesetting/DocProcessing community

Æ Idea of labeled brackets (“mark up”) for structure is not new!
(already used by Chomsky in the 1960’s)

Æ Brackets describe a tree structure

Æ Allows applications from different vendors to exchange data!

Î standardized, extremely widely accepted!

Social Implications!
All sciences (biology, geography, meteorology, astrology…)
have own XML “dialects” to store their data optimally

33

XML Documents

Æ Ordinary text files (UTF-8, UTF-16, UCS-4 …)

Æ Originates from typesetting/DocProcessing community

Æ Idea of labeled brackets (“mark up”) for structure is not new!
(already used by Chomsky in the 1960’s)

Æ Brackets describe a tree structure

Æ Allows applications from different vendors to exchange data!

Î standardized, extremely widely accepted!

Problem highly verbose, lots of repetitive markup, large files

34

XML Documents

Æ Ordinary text files (UTF-8, UTF-16, UCS-4 …)

Æ Originates from typesetting/DocProcessing community

Æ Idea of labeled brackets (“mark up”) for structure is not new!
(already used by Chomsky in the 1960’s)

Æ Brackets describe a tree structure

Æ Allows applications from different vendors to exchange data!

Î standardized, extremely widely accepted!

Contra.. highly verbose, lots of repetitive markup, large files

Pro.. we have a standard! A Standard! A STANDARD!
Æ ☺ You never need to write a parser again! Use XML! ☺

35

XML Documents

… instead of writing a parser, you simply fix your own “XML dialect”,

by describing all “admissible templates” (+ maybe even the specific

data types that may appear inside).

You do this, using an XML Type definition language such
as DTD or Relax NG (Oasis).

Of course, such type definition languages are SIMPLE, because you
want the parsers to be efficient!

They are similar to EBNF. Æ context-free grammar with reg. expr’s in
the right-hand sides. ☺

36

XML Documents

Element names and their content

Example DTD (Document Type Description)

Related Æ (colleague | friend | family)*
colleague Æ (name,affil*,email*)
friend Æ (name,affil*,email*)
family Æ (name,affil*,email*)
name Æ (#PCDATA)
…

7

37

XML Documents

Related

friend … colleague family

…

name affil email name email email

…

Victor ..

Element names and their content

Example DTD (Document Type Description)

Related Æ (colleague | friend | family)*
colleague Æ (name,affil*,email*)
friend Æ (name,affil*,email*)
family Æ (name,affil*,email*)
name Æ (#PCDATA)
…

38

XML Documents

Example DTD

Related Æ (colleague | friend | family)*
colleague Æ (name,affil*,email*)
friend Æ (name,affil*,email*)
family Æ (name,affil*,email*)
name Æ (#PCDATA)
…

Related

friend … colleague family

…

name affil email name email email

…

Victor ..

Element names and their content

“Element node”

39

XML Documents

Related

friend … colleague family

…

name affil email

…

Victor ..

Element names and their content

“Element node”

“Text node”

Example DTD

Related Æ (colleague | friend | family)*
colleague Æ (name,affil*,email*)
friend Æ (name,affil*,email*)
family Æ (name,affil*,email*)
name Æ (#PCDATA)
…

name email email

40

XML Documents

Related

friend … colleague family

…

name affil email

…

Victor ..

Element names and their content

“Element node”

“Text node”

Terminology

document is
valid wrt the DTD

“It validates”

Example DTD

Related Æ (colleague | friend | family)*
colleague Æ (name,affil*,email*)
friend Æ (name,affil*,email*)
family Æ (name,affil*,email*)
name Æ (#PCDATA)
…

name email email

41

XML Documents

What else: (besides element and text nodes)

Æ attributes
Æ processing instructions
Æ comments
Æ namespaces
Æ entity references (two kinds)

42

XML Documents

What else: (besides element and text nodes)

Æ attributes
Æ processing instructions
Æ comments
Æ namespaces
Æ entity references (two kinds)

<family rel=“brother”,age=“25”>
<name>
…
</family>

8

43

XML Documents

What else:

Æ attributes
Æ processing instructions
Æ comments
Æ namespaces
Æ entity references (two kinds)

<family rel=“brother”,age=“25”>
<name>
…
</family>

<?php sql (“SELECT * FROM …”) …?>
See 2.6 Processing Instructions

44

XML Documents

What else:

Æ attributes
Æ processing instructions
Æ comments <!-- some comment -->
Æ namespaces
Æ entity references (two kinds)

<family rel=“brother”,age=“25”>
<name>
…
</family>

<?php sql (“SELECT * FROM …”) …?>
See 2.6 Processing Instructions

45

XML Documents

What else:

Æ attributes
Æ processing instructions
Æ comments <!-- some comment -->
Æ namespaces
Æ entity references (two kinds)

<family rel=“brother”,age=“25”>
<name>
…
</family>

<?php sql (“SELECT * FROM …”) …?>
See 2.6 Processing Instructions

<!-- the 'price' element's namespace is http://ecommerce.org/schema -->
<edi:price xmlns:edi='http://ecommerce.org/schema' units='Euro'>32.18</edi:price>

46

XML Documents

What else:

Æ attributes
Æ processing instructions
Æ comments <!-- some comment -->
Æ namespaces
Æ entity references (two kinds)

<family rel=“brother”,age=“25”>
<name>
…
</family>

<?php sql (“SELECT * FROM …”) …?>
See 2.6 Processing Instructions

<!-- the 'price' element's namespace is http://ecommerce.org/schema -->
<edi:price xmlns:edi='http://ecommerce.org/schema' units='Euro'>32.18</edi:price>

47

XML Documents

What else:

Æ attributes
Æ processing instructions
Æ comments <!-- some comment -->
Æ namespaces
Æ entity references (two kinds)

<family rel=“brother”,age=“25”>
<name>
…
</family>

<?php sql (“SELECT * FROM …”) …?>
See 2.6 Processing Instructions

<!-- the 'price' element's namespace is http://ecommerce.org/schema -->
<edi:price xmlns:edi='http://ecommerce.org/schema' units='Euro'>32.18</edi:price>

character reference
Type <key>less-than</key>

(<) to save options.

48

XML Documents

What else:

Æ attributes
Æ processing instructions
Æ comments <!-- some comment -->
Æ namespaces
Æ entity references (two kinds)

<family rel=“brother”,age=“25”>
<name>
…
</family>

<?php sql (“SELECT * FROM …”) …?>
See 2.6 Processing Instructions

<!-- the 'price' element's namespace is http://ecommerce.org/schema -->
<edi:price xmlns:edi='http://ecommerce.org/schema' units='Euro'>32.18</edi:price>

character reference
Type <key>less-than</key>

(<) to save options.

This document was prepared on &docdate; and

9

49

Early Markup

The term markup has been coined by the typsetting community,
not by computer scientist.

With the advent of printing press, writers and editors used
(often marginal) notes to instruct printers to
Æ Select certain fonts
Æ Let passages of text stand out
Æ Indent a line of text, etc

Proofreaders use a special set of symbols, their special markup
language, to identify typos, formatting glitches, and similar
erroneous fragments of text.

The markup language is designed to be easily recognizable in
the actual flow of text.

50

Early Markup
Computer scientists adopted the markup idea – originally to
annotate program source code:

Æ Design the markup language such that its constructs are
easily recognizable by a machine.

Æ Approaches
(1) Markup is written using a special set of characters, disjoint from

the set of characters that form the tokens of the program
(2) Markup occurs in places in the source file where program code

may not appear (program layout).

Example: Fortran 77 fixed form source:

Æ Fortran statements start in column 7 and do not exceed column 72,
Æ a Fortran statement longer than 66 chars may be continued on the next line
If a character not in { 0,!,_ } is place in column 6 of the continuing line
Æ comment lines start with a “C” or “*” in column 1,
Æ Numeric labels (DO, FORMAT statements) have to be placed in columns 1-5.

51 52

Sample Markup Application
A Comic Strip Finder

Æ Next 8 slides from Marc Scholl’s 2005 lecture.

53 54

10

55 56

57 58

59 60

11

61

Today, XML has many friends:

Query Languages

XPath, XSLT, XQuery, fxt, … (mostly by W3C)

Implementations (Parsers, Validators, Translators)

SAX, Xalan, Galax, Xerxes, …

(by IBM/Apache, Microsoft, Oracle, Sun…)

Current Issues

- DB/PL support (“data binding”, JBind, Castor, Zeus…)

- storage support (compression, data optimization)

62

XML, typical usage scenario

<Product>
<product_id> m101 </product_id>
<name> Sony walkman </name>
<currency> AUD </currency>
<price> 200.00 </price>
<gst> 10% </gst>

</Product>
…

X
M
L

XML
Stylesheet

XML
Stylesheet

Presentation
Format info

XML Stylesheet

One data source Æ several
(dynamic gen.) views

Document structure
Def. of price, gst, …

DTD, XML Schema

63

Regular Tree languages (REGT).

Many characterizations: Reg. Tree Grammars
Tree Automata
MSO Logic

Nice properties: Closed under intersection (union, complement)
Decidable equivalence

CF

REGT
(as expressions)

anbnc*

a*bncn

(3) Theoretical / Mathematical
64

2. Well-Formed XML

http://www.w3.org/TR/REC-xml/

From the W3C XML recommendation

“A textual object is well-formed XML if,

(1) taken as a whole, it matches the production labeled document
(2) it meets all the well-formedness constraints given in this specification ..”

document = start symbol of a context-free grammar (“XML grammar”)

Æ (1) contains the contex-free properties of well-formed XML
Æ (2) contains the context-dependent properties of well-formed XML

There are 10 WFCs (well-formedness constraints).
E.g.: Element Type Match “The Name in an element’s end tag must match

the element name in the start tag.”

65

2. Well-Formed XML

http://www.w3.org/TR/REC-xml/

From the W3C XML recommendation

“A textual object is well-formed XML if,

(1) taken as a whole, it matches the production labeled document
(2) it meets all the well-formedness constraints given in this specification ..”

document = start symbol of a context-free grammar (“XML grammar”)

Æ (1) contains the contex-free properties of well-formed XML
Æ (2) contains the context-dependent properties of well-formed XML

There are 10 WFCs (well-formedness constraints).
E.g.: Element Type Match “The Name in an element’s end tag must match

the element name in the start tag.”ÆWhy is this not context-free?

66

2. Well-Formed XML
Context-free grammar in EBNF = System of production rules

of the form

lhs ::= rhs

lhs a nonterminal symbol (e.g, document)
rhs a string over nonterminal and terminal symbols.

Additionally (EBNF), we may use regular expressions in rhs.
Such as:

r* denoting ε, r, rr, rrr, … zero or more repititions
r+ denoting rr* one or more repititions
r? denoting r | \epsilon optional r
[abc] denoting a | b | c character class

12

67
XML Grammar - EBNF-style

[1] document ::= prolog element Misc*
[2] Char ::= a Unicode character
[3] S ::= (‘ ’ | ‘\t’ | ‘\n’ | ‘\r’)+
[4] NameChar ::= (Letter | Digit | ‘.’ | ‘-’ | ‘:’
[5] Name ::= (Letter | '_' | ':') (NameChar)*

[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?
[23] XMLDecl ::= '<?xml' VersionInfo EncodingDecl? SDDecl? S? '?>‘
[24]VersionInfo ::= S'version'Eq("'"VersionNum"'"|'"'VersionNum'"')
[25] Eq ::= S? '=' S?
[26]VersionNum ::= '1.0‘

[39] element ::= EmptyElemTag
| STag content Etag

[40] STag ::= '<' Name (S Attribute)* S? '>'
[41] Attribute ::= Name Eq AttValue
[42] ETag ::= '</' Name S? '>‘
[43] content ::= (element | Reference | CharData?)*
[44]EmptyElemTag ::= '<' Name (S Attribute)* S? '/>‘

[67] Reference ::= EntityRef | CharRef
[68] EntityRef ::= '&' Name ';‘
[84] Letter ::= [a-zA-Z]
[88] Digit ::= [0-9]

68
XML Grammar - EBNF-style

As usual, the XML grammar can be systematically transfomed into
a program, an XML parser, to be used to check the syntax of XML input

Parsing XML

1. Starting with the symbol document, the parser uses the lhs::=rhs
rules to expand symbols, constructing a prase tree.

2. Leaves of the parse tree are characters which have no
further expansion

3. The XML input is parsed successfully if it perfectly matches the
parse tree’s front (concatenate the parse tree’s leaves from left-to-right,
while removing ε symbols).

69

Example 1
Parse tree for XML input

<bubble speaker=“phb”>Um... No.</bubble>

70

Example 2
Parse tree for XML input

<?xml version=“1.0”?><foo/>

71

2. Well-Formed XML

Terminology

• tags name,email,author, …
• start tag <name>, end tag </name>

• elements <name> … </name>, <author> … </author>
• elements may be nested
• empty element <red></red> abbrv. <red/>

• an XML document: single root element

<someTag> …. </someTag>

• well-formed constraints Æ begin/end tags match
Æ no attribute name may appear more than once

in a start tag or empty element tag
Æ a parsed entity must not contain a recursive

reference to itself, either directly or indirectly

context-dependent
properties

72

Well-formed XML (fragments)

<Staff>
<Name>

<FirstName> Sebastian </FirstName>
<LastName> Maneth </LastName>

</Name>
<Login> smaneth </Login>
<Ext> 2481 </Ext>

</Staff>

a Staff element

a Name element

Non-well-formed XML

<foo> oops </bar>
<foo> oops </Foo>
<foo> oops .. <EOT>
<a><c></c>

13

73

Well-formed XML (fragments)

<Staff>
<Name>

<FirstName> Sebastian </FirstName>
<LastName> Maneth </LastName>

</Name>
<Login> smaneth </Login>
<Ext> 2481 </Ext>

</Staff>

a Staff element

a Name element

Non-well-formed XML

<foo> oops </bar>
<foo> oops </Foo>
<foo> oops .. <EOT>
<a><c></c>

Questions

How can you implement
the three
well-formed constraints?

When, during parsing,
do you apply the checks?

74

Character Encoding
• For a computer, a character like X is nothing but an 8 (16/32) bit
number whose value is interpreted as the character X, when needed.

• Problem: many such number Æ character mappings, the so called
encodings are in use today.

• Due to the huge amount of characters needed by the global computing
community today (Latin, Hebrew, Arabic, Greek, Japanese, Chinese …),
conflicting intersections between encodings are common.

Example

0xcb 0xe4 0xd3
iso-8859-7 Æ δ Σ

0xcb 0xe4 0xd3
iso-8859-15 Ë ä Ó

75

Unicode
• The Unicode http://www.unicode.org Initiative aims to define a new
encoding that tries to embrace all character needs.

• The Unicode encoding contains characters of “all” languages of the world
plus scientific, mathematical, technical, box drawing, … symbols

• Range of the Unicode encoding: 0x0000-0x10FFFF (=16*65536)

Æ Codes that fit into the first 16 bits (denoted U+0000-U+FFFF)
encode the most widely used languages and their characters
(Basic Multilingual Plane, BMP)

Æ Codes U+0000-U+007F have been assigned to match the 7-bit ASCII
encoding which is pervasive today.

76

Unicode Transformation Formats
Current CPUs operate most efficiently on 32-bit words (16-bit words, bytes)

Unicode thus developed Unicode Transformation Formats (UTFs) which define
how a Unicode character code between U+0000 and U+10FFFF is to be
mapped into a 32-bit word (16-bit word, byte).

UTF-32
Æ Simply map exactly to the corresponding 32-bit value
Æ For each Unicode character in UTF-32: waste of at least 11 bits!

77

Unicode Transformation Formats
Current CPUs operate most efficiently on 32-bit words (16-bit words, bytes)

Unicode thus developed Unicode Transformation Formats (UTFs) which define
how a Unicode character code between U+0000 and U+10FFFF is to be
mapped into a 32-bit word (16-bit word, byte).

UTF-32
Æ Simply map exactly to the corresponding 32-bit value
Æ For each Unicode character in UTF-32: waste of at least 11 bits!

UTF-16
Map a Unicode character into one or two 16-bit words
Æ U+0000 to U+FFFF map exactly to the corresponding 16-bit value
Æ above U+FFFF: substract 0x010000 and then fill the □‘s in

1101 10□□ □□□□ □□□□ 1101 11□□ □□□□ □□□□

E.g. Unicode character U+012345 (0x012345 - 0x010000 = 0x02345)

UTF-16: 1101 1000 0000 1000 1101 1111 0100 0101

78

Unicode Transformation Formats
Note

UTF-16 works correctly, because the character codes between

1101 10□□ □□□□ □□□□ and

1101 11□□ □□□□ □□□□ (with each □ replaced by a 0)

are left unassigned in Unicode!!!

14

79

UTF-8
Maps a unicode character into 1, 2, 3, or 4 bytes.

Unicode range Byte sequence

U+000000 Æ U+00007F 0□□□□□□□
U+000080 Æ U+0007FF 110□□□□□ 10□□□□□□
U+000800 Æ U+00FFFF 1110□□□□ 10□□□□□□ 10□□□□□□
U+010000 Æ U+10FFFF 11110□□□ 10□□□□□□ 10□□□□□□ 10□□□□□□

Spare bits (□) are filled from right to left. Pad to the left with 0-bits.

E.g. U+00A9 in UTF-8 is 11000010 10101001
U+2260 in UTF-8 is 11100010 10001001 10100000

80

UTF-8

Æ For a UTF-8 multi-byte sequence, the length of the sequence is
equal to the number of leading 1-bits (in the first byte)

Æ Character boundaries are simple to detect

Æ UTF-8 encoding does not affect (binary) sort order

Æ Text processing software designed to deal with 7-bit ASCII
remains functional.

(especially true for the C programming language and its string (char[])
representation)

81

XML and Unicode

Æ A conforming XML parser is required to correctly process UTF-8 and
UTF-16 encoded documents. (The W3C XML Recommendation
predates the UTF-32 definition)

Æ Documents that use a different encoding must announce so using the
XML text declaration, e.g.,

<?xml encoding=“iso-8859-15”?>
or <?xml encoding=“utf-32”?>

Æ Otherwise, an XML parser is encouraged to guess the encoding while
reading the very first bytes of the input XML document:

Head of doc (bytes) Encoding guess
0x00 0x3C 0x00 0x3F UTF-16 (little Endian)
0x3C 0x00 0x3F 0x00 UTF-16 (big Endian)
0x3c 0x3F 0x78 0x6D UTF-8 (or ASCII)

Notice: < = U+003C, ? = U+003F, x = U+0078, m = U+006D

82

XML and Unicode

Æ What does “guess the encoding” mean? Under which circumstances
does the parser know it has determined the correct encoding?

Are there cases when it canNOT determine the correct encoding?

Æ What about efficiency of the UTFs? For different texts, compare the
space requirement in UTF-8/16 and UTF-32 against each other.
Which characters do you find above 0xFFFF in Unicode?

Can you imagine a scenario where UTF-32 is faster than UTF-8/16?

Questions

83

The XML Processing Model

Æ On the physical side, XML defines nothing but a flat text format,
i.e., it defines a set of (e.g. UTF-8/16) character sequences being
well-formed XML.

Æ Applications that want to analyze and transform XML data in any
meaningful way will find processing flat character sequences hard
and inefficient!

Æ The nesting of XML elements and attributes, however, defines
a logical tree-like structure.

Staff

Name

FirstName LastName

Login Extension

84

The XML Processing Model
Æ Virtually all XML applications operate on the logical tree view which

is provided to them by an XML processor (i.e., “parse & store”).

Æ XML processors are widely available (e.g., Apache’s Xerces).

How is the XML processor supposed to communicate the
XML tree structure to the application?

15

85

The XML Processing Model
Æ Virtually all XML applications operate on the logical tree view which

is provided to them by an XML processor (i.e., “parse & store”).

Æ XML processors are widely available (e.g., Apache’s Xerces).

How is the XML processor supposed to communicate the
XML tree structure to the application?

Æ For many PL’s there are “data binding” tools.
Gives very flexible way to get PL view of the XML tree structure.

86

The XML Processing Model
Æ Virtually all XML applications operate on the logical tree view which

is provided to them by an XML processor (i.e., “parse & store”).

Æ XML processors are widely available (e.g., Apache’s Xerces).

How is the XML processor supposed to communicate the
XML tree structure to the application?

Æ For many PL’s there are “data binding” tools.
Gives very flexible way to get PL view of the XML tree structure.

But first, let’s see what the standard says…

87

The XML Processing Model
Æ Virtually all XML applications operate on the logical tree view which

is provided to them by an XML processor (i.e., “parse & store”).

Æ XML processors are widely available (e.g., Apache’s Xerces).

How is the XML processor supposed to communicate the
XML tree structure to the application?

Æ through a fixed interface of accessor functions: The XML Information Set

The accessor functions operate on different types of node objects:

NODE

DOC ELEM ATTR CHAR

88

Accessor Functions (“node properties”)

Node type Property Comment

DOC childern: DOCÆELEM root element
base-uri: DOCÆSTRING
version : DOCÆSTRING

ELEM localname : ELEMÆSTRING
children : ELEMÆ[NODE] [..]=sequence
attributes: ELEMÆ[ATTR] type
parent : ELEMÆNODE

ATTR localname : ATTRÆSTRING
value : ATTRÆSTRING
owner : ATTRÆELEM

CHAR code : CHARÆUNICODE a single character
parent : CHARÆELEM

XML Information Set - http://www.w3.org/TR/xml-infoset

89
Information set of a sample document

<?xml version=“1.0”?>
<forecast date=“Thu, May 16”>

<condition>sunny</condition>
<temperature unit=“Celsius”>23</temperature>

</forecast>

children(d) = e1 code(c1) = U+0073 (=‘s’)
base-uri(d) = “file:/…” parent(c1)= e2
version(d) = “1.0” . . .

code(c5) = U+0079 (=‘y’)
localname(e1) = “forecast” parent(c5)= e2
children(e1) = [e2,e3]
attributes(e1)= [a1] localname(e3) =“temperature”
parent(e1) = d children(e3) =[c6,c7]

attributes(e3)=[a2]
localname(a1) = “date” parent(e3) =a1
value(a1) = “Thu, May 16” . . .
owner(a1) = e1

localname(e2) = “condition”
children(e2) = [c1,c2,c3,c4,c5]
attributes(e2)= []
parent(e2) = e1

90
Questions

(1) A NODE type can be one of DOC, ELEM, ATTR, or CHAR.
In the two places of the property functions where NODE appears,
which of the four types may actually appear there?

For instance, is this allowed?

localname(e1) = “condition”
children(e1) = [c1,e2,c2]

(2) Are there property functions that are “redundant”? (meaning
they can be computed from other property functions already)
Which sets of property functions are “minimal”?

(3) What about WHITESPACE?
Where in an XML document does it matter, and where not?

Where in the Infoset are the returns and indentations of the document?
(did we do a mistake? If so, what is the correct Infoset?)

16

91
Querying the Infoset

Using the Infoset, we can analyse a given XML document in many ways.
For instance:

Æ Find all ELEM nodes with localname=bubble, owning an ATTR node with
localname=speaker and value=Dilbert.

Æ List all scene ELEM nodes containing a bubble spoken by “Dogbert”

Æ Starting in panel 2 (ATTR no), find all bubbles following those
spoken by “Alice”

Such queries appear very often and can conveniently be described using
XPath queries:

Æ //bubble/[@speaker=“Dilber”]
Æ //bubble[@speaker=“Dogbert”]/../scene
Æ //panel[@no=“2”]//bubble[@speaker=“Alice”]/following::bubble

92

3. Parsers for XML

Two different approaches:

(1) Parser stores document into a fixed (standard) data structure
(e.g., an Infoset compliant data structure, such as DOM)

parser.parse(“foo.xml”);
doc = parser.getDocument ();

(2) Parser triggers “events”. Does not store!
User has to write own code on how to store / process the
events triggered by the parser.

DOM = Document Object Model

Æ W3C standard,
see http://www.w3.org/TR/REC-DOM-Level-1/

93

DOM – Document Object Model
Æ Language and platform-independent view of XML

Æ DOM APIs exist for many PLs (Java, C++, C, Perl, Python, …)

DOM relies on two main concepts

(1) The XML processor constructs the
complete XML document tree (in-memory)

(2) The XML application issues DOM library calls to explore and
manipulate the XML tree, or to generate new XML trees.

Advantages
• easy to use
• once in memory, no tricky issues with XML syntax anymore
• all DOM trees serialize to well-formed XML (even after arbitrary updates)!

94

DOM – Document Object Model
Æ Language and platform-independent view of XML

Æ DOM APIs exist for many PLs (Java, C++, C, Perl, Python, …)

DOM relies on two main concepts

(1) The XML processor constructs the
complete XML document tree (in-memory)

(2) The XML application issues DOM library calls to explore and
manipulate the XML tree, or to generate new XML trees.

Disadvantage Uses LOTS of memory!!

Advantages
• easy to use
• once in memory, no tricky issues with XML syntax arise anymore
• all DOM trees serialize to well-fromed XML (even after arbitrary updates)!

95

DOM Level 1 (Core)

Node

ProcessingInstruction CharacterData Attr Element Document

Text Comment

CDATAsection

NameNodeMap NodeList

Character strings (DOM type DOMString) are defined to be encoded
using UTF-16 (e.g., Java DOM reresents type DOMString using
its String type).

96

DOM Level 1 (Core)
Some methods

DOM type Method Comment

Node nodeName
nodeValue
parentNode : Node
firstChild : Node leftmost child
nextSibling : Node returns NULL for root elem

or last child or attributes
childNodes : NodeList
attributes : NamedNodeMap
ownerDocument: Document
replaceChild : Node

Document createElement : Element creates element with
given tag name

createComment : Comment
getElementsByTagName: NodeList list of all Elem nodes

in document order

: DOMString redefined in subclasses

17

97

DOM Level 1 (Core)
Name,Value, and attributes depend on the type of the current node.

98

DOM Level 1 (Core)
Some details

Creating an element/attribute using createElement/createAttribute does not
wire the new node with the XML tree structure yet.
ÆCall insertBefore, replaceChild, …, to wire a node at an explicity position

DOM type NodeList makes up fo the lack of collection data types in most
programming languages

DOM type NamedNodeMap represents an association table (nodes may be
accessed by name)

Example:

v0

a1 a2

bubble

speaker to

getAttributes “speaker” Æ a1
“to” Æ a2

A NamedNodeMap

Methods: getNamedItem, setNamedItem,…

bubble.
getAttributes().
getNamedItem(“ … “)

99

E.g. Find all occurrences of Dogbert speaking (attribute speaker
of element bubble)

100

Questions

Given an XML file of, say, 50K, how large will be
its DOM representation in main memory?

How much larger, in the worst case, will a DOM representation be
with respect to the size of the XML document?
(difficult!)

How could we decrease the memory need of DOM, while
preserving its functionality?

101

Next

“Even trigger” Parsers for XML:

Æ Build your own XML data structure
and fill it up as the parser triggers input “events”.

END
Lecture 1

