
XML and Databases
COMP 4317/9317

Final Exam (open book) --- 11th June 2008

(1)[4] For each of the following, explain whether or not it is well-
formed XML. Explain all violations that you find. (Watch out, some of
these might be well-formed)
a) <comment>For numbers x with x<>5, x/5 is not 1.</comment>
b) <auto<node>>XF23414</auto<node>>
c) <b at=”7”/><b at=”7”></b at=”4”>
d) <inside att=”blah<!--a comment--> EOF”/>
e)
f) <_a><!-->--></_a>
g) <h><!-- anything here:a-z, .. --></h>
h) <a><a/><c></c>

(2)[3.5] Write pseudo code that uses DOM access to iteratively print
all text nodes of a document, in reverse document order (i.e., from
right-to-left in terms of the document tree). You may not use
recursion!

(3)[3] Write pseudo code that, given a DAG counts how many a-nodes it
has, using only one run through the DAG table (every row is visited
once).
The DAG is: dag(node id)=List(node id’s) and lab(node id)=String.

(4)[3] Explain how hashing is used to find the minimal DAG of a tree.
Imagine there are only four labels: a,b,c,f and a hash table with
only three buckets; find the dag for a(b(c,c),b(f,c),b(f,c),b(f,f)).
For this example, what would be an optimal hash function? Explain!
(how many node comparisons are saved wrt no-hash or bad hash
function?)

(5)[2.5] Imagine a (pre,size) table, given by a mapping size; e.g.,
for <a> we have size(1)=2, size(2)=0, and size(3)=0.
Write pseudo code that, for a node p, prints pre-numbers of
a) its descendants
b) its children
c) its parent
d) its following-siblings
e) its preceding nodes.

(6)[4] Consider the following automaton A:

a) Show a string accepted by A, and one that is rejected.
Is A deterministic? Give an equivalent deterministic automaton B.
b) Give a regular expression for the strings accepted by A
c) Is your expression from b) 1-unambiguous? Show the
Glushkov automaton.
d) Give a 1-unambiguous expression for the strings over a,b
which do not contain the substring aa and do not end on a.

(7)[8] Write XPath queries that select
a) all element nodes which have no text children
b) all element nodes which have an a-attribute

a,b,c

a

b

a,b,c

a,b,c

c) all element nodes at level 100
d) all element nodes which have 2 attributes with different values
e) the node with the smallest attribute value
f) the next-sibling of each a-node
g) the left-most leaf (element) node of the document
h) all odd children of a-nodes (1st child, 3rd, 5th, etc)

(8)[4] For the tree on the right, write numbers of nodes selected by
the following XPath expression.
a) /a//b
b) /descendant::a[3]/following::*[2]
c) //a/b
d) //a[parent::*//a]
e) //*[not(following::*)]
f) //*[count(ancestor::*)=2]
h) /*/*//*
i)//*[count(preceding::*)>count(following::*)]

(9)[2] Explain how the XPath expression EX=//a/b/*/b/a
can be evaluated on an XML stream.
How much memory do you need?
a) if you print node numbers
b) if you print the subtrees at selected nodes.
Explain!

10)[3] Given four nodes in the (pre,post)-plane: (p1,o1),..,(p4,o4):
a) Write an SQL query which computes (duplicate-free and in pre-
order) the following-nodes of the four nodes (p1,o1) up to (p4,o4).
b) Can you find a query that returns duplicate free answers, but does
not use the DISTINCT instruction? Explain.

11)[3] a) Give XPath expression p and q such that p1 0-contained in
p2, but not 1-contained.
Give p and q such that p1 1-contained in p2, but not 2-contained.
b) explain why 0- and 1-containment are the same for XPath expression
that only use child and descendant axes.
c) Is p 0-contained in q, for
p=/r//a[parent::*/b] and q=/r//a[following:b]?

Good luck and best success with this exam!

1:a

2:b 7:b

4:a 9:a 8:a 3:b

6:d 5:a

[1] document ::= prolog element Misc*
[2] Char ::= a Unicode character
[3] S ::= (‘ ’ | ‘\t’ | ‘\n’ | ‘\r’)+
[4] NameChar ::= (Letter | Digit | ‘.’ | ‘-’ | ‘:’
[5] Name ::= (Letter | '_' | ':') (NameChar)*
[14] CharData ::= [^<&]* - ([^<&]* ']]>' [^<&]*)
[15] Comment ::= '<!--' ((Char - '-') | ('-' (Char - '-')))* '-->'
[25] Eq ::= S? '=' S?
[39] element ::= EmptyElemTag
 | STag content Etag
[40] STag ::= '<' Name (S Attribute)* S? '>'
[41] Attribute ::= Name Eq AttValue
[10] AttValue ::= '"' ([^<&"]|Reference)* '"' | "'" ([^<&']|Reference)* "'"
[42] ETag ::= '</' Name S? '>‘
[43] content ::= CharData? ((element|Reference|CDSect|PI|Comment) CharData?)*
[44]EmptyElemTag ::= '<' Name (S Attribute)* S? '/>‘
[84] Letter ::= [a-zA-Z]
[88] Digit ::= [0-9]

