XML and Databases

Prof. Dr. Marc H. Scholl

Marc.Scholl@uni-konstanz.de

University of Konstanz
Dept. of Computer & Information Science
Databases and Information Systems Group

Winter 2005/06
(Most of the slides of this presentation have been
prepared by Torsten Grust, now at TU Munich)

=

g o g e

NN

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Marc.Scholl@uni-konstanz.de
http://www-db.in.tum.de/cms/members/grust

Part |

Preliminaries

Marc H. Scholl (DBIS, Uni KN) XML and Databases

R
Outline of this part

@ Welcome

© Overview
o XML
@ XML and Databases

© Organization

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Welcome

... to this course introducing you to the world of XML and the
challenges of dealing with XML in a DBMS.

As a coarse outline, we will proceed as follows:
© Introduction to XML
@ XML processing in general
© Query languages for XML data
@ Mapping XML to databases

© Database-aware implementation of XML query languages

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

XML
About XML

@ XML is the World Wide Web Consortium’s (W3C,
http://www.w3.org/) Extensible Markup Language.

@ We hope to convince you that XML is not yet another hyped TLA
but useful technology.

@ You will become best friends with one of the most important data
structures in Computing Science, the tree. XML is all about
tree-shaped data.

@ You will learn how to apply a number of closely related XML
standards:

> Representing data: XML itself, DTD, XMLSchema, XML dialects.
» Interfaces to connect programming languages to XML: DOM, SAX.

» Languages to query and transform XML: XPath, XQuery, XSLT.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

5

http://www.w3.org/

XML
More about XML

@ We will talk about algorithms and programming techniques to
efficiently manipulate XML data:

» Regular expressions can be used to validate XML data,
» finite state machines lie at the heart of highly efficient XPath

implementations,
» tree traversals may be used to preprocess XML trees in order to
support XPath evaluation, to store XML trees in databases, etc.

@ In the end you should be able to digest the thick pile of related W3C
Xfoo! standards.
What this course is not about:
@ Hacking CGl scripts,
e HTML,

@ Java (but see below).

L .., XQuery, XPointer, XLink, XHTML, Xlnclude, XML Schema, XML Base, . ..

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 6

XML and databases

We assume you are ...

e familiar with the general concepts & ideas behind relational
databases,

@ (somewhat) fluent in SQL,

@ interested in systems’ issues (such as, architecure & performance).

We'll try to achieve that you're familiar with ...

@ the challenges in extending DB technology to deal with XML
structured data,

@ some of current research results in that area,

@ possible application areas.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Why database-supported XML?

@ The structure implied by XML is less rigid than the traditional
relational format.

» We speak of semi-structured data.

@ Several application domains can be modeled easier in XML.
» E.g. content management systems, library databases

@ Growing amounts of data are readily available in the XML format.
» Think of current text processing or spreadsheet software.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Problems

@ Databases can handle huge amounts of data stored in relations
easily.

» Storage management, index structures, join or sort algorithms, ...
@ The data model behind XML is the tree.

» While we trivially represent relations with trees, the opposite is

challenging.

@ Structure is part of the data, implying novel tree operations.

» \We navigate through the XML tree, following a path.

Example (XQuery)
for $x in fn:doc("bib.xml")/bib/books/book [author = "John Doe"]

where Q@price >= 42
return <expensive-book> { $x/title/text() } </expensive-book>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Some of the challenges

@ Existing technology cannot directly be applied to XML data.

» How do we store trees?
» Can we benefit from index structures?
» How can we implement tree navigation?
@ The W3C XQuery proposal poses additional challenges:

» a notion of order,
» a complex type system, and
» the possibility to construct new tree nodes on the fly.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

10

Some solutions to be discussed

@ Tree representation in relational databases

» “Schema-based” methods, if we have regular data and know its
structure
» “Schema-oblivious” methods that can handle arbitrary XML trees

@ Evaluation techniques for path queries

» Step-by-step evaluation
» Pattern based techniques that treat paths as a whole

@ Index structures for XML
@ XQuery evaluation

» Support for the remaining features of XQuery
@ Other database techniques

» Streaming query evaluation
» Query rewriting

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

11

Organizational matters

@ Lectures:
Monday, 16°-174> (C 252, lecture)
Tuesday, 1415-15%° (C 252, lecture)
Thursday, 10*°-114° (C 252, tutorial)
o Office hours:

Whenever our office doors (E211/E217) are open, you may want to
drop an e-mail note before.

@ Course homepage:
www.inf.uni-konstanz.de/dbis/teaching/ws0506/database-xml/
Download these slides, assignments, and various other good stuff
from there.

@ Read your e-mail!
Become a member of Unix group xmldb_W05 (— account tool?).

2www.inf .uni-konstanz.de/system/service/accounts/accounttool .html

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 12

www.inf.uni-konstanz.de/dbis/teaching/ws0506/database-xml/
www.inf.uni-konstanz.de/system/service/accounts/accounttool.html

How you will benefit most from this course

@ Use the material provided on the course website to prepare for the
lectures.

@ Actively participate in and work on the “paper-and-pencil” as
well as the C/C++/Java programming assignments scattered
throughout the semester (— Christian).

@ Pass the (oral, unless you are a too big crowd) examination at the
end of the semester.

@ Have a look at various XML files that come across your way!

@ Don't hesitate to ask questions; let us know if we can improve the
lecture material and/or its presentation.

@ Have fun!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Questions?

@ Questions ... ?
o Comments ... ?
@ Suggestions ... 7

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Part 1l

XML Basics

Marc H. Scholl (DBIS, Uni KN) XML and Databases

R
Outline of this part

e Markup Languages
@ Early Markup
@ An Application of Markup: A Comic Strip Finder

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Sl B
Early markup languages

@ The term markup has been coined by the typesetting community,
not by computer scientists:

@ With the advent of the printing press, writers and editors used
(often marginal) notes to instruct printers to

» select certain fonts,
» let passages of text stand out,
» indent a line of text, etc.

@ Proofreaders use a special set of symbols, their special markup
language, to identify typos, formatting glitches, and similar
erroneous fragments of text.

N.B. The markup language is designed to be easily recognizable in
the actual flow of text.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

17

Markup Languages

Example

Reproduced from the “Duden”, 21st edition (1996), © Brockhaus AG.

~

b

14.

Marc H. Scholl (DBIS, Uni KN)

Korrekturvorschriften

. Uberfliissige Buchstaben oder Warter werden durchgestrichen

um{ld uul'hnf{dem Rand durch 4} (fiir: deleatur, d. h. ,.es wer-
de getilgt™) angezeichnet.

. Fehlende oder iiberfliissige Eatzzeichen werden wie fehlende

oder tiberfliissige Buchstaben angezeichne

. Verstellte Buchstaben werden durchgesﬂichen und auf dem

Rand in der richtigen Rethenfolge angegeben.
Verstellte Worter Idurch [werden Jdas Umstellungszeichen ge-
ke nzeighnet, o s 2 " 7

e Worter werden tFa:l groBeren Umstellungen beziffert.
Verstellte Zahlen sind immer ganz durchzustreichen und in der
richtigen Ziffernfolge auf den Rand zu schreiben, z. B. F684-4

Fiir unleserliche oder zweifelhafte Manuskriptstellen, die noch
nicht blockiert sind. sowie fur noch zu erginzenden Text wird

XML and Databases

|9 4
Ly

[

tr
M
Je EB ey

— 486k.

@ Computing Scientists adopted the markup idea—originally to
annotate program source code:

» Design the markup language such that its constructs are easily
recognizable by a machine.
» Approaches:
@ Markup is written using a special set of characters, disjoint from the
set of characters that form the tokens of the program.
@ Markup occurs in places in the source file where program code may
not appear (program layout).

e Example of (2): Fortran 77 fixed form source:

» Fortran statements start in column 7 and do not exceed column 72,

» a Fortran statement longer than 66 characters may be continued on
the next line if a character ¢ { 0, !, _} is placed in column 6 of the
continuing line,

» comment lines start with a C or * in column 1,

» numeric labels (DO, FORMAT statements) have to be placed in columns
1-5.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

19

Fortran 77 source, fixed form, space characters made explicit ()

Fortran 77
1 C_THIS_ PROGRAM CALCULATES, ,THE, CIRCUMFERENCE_AND_AREA OF_A CIRCLE WITH
2 CLRADIUS_R.
3 C
4 CUDEFINE ,VARIABLE NAMES:
5 CuLuuuuR : LRADIUS OF (CIRCLE
6 CuLuuuUPI s VALUE OF PI=3.14159
7 CuuuuuCIRCUM: | ,CIRCUMFERENCE, = ,2*PI*R
8 CuuuuUAREA : JAREA OF ,THE CIRCLE =_PI*R*R
9
10 C
11 uuuuuuREAL R, CIRCUM, AREA
12 C
13 LuuuuuPI=,3.14159
14 C
15 CLSET_VALUE_OF R:
16 | osoosRu=4.0
17 C
18 C_,CALCULATIONS:
19 LuuLUUCIRCUM, =2 . ¥PT*R
20 uuuuuuAREA = PI*R*R
21 C
22 CUWRITE_RESULTS:
23 UULUUUWRITE(6, %), ? L FOR, A CIRCLE OF_RADIUS’, R,
24 vuuuutuuuuuuuuuuoy’ Lo THE CIRCUMFERENCE IS’ , ,CIRCUM,
25 uuuuutuuuuuuououon’ uuANDUTHE AREA IS, LAREA
26 C
27 | LLLLLUEND

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

20

@ Increased computing power and more sophisticated parsing
technology made fixed form source obsolete.
@ Markup, however, is still being used on different levels in today’s
programming languages and systems:
» ASCII defines a set of non-printable characters (the CO control
characeters, code range 0x00—0x1f):

code name description

0x01 STX start of heading
0x02 SOT start of text

0x04 EOT end of transmission
0x0a LF line feed

0x0d CR carriage return

» Blocks (containers) are defined using various form of matching

delimiters:

* begin ... end, \begin{foo} ... \end{foo}

*x /x . ..x/,{...}//...LF
* do ... domne, if ...

fi, case ...

esac, $[... 1]

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

21

Sample Markup Application
An Application of Markup: A Comic Strip Finder

Problem:
@ Query a database of comic strips by content. We want to
approach the system with queries like:
@ Find all strips featuring Dilbert but not Dogbert.
@ Find all strips with Wally being angry with Dilbert.
© Show me all strips featuring characters talking about XML.
Approach:
@ Unless we have next” generation image recognition software
available, we obviously have to annotate the comic strips to be able
to process the queries above:

strips H bitmap ‘ annotation

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 22

...Dilbert. . .Dogbert
Wally...

Stage 1: ASCII-Level Markup

(xs IT OKAY T0 00
THINGS LRONG 1F
|

WERE REALLY.,

SPEED 15)
REALLY FAST?

THE KEY Ty
success

s U’;_J (Now Tm Mﬁ
No. || conruseo,
THANK YOU
L\n MocH
7

A G oo /q‘g V
I1 . §‘E§aiﬁ'» P ‘Qg":]

—

ASClI-Level Markup

Pointy-Haired Boss: >>Speed is the key to success.<<

Dilbert: >>Is it okay to do things wrong if we’re really, really fast?<<
Pointy-Haired Boss: >>Um... No.<<

Wally: >>Now I’m all confused. Thank you very much.<<

W=

@ ASCII CO character sequence 0x0d, 0x0Oa (CR, LF) divides lines,

@ each line contains a character name, then a colon (:), then a line of
speech (comic-speak: bubble),
@ the contents of each bubble are delimited by >> and <<.

[0 Which kind of queries may we ask now?
And what kind of software do we need to complete the comic strip finder?J

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 23

Stage 2: HTML-Style Physical Markup

dilbert.html
1 [<h1>Dilbert</h1>
2 [<h2>Panel 1</h2>
3 Kul>
4 <1li> Pointy-Haired Boss Speed is the key
5 to success.
6 [
7 <h2>Panel 2</h2>
8 |[
9 <1i> Dilbert Is it okay to do things wrong
10 if we’re really really fast?
11 K/ul>
12 [<h2>Panel 3</h2>
13 [Kul>
14 <1i> Pointy-Haired Boss Um... No.
15 <1i> Wally Now I’m all confused.
16 Thank you very much.
17 K/ul>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Sample Markup Application
HTML: Observations

@ HTML defines a number of markup tags, some of which are required
to match (<t>...</t>).

@ Note that HTML tags primarily describe physical markup (font size,
font weight, indentation, ...)

@ Physical markup is of limited use for the comic strip finder (the tags
do not reflect the structure of the comic content).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 25

Stage 3: XML-Style Logical Markup

@ We create a set of tags that is customized to represent the
content of comics, e.g.:

<character>Dilbert </character>
<bubble>Speed is the key to success. </bubble>

@ New types of queries may require new tags: No problem for XML!
» Resulting set of tags forms a new markup language (XML dialect).

@ All tags need to appear in properly nested pairs (e.g.,
<t>...<8> ... </s>... </t>).

@ Tags can be freely nested to reflect the logical structure of the
comic content.

[l Parsing XML?

In comparison to the stage 1 ASCII-level markup parsing, how difficult do
you rate the construction of an XML parser?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 26

Markup Languages Sample Markup Application

In our example

| e dilbert.xml
2 <panel>
3 <speech>
4 <character>Pointy-Haired Boss</character>
5 <bubble>Speed is the key to success.</bubble>
6 </speech>
7 </panel>
8 <panel>
9 <speech>
10 <character>Dilbert</character>
11 <bubble>Is it okay to do things wrong
12 if we’re really, really fast?</bubble>
13 </speech>
14 </panel>
15 <panel>
16 <speech>
17 <character>Pointy-Haired Boss</character>
18 <bubble>Um... No.</bubble>
19 </speech>
20 <speech>
21 <character>Wally</character>
22 <bubble>Now I’m all confused.
23 Thank you very much.</bubble>
24 </speech>
25 </panel>
26 </strip>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

S [y Ailidan
Stage 4: Full-Featured XML Markup

@ Although fairly simplistic, the previous stage clearly constitutes an
improvement.
@ XML comes with a number of additional constructs which allow us
to convey even more useful information, e.g.:
» Attributes may be used to qualify tags (avoid the so-called tag soup).
Instead of
* <question>Is it okay ...7</question>
<angry>Now I’m ...</angry>
use
* <bubble tone="question">Is it okay ...7</bubble>
<bubble tone="angry">Now I’m ...</bubble>
» References establish links internal to an XML document:
Establish link target:
* <character id="phb">The Pointy-Haired
Boss</character>
Reference the target:

* <bubble speaker="phb'">Speed is the key to
success.</bubble>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 28

=

© WU WN

ATIDE .er

[<?xml version="1.0" encoding="iso-8859-1"7>
[Kstrip copyright="United Feature Syndicate" year="2000">
<prolog>
<series href="http://www.dilbert.com/">Dilbert</series>
<author>Scott Adams</author>
<characters>
<character id="phb">The Pointy-Haired Boss</character>
<character i ilbert">Dilbert, The Engineer</character>

<character i ally">Wally</character>
<character id="alice">Alice, The Technical Writer</character>
</characters>
</prolog>

<panels length="3">
<panel no="1">
<scene visible="phb">
Pointy-Haired Boss pointing to presentation slide.
</scene>
<bubbles>
<bubble speaker="phb">Speed is the key to success.</bubble>
</bubbles>
</panel>
<panel no="2">
<scene visible="wally dilbert alice">
Wally, Dilbert, and Alice sitting at conference table.
</scene>
<bubbles>
<bubble speaker="dilbert" to="phb" tone="question">
Is it ok to do things wrong if we’re really, really fast?
</bubble>
</bubbles>
</panel>
<panel no="3">
<scene visible="wally dilbert">Wally turning to Dilbert, angrily.
</scene>
<bubbles>
<bubble speaker="phb" to="dilbert">Um... No.</bubble>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

29

Part 111

Well-Formed XML

Marc H. Scholl (DBIS, Uni KN) XML and Databases

N
Outline of this part

© Formalization of XML
@ Elements
@ Attributes
@ Entities

© Well-Formedness
@ Context-free Properties
@ Context-dependent Properties

@ XML Text Declarations
@ XML Documents and Character Encoding
@ Unicode
@ XML and Unicode

© The XML Processing Model
@ The XML Information Set
@ More XML Node Types

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

31

Formalization of XML

@ We will now try to approach XML in a slightly more formal way. The
nuts and bolts of XML are pleasingly easy to grasp.
@ This discussion will be based on the central XML technical
specification:
» Extensible Markup Language (XML) 1.0 (Second Edition)
W3C Recommendation 6 October 2000
(http://www.w3.org/TR/REC-xml)

@ Visit the W3C site

This lecture does not try to be a “guided tour” through the XML-related
W3C technical documents (boring!).

Instead we will cover the basic principles and most interesting ideas. Visit
the W3C site and use the original W3C documents to get a full grasp of
their contents.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 32

http://www.w3.org/TR/REC-xml

Formalization of XML Elements

Elements

@ The element is the main markup construct provided by XML.

» Marked up document region (element content) enclosed in matching
start end closing (end) tags:

* start tag: <t> (t is the tag name),
* matching closing tag: </t>

Well-formed XML (fragments)
1 |<foo> okay </foo>

2 | <This-is-a-well-formed-XML-tag.> okay

3 |</This-is-a-well-formed-XML-tag.>

4 | <foo>okay</foo>

Non-well-formed XML

1 <foo> oops </EEE>
2 <foo> oops </Hoo>

3 | <foo> oops ... [([EEE
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 B

Formalization of XML Elements

@ Element content may contain document characters as well as
properly nested elements so-called mixed content):

Well-formed XML

<foo><bar>
<baz> okay </baz>
</bar>
<ok> okay </ok> still okay
</foo>

Ut W N =

Non-well-formed XML
1 <foo><bar> oops </HEE></H&EH>
2 <foo><bar> oops </bar><bar> oops </HEE></B&EE>

[0 Check for proper nesting

Which data structure would you use to straightforwardly implement the
check for proper nesting in an XML parser?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Formalization of XML Elements

@ Element content may be empty:
» The fragments <t> </t> and <t/> are well-formed XML and
considered equivalent.
@ Element nesting establishes a parent—child relationship between
elements:
» In the XML fragment <p><c>... </c>...<c'>... </c></p>,

* element p is the parent of elements c, ¢,
* elements c, ¢’ are children of element p,
* elements c, ¢’ are siblings.

@ There is exactly one element that encloses the whole XML content:
the root element.

Non-well-formed XML

1 |<one>

2 one eins un

3 |</one>

4 |<two> two zwei deux </two>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 35

Attributes
Attributes

@ Elements may further be classified using attributes:
(It is common practice to denote an attribute named a by @a in
written text (attribute a).)
<tag="..." a=.. . . >. . .</t>

» An attribute value is restricted to character data
(attributes may not be nested),
» attributes are not considered to be children of the containing element
(instead they are owned by the containing element).
Well-formed XML (fragment)
<price currency="US$" multiplier=’1’>
23.45
</price>
<price>

<currency>US$</currency>
<multiplier>1</multiplier>
23.45

</price>

w0 N O U s W N

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 36

Formalization of XML Entities
Entities

@ In XML, document content and markup are specificed using a single
set of characters.

@ The characters { <, >, &, ", ? } form pieces of XML markup and
may instead be denoted by predefined entities if they actually
represent content:

Character Entity

< <
> >
& & ;
" "
’ '

Well-formed XML

1 <operators>Valid comparison operators are <, =, & >.</op%rat01

@ The XML entity facility is actually a versatile recursive macro
expansion machinery (more on that later).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 37

Well-Formedness

@ The W3C XML recommendation is actually more formal and rigid in
defining the syntactical structure of XML:
“A textual object is well-formed XML |f,
@ Taken as a whole, it matches the production labeled
document.
@ It meets all the well-formedness constraints given in this
[the W3C XML Recommendation] specification. ..."

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

38

Well-formedness #1: Context-free Properties

@ All context-free properties of well-formed XML documents are
concisely captured by a grammar (using an EBNF-style notation).

» Grammar: system of production (rule)s of the form

lhs ::= rhs

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 39

Excerpt of the XML grammar

document

Char

S
NameChar
Name
AttValue

CharData

prolog

XML Decl
VersionInfo
Eq
VersionNum
Misc

element

STag

Attribute

ETag

content
EmptyElemTag

Reference
EntityRef
Letter
Digit

prolog element Misc*

(a Unicode character)

(= Ve [\

Letter | Digit | "." |'="| " |":’

(Letter | ' | ':") (NameChar)*

""" ([~<&"] | Reference)* """

"' ([~<&’] | Reference)* '’

[~<&]

XMLDecl? Misc*

'<?xml’ Versionlnfo EncodingDecl? S7 '?>’

S 'version' Eq ('’' VersionNum ">’ | """ VersionNum '"")
S7'=' 57

([a-zA-z0-9_.:] | -t

S

EmptyElemTag

STag content ETag

‘<" Name (S Attribute)* S? '>'
Name Eq AttValue

'</" Name S7 >’

(element | CharData | Reference)*
‘<" Name (S Attribute)* S? '/>'
EntityRef

‘&’ Name ;'

[a-zA-Z]

[0-9]

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

40

Well-Formedness Context-free Properties

N.B.

@ The numbers in [-] refer to the correspondig productions in the W3C
XML Recommendation.

o
Expression.denotes
r €, 1, rr,rrr,... zero or more repetions of r
rt rr* one or more repetions of r
r? rle optional r
[abc] albl|c character class
[~abc] inverted character class

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 41

Well-Formedness Context-free Properties

Remarks
Rule... ...implements this characteristic of XML:

[1] an XML document contains exactly one root element

[10] attribute values are enclosed in " or ’

[22] XML documents may include an optional declaration prolog

[14] characters < and & may not appear literally in element content

[43] element content may contain character data and entity references as
well as nested elements

[68] entity references may contain arbitrary entity names (other than 1t,
amp, ...)

@ As usual, the XML grammar may systematically be transformed into
a program, an XML parser, to be used to check the syntax of XML
input.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 42

S (s Pharysiies
Parsing XML

@ Starting with the symbol document, the parser uses the lhs ::= rhs
rules to expand symbols, constructing a parse tree.

@ The leaves of the parse tree are characters which have no further
expansion.

© The XML input is parsed successfully if it perfectly matches the
parse tree's front (concatenate the parse tree leaves from left to
right3).

3N.B.: xey = xy.
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 43

Context-free Properties
Example 1

Parse tree for XML input
<bubble speaker="phb">Um... No.</bubble> :

document

N\ T
prolog / element Misc*
XMLDeclMisc* STag content ETag ffl
ffl ffl Name Attnbute s? > CharData </ Name
SIS ©
bubble - Name AttValue ffl Um... No. bubble ffl
|/ \ N
speaker S7 = S? '"phb"
| |
ffl ffl

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 44

Context-free Properties
Example 2

Parse tree for the “minimal” XML document
<?xml version="1.0"7><foo/>..

document \
Pro/og \ element Misc*
XMLDecl? Misc* S S

<7xml /\/ersionlnfo %

S “version " VerstonNum " ffl <7 Name(S Attribute)* S? />

/\\ |

= S? = S? 1.0 foo ffl ffl

ffl ffl

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 45

Context-dependent Properties
Well-formedness #2: Context-dependent Properties

@ The XML grammar cannot enforce all XML well-formedness
constraints (WFCs).

@ Some XML WFCs depend on

@ what the XML parser has seen before in its input, or
@ on a global state, e.g., the definitions of user-declared entities.

@ These WFCs cannot be checked by simply comparing the parse tree
front against the XML input (context-dependent WFCs).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 46

Sample WFCs

WEFC Comment

(2) Element Type Match The Name in an element’s end tag must match the
element name in the start tag.

(3) Unique Att Spec No attribute name may appear more than once in the
same start tag or empty element tag.

(5) No < in Attribute Val- The replacement text of any entity referred to di-

ues rectly or indirectly in an attribute value (other than
&1t;) must not contain a <.
o Recursion parsed entity must not contain a recursive refer-
9) No R A d entit t not t fi

ence to itself, either directly or indirectly.

All 10 XML WEFCs are given in http://www.w3.org/TR/REC-xml.

[0 How to implement the XML WFC checks?

Devise methods—besides parse tree construction—that an XML parser
could use to check the XML WFCs listed above.

Specify when during the parsing process you would apply each method.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 47

http://www.w3.org/TR/REC-xml

The XML Text Declaration <?xml...?>

@ Remember that a well-formed XML document may start off with an
optional header, the text declaration (grammar rule [23]).

» N.B. Rule [23] says, if the declaration is actually there, no character
(whitespace, etc.) may preceed the leading <?xml.

[0 The leading <?xml

Can you imagine why the XML standard is so rigid with respect to the
placement of the <?xml leader of the text declaration?

@ An XML document whose text declaration carries a VersionInfo of
version="1.0" is required to conform to W3C’'s XML
Recommendation posted on October 6, 2000 (see
http://www.w3.org/TR/REC-xml).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 48

http://www.w3.org/TR/REC-xml

L] Clersier Bl
XML Documents and Character Encoding

@ For a computer, a character like X is nothing but an 8 (16/32) bit
number whose value is interpreted as the character X when needed
(e.g., to drive a display).

@ Trouble is, a large number of such number — character mapping
tables, the so-called encodings, are in parallel use today.

@ Due to the huge amount of characters needed by the global
computing community today (Latin, Hebrew, Arabic, Greek,
Japanese, Chinese ...languages), conflicting intersections between
encodings are common.

Example:

Oxa4 Oxcb Oxed Oxd3 —1s0-8859-7, Ao X
Oxa4 Oxcb Oxed Oxd3 -iso-8859-15,¢ [5 (§

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 49

XML Text Declarations Unicode

Unicode

@ The Unicode (http://www.unicode.org/) Initiative aims to define
a new encoding that tries to embrace all character needs.

@ The Unicode encoding contains characters of “all” languages of the
world, plus scientific, mathematical, technical, box drawing,
...symbols (see http://www.unicode.org/charts/).

@ Range of the Unicode encoding: 0x0000—0x10FFFF (16 x 65536
characters).

» Codes that fit into the first 16 bits (denoted U+0000—-U+FFFF) have
been assigned to encode the most widely used languages and their
characters (Basic Multilingual Plane, BMP).

» Codes U+0000—U+007F have been assigned to match the 7-bit ASCII
encoding which is pervasive today.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 50

http://www.unicode.org/
http://www.unicode.org/charts/

UTF-32

@ Current CPUs operate most efficiently on 32-bit words (16-bit
words, 8-bit bytes).

@ Unicode thus developed Unicode Transformation Formats (UTF)
which define how a Unicode character code between
U+0000—U+10FFFF is to be mapped into a 32-bit word (16-bit words,
8-bit bytes).

UTF-32 (map a Unicode character into a 32-bit word)

@ Map any Unicode character in the range U+0000—U+10FFFF to the
corresponding 32-bit value 0x00000000—0x0010FFFF.

@ N.B. For each Unicode character encoded in UTF-32 we waste at
least 11 zero bits.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 51

UTF-16

. map a Unicode character into one or two 16-bit words

@ Apply the following mapping scheme:

Unicode range Word sequence

U+000000—U+OOFFFF I TTTTTITITITTTT]
U+010000—U+10FFFF 1101100 TTIT1 1101110011
@ For the range U+000000—-U+00FFFF, simply fill the O positions with
the 16 bit of the character code.
(Code ranges U+D800—U+DBFF and U+DCO0—U+DFFF are unassigned!)
© For the U+010000-U+10FFFF range, subtract 0x010000 from the
character code and fill the O positions using the resulting 20-bit
value.

Example
Unicode character U+012345 (0x012345 — 0x010000 = 0x02345):
UTF-16: 1101100000001000 1101111101000101

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 52

UTF-8

N.B. UTF-16 is designed to facilitate efficient and robust decoding:

@ If we see a leading 11011 bit pattern in a 16-bit word, we know it is
the first or second word in a UTF-16 multi-word sequence.

@ The sixth bit of the word then tells us if we actually look at the first
or second word.

UTF-8 (map a Unicode character into a sequence of 8-bit bytes)
@ UTF-8 is of special importance because

(a) a stream of 8 bit bytes (octets) is what flows over an IP network
connection,

(b) text-processing software today is built to deal with 8 bit character
encodings (iso-8859-x, ASCII, etc.).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

53

UTF-8 encoding

© Apply the following mapping scheme:

Unicode range Byte sequence

U+000000—U+00007F OLIIITTT]

U+000080—-U+0007FF 11001111 100TTTTT]

U+000800—U+OOFFFF 1110007111 1O0CITTITTI 10C0TTTT]
U+010000—U+10FFFF 111100071 100TTTTI 1000TTTT] 10CTTTT

@ The spare bits (0O) are filled with the bits of the character code to
be represented (rightmost Ois least significant bit, pad to the left
with 0-bits).

Examples:
» Unicode character U+00A9 ((© sign):
UTF-8: 11000010 10101001 (0xC2 0xA9)
» Unicode character U+2260 (math relation symbol #):
UTF-8: 11100010 10001001 10100000 (0XE2 0x89 OxAO)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

XML Text Declarations Unicode

Advantages of UTF-8 encoding
N.B. UTF-8 enjoys a number of highly desirable properties:

@ For a UTF-8 multi-byte sequence, the length of the sequence is
equal to the number of leading 1-bits (in the first byte), e.g.:

11100010 10001001 10100000
(Only single-byte UTF-8 encodings have a leading 0-bit.)

@ Character boundaries are simple to detect (even when placed at
some arbitrary position in a UTF-8 byte stream).

@ UTF-8 encoding does not affect (binary) sort order.

@ Text processing software which was originally developed to work with
the pervasive 7-bit ASCII encoding remains functional.
This is especially true for the C programming language and its string
(char[]) representation.

0 Cand UTF-8 J

Can you explain the last points made?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 55

XML and Unicode
XML and Unicode

@ A conforming XML parser is required to correctly process UTF-8 and

UTF-16 encoded documents (The W3C XML Recommendation
predates the UTF-32 definition).

@ Documents that use a different encoding must announce so using
the XML text declaration, e.g.
<?xml encoding="iso-8859-15"7>
or <?xml encoding="utf-32"7>
@ Otherwise, an XML parser is encouraged to guess the encoding
while reading the very first bytes of the input XML document:

Head of doc (bytes) Encoding guess

0x00 0x3C 0x00 0x3F UTF-16 (big-endian)
0x3C 0x00 0x3F 0x00 UTF-16 (little-endian)
0x3C 0x3F 0x78 0x6D UTF-8 (or ASCII, is0-8859-7: erroneous)

(Notice: < = U+003C, ? = U+003F, x = U+0078, m = U+006D)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

56

The XML Processing Model

@ On the physical side, XML defines nothing but a flat text format,
i.e., defines a set of (UTF-8/16) character sequences being
well-formed XML.

@ Applications that want to analyse and transform XML data in any
meaningful manner will find processing flat character sequences hard
and inefficient.

@ The nesting of XML elements and attributes, however, defines a
logical tree-like structure.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 57

XML Processors

@ Virtually all XML applications operate on the logical tree view
which is provided to them through an XML Processor (i.e., the
XML parser):

0,

VN

o o}

O/ \O

XML
e B

@ XML processors are widely available (e.g., Apache's Xerces see
http://xml.apache.org/).

@ How is the XML processor supposed to communicate the XML
tree structure to the application ...?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

58

http://xml.apache.org/

XML Information Set
The XML Information Set

@ Once an XML processor has checked its XML input document to be
well-formed, it offers its application a set of document properties
(functions).

@ The application calls property functions and thus explores the input
XML tree as needed.

@ An XML document tree is built of different types of node objects:

Elem

@ The set of properties of all document nodes is the document's
Information Set (see http://www.w3.org/TR/xml-infoset/).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 59

http://www.w3.org/TR/xml-infoset/

Node properties

Node Object Type Property Comment
Doc children ;2 Doc — Elem root element
base-uri :: Doc — String
version :: Doc — String <?7xml version="1.0"7>
Elem localname :: Elem — String
children it Elem — (Node) — #!
attributes :: Elem — (Attr)
parent :: Elem — Node *2
Attr localname :: Attr — String
value .2 Attr — String
owner ;0 Attr — Elem
Char code .2 Char — Unicode a single character
parent :2 Char — Elem

@ Read symbol :: as “has type”.
@ For any node type T, (T) denotes an ordered sequence of type T.

0 Make sense of the types of the Elem properties children () and parent (%2)!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

60

Information set of a sample document

T W N =

</forecast>

<?xml version="1.0"?7>

<forecast date="Thu, May 16">
<condition>sunny</condition>
<temperature unit="Celsius">23</temperature>

Document §y (weather forecast)

children (&)
base-uri (do)

version (&o)
localname (e1)
children (g1)
attributes (g1)
parent (g1)
localname (at2)
value (otz)

localname (e3)
children (g3)
attributes (&3)
parent (e3)

€1
"file:/..."

II1 . Oll
"forecast"
(g3, €9)

(a2)

do

Ildateﬂ

"Thu, May 16"

"condition"

(V4. Y5. Y6, ¥7. V8)

0

€1

code (s)
parent (v4)

code (7vs)
parent (7yg)
localname (e9)
children (gg)
attributes (eg)
parent (eg)

U+0073 ’s’
€3

U+0079 ’y’

€3
"temperature"
(711, 712)
(et10)

€1

N.B. Node objects of type Doc, Elem, Attr, Char are denoted by ¢;, €;, a;, i,
respectively (subscript i makes object identifiers unique).

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

61

AL Lifeitszifon S
Working with the Information Set

@ The W3C has introduced the XML Information Set to aid the
specification of further XML standards.

@ We can nevertheless use it to write simple “programs” that explore
the XML tree structure. The resulting code looks fairly similar to
code we would program using the DOM (Document Object Model,
see next chapter).

Example: Compute the list of sibling Elem nodes of given Elem €
(including €):

siblings (g) :: Elem — (Elem)

Node v;

v < parent (g);
if v = 6g then
// v is the Doc node, i.e., € is the root element
‘ return (g);
else
| return children (v);

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

62

XML Processing Model XML Information Set

Another Example

Return the text content of a given Doc § (the sequence of all Unicode
characters § contains):

collect (vs) :: (Node) — (Unicode)

Node v;
(Unicode) «ys;

¥s < O
foreach v € vs do
if v =g then
h found a Ch de . ..
return collect ((children (6))); ‘ ’/Yé (Vie’yjlf(::ge (au))'ar node

content (8) :: Doc — (Unicode)

else

// otherwise v must be an Elem
node

s < s + collect (children (v));

return «ys;

@ Example run: content (o) = (’s’,’u’,’n’,’n’,’y’,’2°,73’).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

63

AL Lifeitszifon S
“Querying” using the Information Set

@ Having the XML Information Set in hand, we can analyse a given
XML document in arbitrary ways, e.g.

@ In a given document (comic strip), find all Elem nodes with local
name bubble owning an Attr node with local name speaker and
value "Dilbert".

@ List all scene Elem nodes containing a bubble spoken by
"Dogbert" (Attr speaker).

© Starting in panel number 2 (no Attr), find all bubbles following
those spoken by "Alice" (Attr speaker).

@ Queries like these are quite common in XML applications. An XML
standard exists (XPath) which allows to specify such document
path traversals in a declarative manner:

@ //bubblel./@speaker = "Dilbert"]
@ //bubblel@speaker = "Dogbert"l/../..
© //panelleno = "2"]//bubble[@speaker = "Alice"]/following: :bubble

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

64

More XML Node Types
More XML node types . ..

@ The XML standard defines a number of additional node types that
may occur in well-formed documents (and thus in their XML
Information Set).

@ CDATA nodes (embed unparsed non-binary character data)
CDATA

<source>
<! [CDATA[May use <, >, and & and
anything else freely here]]>
</source>

=W N

@ Comment nodes (place comments in XML documents)

Comment
1 <proof>
2 <!-- Beware! This has not been properly
3 checked yet... -—>
4 .
5 </proof>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

65

more XML node types

@ PI nodes (embed processing instructions in XML documents)
Pl

Result:

<?php sql ("SELECT * FROM ...") ...7>

=W N e

@ For a complete list of node types see the W3C XML
Recommendation (http://www.w3.org/TR/REC-xml).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

66

http://www.w3.org/TR/REC-xml

Part IV

DOM—Document Object Model

Marc H. Scholl (DBIS, Uni KN) XML and Databases

R
Outline of this part

© DOM Level 1 (Core)

@ DOM Example Code

@ DOM—A Memory Bottleneck

Marc H. Scholl (DBIS, Uni KN) XML and Databases

DOM—Document Object Model

e With DOM, W3C has defined a language- and platform-neutral
view of XML documents much like the XML Information Set.

@ DOM APIs exist for a wide variety of—predominantly
object-oriented—programming languages (Java, C++, C, Perl,
Python, ...).

@ The DOM design rests on two major concepts:

@ An XML Processor offering a DOM interface parses the XML input
document, and constructs the complete XML document tree
(in-memory).

@ The XML application then issues DOM library calls to explore and
manipulate the XML document, or generate new XML documents.

N\ @
O/ \0

DOM XML
ceecna -

parentNode () @

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 69

@ The DOM approach has some obvious advantages:

» Once DOM has build the XML tree structure, (tricky) issues of XML

grammar and syntactical specifics are void.

» Constructing an XML document using the DOM instead of serializing

an XML document manually (using some variation of print), ensures

correctness and well-formedness.

* No missing/non-matching tags, attributes never owned by attributes,

» The DOM can simplify document manipulation considerably.

* Consider transforming
Weather forecast (English)

<?xml version="1.0"7>
<forecast date="Thu, May 16">
<condition>sunny</condition>
<temperature unit="Celsius">23</temperature>
</forecast>

T W N =

into
— Weather forecast (German)
<?xml version="1.0"7>
<vorhersage datum="Do, 16. Mai">
<wetterlage>sonnig</wetterlage>
<temperatur skala="Celsius">23</temperatur>
</vorhersage>

U W N =

Marc H. Scholl (DBIS, Uni KN) XML and Databases

70

DOM Level 1 (Core)

@ To operate on XML document trees, DOM Level 1% defines an
inheritance hierarchy of node objects—and methods to operate on

these—as follows (excerpt):

NameNodeMap
Document

Processinglnstruction

CharacterData Element

Comment

CDATAsection

@ Character strings (DOM type DOMString) are defined to be
encoded using UTF-16 (e.g., Java DOM represents type DOMString
using its String type).

*nttp://www.w3.org/TR/REC-DOM-Level-1/
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 71

http://www.w3.org/TR/REC-DOM-Level-1/

DOM Level 1 (Core)

@ (The complete DOM interface is too large to list here.) Some
methods of the principal DOM types Node and Document:

DOM Type Method Comment
Node nodeName :: DOMString redefined in subclasses, e.g., tag
name for Element, "#text" for Text
nodes, ...
parentNode :: Node
firstChild Node leftmost child node
nextSibling :: Node returns NULL for root element or last
child or attributes
childNodes 1 NodelList see below
attributes :: NameNodeMap see below
ownerDocument :: Document
replaceChild 2 Node replace new for old node, returns old
Document createElement :: Element creates element with given tag name
createComment Comment creates comment with given content
getElementsBy TagName :: NodeList list of all Elem nodes in document or-

der

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

72

DOM Level 1 (Core)

Some DOM Details

@ Creating an element (or attribute) using createElement (createAttribute) does
not wire the new node with the XML tree structure yet.

Call insertBefore, replaceChild, ... to wire a node at an explicit position.

@ DOM type NodeList (node sequence) makes up for the lack of collection
datatypes in most programming languages.

Methods: length, item (node at specific index position).

@ DOM type NameNodeMap represents an association table (nodes may be

accessed by name).
Example:

bubble

7
@////Q\\d@
aj 2

speaker to

name node
Apply method attributes to —_—
Element object vy to obtain n "
this NameNodeMap: Speaker = @4,
"to" — Q2

Methods: getNamedltem, setNameditem, ...

Marc H. Scholl (DBIS, Uni KN)

and Databases Winter 2005/06

73

_______________________ DOMExample Code |
DOM Example Code

@ The following slide shows C++ code written against the Xerces
C++ DOM APIP>.
@ The code implements a variant of the content :: Doc — (Char):

» Function collect () decodes the UTF-16 text content returned by
the DOM and prints it to standard output directly (transcode (),
cout).

N.B.

@ A W3C DOM node type named T is referred to as DOM_T in the
Xerces C4++ DOM API.

@ A W3C DOM property named foo is—in line with common
object-oriented programming practice—called getFoo () here.

Shttp://xml.apache.org/

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

74

http://xml.apache.org/

Example: C+4/DOM Code

QN0 Uk W~

77 Terce o SR IBENLCS (1)

#include <dom/DOM.hpp>
#include <parsers/DOMParser.hpp>

void collect (DOM_NodeList ns)
{
DOM_Node n;

for (unsigned long i = O;
i < ns.getLength O);
i+ {

n = ns.item (i);

switch (n.getNodeType ()) {

case DOM_Node: :TEXT_NODE:
cout << n.getNodeValue ().transcode ();
break;

case DOM_Node: :ELEMENT_NODE:
collect (n.getChildNodes ());

}

}

i

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

content.cc (2)

oid content (DOM_Document d)

collect (d.getChildNodes ());
+

int main (void)
|8
XMLPlatformUtils::Initialize ();

DOMParser parser;
DOM_Document doc;

parser.parse ("foo.xml");
doc = parser.getDocument ();

content (doc);

return O;

Now: Find all occurrences of Dogbert speaking (attribute speaker of
element bubble) ...

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

75

DOM Example Code

dogbert.cc (1)

1 |// Xerces C++ DOM API support

2 #include <dom/DOM.hpp>

3 #include <parsers/DOMParser.hpp>

4

5 [void dogbert (DOM_Document d)

6

7 DOM_NodeList bubbles;

8 DOM_Node bubble, speaker;

9 DOM_NamedNodeMap attrs;

10

11 bubbles = d.getElementsByTagName ("bubble");

12

13 for (unsigned long i = 0; i < bubbles.getLength (); i++) {
14 bubble = bubbles.item (i);

15

16 attrs = bubble.getAttributes ();

17 if (attrs != 0)

18 if ((speaker = attrs.getNamedItem ("speaker")) != 0)
19 if (speaker.getNodeValue ().

20 compareString (DOMString ("Dogbert")) == 0)
21 cout << "Found Dogbert speaking." << endl;

22 }

23}

Marc H. Scholl (DBIS, Uni KN) XML and Databases

76

DOM Example Code

dogbert.cc (2)

24

25 |int main (void)

26

27 XMLPlatformUtils::Initialize ();
28

29 DOMParser parser;

30 DOM_Document doc;

31

32 parser.parse ("foo.xml");

33 doc = parser.getDocument ();
34

35 dogbert (doc);

36

37 return O;

38 [}

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

7

DOM—A Memory Bottleneck

@ The two-step processing approach ((I) parse and construct XML
tree, (@) respond to DOM property function calls) enables the DOM
to be “random access" :

The XML application may explore and update any portion of the
XML tree at any time.
@ The inherent memory hunger of the DOM may lead to
@ heavy swapping activity
(partly due to unpredictable memory access patterns, madvise() less
helpful)
or
@ even “out-of-memory” failures.
(The application has to be extremely careful with its own memory
management, the very least.)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 78

DOM—A Memory Bottleneck

Numbers

@ DOM and random node access

Even if the application touches a single element node only, the DOM API

has to maintain a data structure that represents the whole XML input
document (all sizes in kB):®

XML DOM process DSIZ Comment

XML size
size size DSIZ
7480 47476 6.3 (Shakespeare’s works) many elements con-
taining small text fragments
113904 552104 4.8 (Synthetic eBay data) elements containing

relatively large text fragments

5The random access nature of the DOM makes it hard to provide a truly “lazy”
APl implementation.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 79

DOM—A Memory Bottleneck

To remedy the memory hunger of DOM-based
processing . ..

@ Try to preprocess (i.e., filter) the input XML document to reduce
its overall size.

» Use an XPath/XSLT processor to preselect interesting document
regions,

> no updates to the input XML document are possible then,

> make sure the XPath/XSLT processor is not implemented on top
of the DOM.

Or
@ Use a completely different approach to XML processing (— SAX).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 80

Part V

SAX—Simple API for XML

Marc H. Scholl (DBIS, Uni KN) XML and Databases

R
Outline of this part

@ SAX Events
@® SAX Callbacks
@ SAX and the XML Tree Structure

@ SAX and Path Queries
@ Path Query Evaluation

@ Final Remarks on SAX

Marc H. Scholl (DBIS, Uni KN) XML and Databases

-
SAX—Simple API for XML

@ SAX’ (Simple API for XML) is, unlike DOM, not a W3C standard,
but has been developed jointly by members of the XML-DEV mailing
list (ca. 1998).

@ SAX processors use constant space, regardless of the XML input
document size.

» Communication between the SAX processor and the backend XML
application does not involve an intermediate tree data structure.

» Instead, the SAX parser sends events to the application whenever a
certain piece of XML text has been recognized (i.e., parsed).

» The backend acts on/ignores events by populating a callback
function table.

"http://www.saxproject.org/

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 83

http://www.saxproject.org/

|
Sketch of SAX's mode of operations

startElement! _ _ callback table
// ~ ~
4 - startElement ()
s _ ~Characters!
;-
7
SAX XML
<= i[]... L
[<I(e] el)] Parser Application

@ A SAX processor reads its input document sequentially and once
only.

@ No memory of what the parser has seen so far is retained while
parsing. As soon as a @ significant bit of XML text has been
recognized, an event is sent.

@ The application is able to act on events in parallel with the parsing

Progress.
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 84

SAX Events

@ To meet the constant memory space requirement, SAX reports
fine-grained parsing events for a document:

Event ...reported when seen Parameters sent
startDocument <?xml...?>8

endDocument (EOF)

startElement <t a1=vi...ap=Vp> t, (a1, v1), ..., (an, vn)
endElement </t> t

characters text content Unicode buffer ptr, length
comment <l--c-—-> c

processinglnstruction <7t pi?> t, pi

8N.B.: Event startDocument is sent even if the optional XML text declaration
should be missing.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 85

SAX Events

</bubble> *g
</bubbles> %7 *g

0w N O U W N

dilbert.xml
<?xml encoding="utf-8"7> x1
<bubbles> *»
<!-- Dilbert looks stunned --> *3

<bubble speaker="phb" to="dilbert"> x4
Tell the truth, but do it in your usual engineering way
so that no one understands you. *s

Event?® 10 Parameters sent
*1 startDocument
*2 startElement t = "bubbles"
*3 comment ¢ = "_Dilbert looks stunned."
x4 startElement t = "bubble", ("speaker","phb"), ("to","dilbert")
*5 characters buf = "Tell the...understands you.", len = 99
*6 endElement t = "bubble"
*7 endElement t = "bubbles"
*g endDocument
°Events are reported in document reading order 1, %2, ..., *s.

19N.B.: Some events suppressed (white space).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

86

SAX Callbacks

@ To provide an efficient and tight coupling between the SAX
frontend and the application backend, the SAX API employs
function callbacks:!!

@ Before parsing starts, the application registers function references in
a table in which each event has its own slot:

Event | Callback Event | Callback

startElement | startElement ()
endElement endElement ()

startElement

— 3
endElement 2 SAXregister (startElement,

startElement ())
SAXregister(endElement,
endElement ())

@ The application alone decides on the implementation of the functions
it registers with the SAX parser.

© Reporting an event *; then amounts to call the function (with
parameters) registered in the appropriate table slot.

1 Much like in event-based GUI libraries.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 87

SAX Callbacks

@ Java SAX API

In Java, populating the callback table is done via implementation of the
SAX ContentHandler interface: a ContentHandler object represents
the callback table, its methods (e.g., public void endDocument ())

represent the table slots.

Example: Reimplement content.cc shown earlier for DOM (find all XML

text nodes and print their content) using SAX (pseudo code):

content (File) print Text ((Unicode) buf, Int len)

// register the callback,

Int iI;
// we ignore all other events)
SAXregister (characters, print Text); foreach i € 1.../en do
SAXparse (f); | print (buf[i]);
return; return;

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

88

SAX and the XML Tree Structure

@ Looking closer, the order of SAX events reported for a document is
determined by a preorder traversal of its document treel?:

1 Doc g

Sample XML document =2 Elem*w @
*1
<a>4y b wg Elem,, +s Comment . Elem,,,-c
x3 fooxg *g :
<!--sample-—>xg :
<cok7 xg Text "sample" .z Elem,,,-d «;; Elems ;e
<d>xg barxg </d>x1g
<e>x11 bazxip </e>x13
</c>k14 "foo" *g Text x1o Text
x15 *16 :

Q00T U ks WN -

"bér" "baz"

N.B.: An Elem [Doc] node is associated with two SAX events, namely startElement

and endElement [startDocument, endDocument].

125equences of sibling Char nodes have been collapsed into a single Text node.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 89

SAX and XML Trees

Challenge
@ This left-first depth-first order of SAX events is well-defined, but
appears to make it hard to answer certain queries about an XML
document tree.

[l Collect all direct children nodes of an Elem node.

In the example on the previous slide, suppose your application has just
received the startElement(t = "a") event %, (i.e., the parser has just
parsed the opening element tag <a>).

With the remaining events x3 ... *1¢ still to arrive, can your code detect
all the immediate children of Elem node a (i.e., Elem nodes b and c as
well as the Comment node)?

v

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 90

SAX and XML Trees

The previous question can be answered more generally:

SAX events are sufficient to rebuild the complete XML document
tree inside the application. (Even if we most likely don’t want to.)

SAX-based tree rebuilding strategy (sketch):

@ [startDocument]
Initialize a stack S of node IDs (e.g. € Z). Push first ID for this node.

@ [startElement]
Assign a new ID for this node. Push the ID onto S.13

© [characters, comment, .. .]
Simply assign a new node ID.

© [endElement, endDocument]
Pop S (no new node created).

@ Invariant: The top of S holds the identifier of the current parent node.

131 callbacks @ and 3 we might wish to store further node details in a table or
similar summary data structure.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 91

SAX Callbacks

SAX callbacks to rebuild XML document tree:
@ We maintain a summary table of the form

ID || NodeType | Tag | Content | ParentlD

@ insert (id, type, t, c, pid) inserts a row into this table.

@ Maintain stack S of node IDs, with operations
push(id), pop(), top(), and empty().

startDocument ()

id + 0; endDocument ()
S.empty(); .

insert (id, Doc, 0, 0, 0): if::::()
S.push(id); '

return ;

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

SAX Callbacks

startElement (t, (a1, v1),...)

endElement (t)

id < id + 1;

insert (id, Elem, t, O, S.top()); S.pop();

S.push(id); return ;

return ;

characters (buf, len) comment (c)

id < id + 1; id < id + 1;

insert (id, Text, O, buf[1...len], S.top()); insert (id, Comment, O, c, S.top());
return ; return ;

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

93

SAX and XML Trees

@ Run against the example given above, we end up with the following
summary table:

ID || NodeType Tag Content ParentlD
0 Doc a O a
1 Elem a O 0
2 Elem b O 1
3 Text a "foo" 2
4 Comment O "sample" 1
5 Elem c O 1
6 Elem d O 5
7 Text O "bar" 6
8 Elem e O 5
9 Text O "baz" 8

@ Since XML defines tree structures only, the ParentlD column is all we
need to recover the complete node hierarchy of the input document.

[l Walking the XML node hierarchy?

Explain how we may use the summary table to find the (a) children, (b) siblings,
(c) ancestors, (d) descendants of a given node (identified by its ID).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 94

SAX and Path Queries

@ Path queries are the core language feature of virtually all XML
query languages proposed so far (e.g., XPath, XQuery, XSLT, ...).

@ To keep things simple for now, let a path query take one of two
forms (the t; represent tag names):

//ti/t/. . /ty or //ti/ta/. . /th—1/text ()

Semantics:
A path query selects a set of E/lem nodes [with text(): Text
nodes] from a given XML document:

@ The selected nodes have tag name t, [are Text nodes].

@ Selected nodes have a parent Elem node with tag name t,_;, which in
turn has a parent node with tag name t,_5, which ... has a parent
node with tag name t; (g?} not necessarily the document root
element).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 95

SAX and Path Queries Path Query Evaluation

Examples:

@ Retrieve all scene nodes from a DilbertML document:
//panels/panel/scene

@ Retrieve all character names from a DilbertML document:
//strip/characters/character/text ()

Path Query Evaluation

@ The summary table discussed in the previous section obviously
includes all necessary information to evaluate both types of path
queries.

[l Evaluating path queries using the materialized tree structure.

Sketch a summary table based algorithm that can evaluate a path query. (Use
//a/c/d/text () as an example.)

@ Note that, although based on SAX, such a path query evaluator
would probably consume as much memory as a DOM-based
implementation.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

96

Pl Quiy S
SAX-based path query evaluation (sketch):

@ Preparation:

Represent path query //t1/t2/.../ta—1/text () via the step array
path[0] = t1, path[1] = to, ..., path[n — 1] = text).

Maintain an array index i = 0...n, the current step in the path.
Maintain a stack S of index positions.

@ [startDocument]
Empty stack S. We start with the first step.

© [startElement]
If the current step’s tag name path[i] and the reported tag name match, proceed
to next step. Otherwise make a failure transition**. Remember how far we have
come already: push the current step / onto S.

© [endElement]
The parser ascended to a parent element. Resume path traversal from where we
have left earlier: pop old / from S.

@ [characters]
If the current step path[i] = text () we have found a match. Otherwise do
nothing.

v

%This “Knuth-Morris-Pratt failure function” fail[] is to be explained in the tutorial.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 97

SAX and Path Queries Path Query Evaluation

SAX-based path query evaluation (given step array path[0...n — 1]):
startElement (t, (ai, v1),...)

S.push(i);
while true do

if path[i] = t then
j < i+ 1; characters (buf, len
startDocument () L endElement (t) ()
e D = ”Ntl e”h - enarlement (L) if path[i] = text ()

' . * atc': * i« S.pop(); then N.B.:
S.empty(); i« fail[i]; return ; | *kMatchxk;
return ; break: return ;

if i =0 then
| break;
i« failli];
return ;

These SAX callbacks

@ evaluate a path query while we receive events (stream processing),
and

@ operate without building a summary data structure and can thus
evaluate path queries on documents of arbitrary size.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 98

SAX and Path Queries Path Query Evaluation

x; DOCy 4

«o Elemy g-a

Tracing SAX Events ... bwg E[em*5 *6 Comment 7 /em*l‘l. c

Is there a bound on the stack

) v« Text “sample" ., Elem.,,-d «;, Elem., ;e
depth we need during the
path query execution? "foo" *9 EeXt *12 EeXt
|lbjarll Ilbézll

Path Query (length n =4): //a/c/d/text()
path[0]=a, path[l]=c, path[2]=d, path[3]=text()

by startDocument() o startElement(t = a) [k3 startElement(t = b) b4 characters("foo™, 3)
i=0 i=1 i=0 i=0
S=000d S=m00d S =m0 S=@o0d
(ks endElement(b) [k comment("sample™) [<7 startElement(c) [vg startElement(d)
i=1 i=1 i=2 i=3
S=m00d S=Q0O00d S =m0 S =200
(kg characters("bar",3) (k10 endElement(d) fe11 startElement(e) [k12 characters("baz", 3)
i=3 i=2 i=0 i=0
S=[RA0h0 *Matchx | S=@EOO S =[RIb0 S =R
(k13 endElement(e) (<14 endElement(c) [c15 endElement(a) (k16 endDocument()
i=2 i=1 i=0
S=100 S=QO00 S=0000d

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

99

Final remarks on SAX

Final Remarks on SAX

@ For an XML document fragment shown on the left, SAX might
actually report the events indicated on the right:

XML fragment

XML + SAX events
1 <affiliation>x;

2 ATxo& 3T Labs

3 *4</affiliation>xs

<affiliation>
AT& T Labs
</affiliation>
*1
*2
*3
*4
*5

startElement(affiliation)
characters("\n__AT", 5)
characters("&", 1)
characters("T_Labs\n", 7)
endElement(affiliation)

White space is reported.

Multiple characters events may be sent for text content (although

adjacent).

(Often SAX parsers break text on entities, but may even report each character on

its own.)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 100

Part VI

Valid XML—DTDs

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Outline of this part
@ Valid XML

@ DTDs—Document Type Definitions
@ Element Declaration
@ Attribute Declaration
@ Crossreferencing via ID and IDREF
@ Other DTD Features
@ A “Real Life" DTD—GraphML
@ Concluding remarks on DTDs

@ XML Schema
@ Some XML Schema Constructs
@ Other XML Schema Concepts

@ Validating XML Documents Against DTDs
@ Regular Expressions
@ Evaluating Regular Expressions (Matching)
@ Plugging It All Together

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

102

Valid XML

@ More often than not, applications that operate on XML data require
the XML input data to conform to a specific XML dialect.

° @This requirement is more strict than just XML well-formedness.
@ The (hard-coded) application logic relies on, e.g.,
» the presence or absence of specifically named elements [attributes],
» the order of child elements within an enclosing element,
» attributes having exactly one of several expected values, . ..
@ If the input data fails to meet the requirements, results are often
disastrous.
Example: Transform element amount into attribute:
<bet gambler="doe"><amount>7</amount>...</bet>

l

<bet gambler="doe" amount="7">...</bet>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 103

Valid XML

© 0 N O U W N

R e R T T e
S © ® N O Uk W N~ O

21

Stumbling Code
$ java foo inmput.xml
Calculate gambling results.....
Exception in thread "main" java.lang.NumberFormat
at java.lang.Integer.parselnt(Integer.java:394)
at java.lang.Integer.parselnt(Integer.java:476)
at foo.getResult(foo.java:169)
at foo.main(foo.java:214)

$ java bar input. xml

Exception in thread "main" java.lang.NullPointerException
at bar.printGamblers(bar.java:186)
at bar.main(bar.java:52)

$ java baz input.xml
Gambler John Doe lost O.

Gambler Johnny Average lost O.
Gambler Betty Bet lost O.
Gambler Linda Loser lost O.
Gambler Robert Johnson lost O.

s

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

104

DTDs—Document Type Definitions

@ The XML Recommendation®® includes technology that enables
applications to rigidly specify the XML dialect (the document type)
they expect to see: DTD s (Document Type Definitions).

@ XML parsers use the DTD to ensure that input data is not only
well-formed but also conforms to the DTD (XML speak: input data
is valid).

@ Valid XML documents <C Well-formed XML documents

@ Document validation is critical, if
» distinct organizations (B2B) need to share XML data: also share the
DTDs,
» applications need to discover and explore yet unknown XML dialects,
> high-speed XML throughput is required (once the input is validated,
we can abandon a lot of runtime checks).

Yhttp://www.w3. org/TR/REC-xml

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 105

http://www.w3.org/TR/REC-xml

DTDs—Document Type Definitions

@ A document’s DTD is directly attached to its XML text using a

DOCTYPE declaration:
DOCTYPE Declaration

1 <?7xml version="1.0"7>
2 <!DOCTYPE t d. di>

3 <t>

4 -

5 </t>

» The DOCTYPE declaration follows the text declaration (<?xml...?7>)
(comments <!--...-->, processing instructions <?...7> in between are OK).

» The first parameter t of the DOCTYPE declaration is required to match
the document’s root element tag.

» The document type definition itself consists of an external subset
(de = SYSTEM "uri,) as well as an internal subset (di=[...1), i.e,
embedded in the document itself).

» Both subsets are optional. Should clashes occur, declarations in the
internal subset override those in the external subset.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 106

DTDs—Document Type Definitions Element Declaration

Example:

<IDOCTYPE strip
SYSTEM "file://DilbertML.dtd" [<!ENTITY phb "Pointy-Haired Boss">] >

external subset internal subset

The ELEMENT Declaration
@ The DTD ELEMENT declaration, in some sense, defines the
vocabulary available in an XML dialect.
@ Any XML element t to be used in the dialect needs to be introduced
via
<!ELEMENT t cm>

» The content model cm of the element defines which element
content is considered valid.

» Whenever an application encounters a t element g% anywhere in a
valid document, it may assume that t's content conforms to cm.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 107

DTDs—Document Type Definitions Element Declaration

Content model

Valid content

ANY
EMPTY

regular expression over
tag names, #PCDATA, and
constructors ,, |, +, *, ?

arbitrary well-formed XML content
no child elements allowed (attributes OK)

order and occurrence of child elements and text
content must match the regular expression

N.B.

@ A DTD with <!'ELEMENT t ANY > gives the application no clue
about t's content. Use judiciously.

@ A <IELEMENT t EMPTY > forbids any content for t elements.
Example: (X)HTML img, br tags:

XHTML 1.0 Strict DTD

1 <!ELEMENT img EMPTY>

3 <!ELEMENT br EMPTY>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

108

DTDs—Document Type Definitions Element Declaration

@ Regular expression content models provide control over the exact
order and occurence of children nodes below an element node:

Reg. exp. Semantics

t (tag name) child element with tag t

#PCDATA text content (parsed character data)
c ., & c; followed by ¢

al e c1 or, alternatively, ¢

c+ ¢, one or more times

C* ¢, zero or more times

c? optional ¢

Example (DilbertML):

DilbertML.dtd
<!ELEMENT panel (scene, bubbles*) >
<!ELEMENT scene (#PCDATA) >

<!ELEMENT bubbles (bubble+) >
<!ELEMENT bubble (#PCDATA) >

W N

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

109

DTDs—Document Type Definitions Element Declaration

Example (modify bubble element so that we can use <loud>...</loud>
and <whisper>...</whisper> to markup speech more accurately):

<bubble>E-mail <loud>two copies</loud> to me when you’re done.</bubble>

DilbertML.dtd
<!ELEMENT panel (scene, bubblesx) >
<!ELEMENT scene (#PCDATA) >
<!ELEMENT bubbles (bubble+) >
<!ELEMENT bubble (#PCDATA | loud | whisper)* >
<!ELEMENT loud (#PCDATA) >

<!ELEMENT whisper (#PCDATA) >

Qe W N =

@ Element bubble is said to allow mixed content (text and element
nodes), while panel and bubbles allow element content only.
Elements scene, loud, whisper have text content.

@ DTD restriction:
The above example shows the only acceptable placements of
#PCDATA in content models.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 110

DTDs—Document Type Definitions Element Declaration

T W N =

@Element Content vs. Mixed Content

Element bubbles has element content: an XML parser will not report
white space contained in a bubbles element to its underlying application.

Element bubble has mixed content: white space (#PCDATA) is regarded
essential and thus reported to the appliation.

Dilbert.xml

<bubbles> 2

——<bubble> 2

w<loud>No coffee</loud> 2
——.no research ... 2
-.</bubble> 2

</bubbles>

SAX events

startElement (t ="bubbles")
startElement (t ="bubble")
characters (buf = "___2", len = 4)
startElement (t ="loud")

endElement (t ="bubble")
endElement (t ="bubbles")

Marc H. Scholl (DBIS, Uni KN)

Winter 2005/06 111

Ex.: DTD and valid XML encoding academic titles

Academic.xml

1 <?7xml version="1.0"7>

2 <IDOCTYPE academic [

3 <!ELEMENT academic (Prof?, (Dr, (rernat|emer|phil)*)?,
4 Firstname, Middlename*, Lastname) >
5 <!ELEMENT Prof EMPTY >

6 <!ELEMENT Dr EMPTY >

7 <!ELEMENT rernat EMPTY >

8 <!ELEMENT emer EMPTY >

9 <!ELEMENT phil EMPTY >

10 <IELEMENT Firstname (#PCDATA) >

11 <!ELEMENT Middlename (#PCDATA) >

12 <!ELEMENT Lastname (#PCDATA) >

13 1>

14

15 <academic>

16 <Prof/> <Dr/> <emer/>

17 <Firstname>Don</Firstname>

18 <Middlename>E</Middlename>

19 <Lastname>Knuth</Lastname>

20 </academic>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

112

DTDs—Document Type Definitions Attribute Declaration

The ATTLIST Declaration

@ Using the DTD ATTLIST declaration, validation of XML documents

is extended to attributes.

@ The ATTLIST declaration associates a list of attribute names a; with
their owning element named t:

<VATTLIST t
ai T di

an Tn dn

[2 R

ATTLIST Declaration

» The attribute types 7; define which values are valid for attribute a;.

» The defaults d; indicate if a; is required or optional (and, if absent, if

a default value should

» In XML, the attributes of an element are unordered. The ATTLIST
declaration prescribes no order of attribute usage.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

be assumed for a;).

Winter 2005/06

113

DTDs—Document Type Definitions Attribute Declaration

@ Via attribute types, control over the valid attribute values can be
exercised:

Attribute Type 7, Semantics

CDATA character data (no <, but &1t;, ...)
vilval. . lvm) enumerated literal values
ID value is document-wide unique identifier for owner
element
IDREF references an element via its ID attribute
Example:

Academic.xml (fragment)

1 <IELEMENT academic (Firstname, Middlename*, Lastname) >
2 <IATTLIST academic

3 title (Prof|Dr) #REQUIRED

4 type CDATA #IMPLIED >

5 >

6

7 <academic title="Dr" type="rer.nat."> ... </academic>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 114

@ Attribute defaulting in DTDs:

Attribute Default d; Semantics

#REQUIRED element must have attribute a;
#IMPLIED attribute a; is optional
v (a value) attribute a; is optional, if absent, default value v
for a; is assumed
#FIXED v attribute a; is optional, if present, must have value
v
Example:

DilbertML.dtd (fragment)

<!DOCTYPE strip [

<IELEMENT characters (character+) >
<IATTLIST characters
alphabetical (yes|no) "no" > <!-- play safe -—>
<!ELEMENT character (#PCDATA) >
1>

N O Uk W N =

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

115

Skl e Ui O it e
Crossreferencing via ID and IDREF

@ Well-formed XML documents essentially describe tree-structured
data.

@ Attributes of type ID and IDREF may be used to encode graph
structures in XML. A validating XML parser can check such a graph
encoding for consistent connectivity.

@ To establish a directed edge between two XML document nodes

nodes a and b
a—— T*p

@ attach a unique identifier to node b (using an ID attribute), then
@ refer to b from a via this identifier (using an IDREF attribute),
© for an outdegree > 1 (see below), use an IDREFS attribute.

a— b

S

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 116

DTDs—Document Type Definitions Crossreferencing via ID and IDREF

Graph.xml
1 <?xml version="1.0"7>
2 <IDOCTYPE graph [
3 <!ELEMENT graph (node+) >
4 <!ELEMENT node ANY > <!-- attach arbitrary data to a node -->
5 <!ATTLIST node
6 id ID #REQUIRED
7 edges IDREFS #IMPLIED > <!-- we may have nodes with outdegree 0 -->
8 1>
9
10 <graph>
11 <node id="A">a</node>
12 <node id="B" edges="A C">b</node>
13 <node id="C" edges="D">c</node>
14 <node id="D">d</node>
15 <node id="E" edges="D D">e</node>
16 </graph>

Doc

T —~ ~ —

Marc H. Scholl (DBIS, Uni KN) XML and Databases

117

Example (Character references in DilbertML)

<IDOCTYPE strip [

id D
<!ELEMENT bubble
<!ATTLIST bubble

speaker IDREF

to IDREFS

© 000 N O U s W N

o
o

1>

=
=

DilbertML.dtd (fragment)

<IELEMENT character (#PCDATA) >
<IATTLIST character

#REQUIRED >
(#PCDATA) >

#REQUIRED
#IMPLIED

tone (angrylquestion|...) #IMPLIED >

Validation results (messages generated by Apache’s Xerces):

@ Setting attribute to to some random non-existent character identifier:
ID attribute ’yoda’ was referenced but never declared

@ Using a non-enumerated value for attribute tone:
Attribute ’tone’ does not match its defined enumeration list

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

118

DTDs—Documel pe Definitions Crossreferencing via ID and IDREF

DilbertML.dtd

1 [<'DOCTYPE strip [
2 <1ELEMENT strip (prolog, panels) >
3 <IATTLIST strip copyright CDATA #IMPLIED
4 year CDATA #IMPLIED >
5
6 <!ELEMENT prolog (series, author, characters) >
7
8 <!ELEMENT series (#PCDATA) >
9 <!ATTLIST series href CDATA #IMPLIED >
10
11 <!ELEMENT author (#PCDATA) >
12
13 <!ELEMENT characters (character+) >
14 <IATTLIST characters alphabetical (yes|no) ’no’ >
15
16 <IELEMENT character (#PCDATA) >
17 <IATTLIST character id ID #REQUIRED >
18
19 <!ELEMENT panels (panel+) >
20 <!ATTLIST panels length CDATA #IMPLIED >
21
22 <1ELEMENT panel (scene, bubbles*) >
23 <!ATTLIST panel no CDATA #IMPLIED >
24
25 <1ELEMENT scene (#PCDATA) >
26 <!ATTLIST scene visible IDREFS #IMPLIED >
27
28 <!ELEMENT bubbles (bubble+) >
29
30 <!ELEMENT bubble (#PCDATA) >
31 <!ATTLIST bubble speaker IDREF #REQUIRED
32 to IDREFS #IMPLIED
33 tone (question|angry|screaming) #IMPLIED >
34 >

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Other DTD Features
Other DTD features

@ User-defined entities via <!ENTITY e d> declarations (usage: &e;)
<!ENTITY phb "The Pointy-Haired Boss">

@ Parameter entities (“DTD macros”) via <!ENTITY % e d> (usage: %e;)

<IENTITY ident "ID #REQUIRED">

<IATTLIST character
id %ident; >

@ Conditional sections in DTDs via <! [INCLUDE[...]]> and
<![IGNORE[...]]>

<!ENTITY % withCharacterIDs "INCLUDE" >
<ITATTLIST bubble
<! [%withCharacterIDs;
speaker Jident;
to Y%ident;
11>
tone (angrylquestion|...) #IMPLIED >

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 120

DTDs—Document Type Definitions A “Real Life” DTD—GraphML

A “Real Life” DTD—GraphML

@ GraphML® has been designed to provide a powerful and easy-to-use
file format to represent arbitrary graphs.
@ Graphs (element graph) are specified as lists of nodes and edges.
Edges point from source to target.

@ Nodes and edges may be annotated using arbitrary descriptions and

data.

© Edges may be directed (and attribute edgedefault of graph).
© Edges may be attached to nodes at specific ports (north, west, ...).

Example:

[<graphml>

<node id="n1"/>
<node id="n2"/>
<node id="n3"/>

</graph>
[</graphml>

OO0 UEWN -

[un

GraphML.xml

<graph edgedefault="undirected">

<edge id="el" source="nl" target="n2" directed="true"/>
<edge id="e2" source="n2" target="n3" directed="false"/>
<edge id="e3" source="n3" target="n1"/>

Yhttp: //www.graphdrawing. org/

Marc H. Scholl (DBIS, Uni KN) XML and Databases

n
7N
n n3
~
&

Winter 2005/06

121

http://www.graphdrawing.org/

DTDs—Document Type Definitions A “Real Life” DTD—GraphML

GraphML.dtd

1 <!-- -=>
2 |<!-— GRAPHML DTD (flat version) -—>
3 K!-- file: graphml.dtd

4

5 SYSTEM "http://www.graphdrawing.org/dtds/graphml.dtd"

6

7 xmlns="http://www.graphdrawing.org/xmlns/graphml"

8 (consider these urls as examples)

9

10 -=>
11

12

13 <! >

14 K!--elements of GRAPHML-->

15 <! >

16

17

18 KK!ELEMENT graphml ((desc)?, (key)*, ((data)|(graph))*)>

19

20

21 [<K!ELEMENT locator EMPTY>

22 K!ATTLIST locator

23 xmlns:xlink CDATA #FIXED

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

DTDs—Document Type Definitions A “Real Life” DTD—GraphML

24 "http://www.w3.org/TR/2000/PR-x1ink-20001220/"
25 xlink:href CDATA #REQUIRED

26 xlink:type (simple) #FIXED "simple"

27 >

28

29 KI!ELEMENT desc (#PCDATA)>

30

31

32 |<!ELEMENT graph ((desc)?, ((((data) | (node) |

33 (edge) | (hyperedge))*) | (Locator)))>
34 |K'ATTLIST graph

35 id ID #IMPLIED

36 edgedefault (directed|undirected) #REQUIRED

37 >

38

39 [<!ELEMENT node (desc?, (((datalport)*,graph?)|locator))>
40 KK!'ATTLIST node

41 id ID #REQUIRED

42 >

43

44 |K!ELEMENT port ((desc)?,((data)|(port))x*)>

45 <!ATTLIST port

46 name NMTOKEN #REQUIRED

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

DTDs—Document Type Definitions A “Real Life” DTD—GraphML

50 [K!ELEMENT edge ((desc)?,(data)*, (graph)?)>
51 <!ATTLIST edge

52 id D #IMPLIED
53 source IDREF #REQUIRED
54 sourceport NMTOKEN #IMPLIED
55 target IDREF #REQUIRED
56 targetport NMTOKEN #IMPLIED
57 directed (true|false) #IMPLIED
58 >

59

60

61 |<!ELEMENT hyperedge ((desc)?,((data)|(endpoint))#*, (graph)?)>

62 |<IATTLIST hyperedge
63 id D #IMPLIED

66 |<!ELEMENT endpoint ((desc)?)>

67 |<!'ATTLIST endpoint

68 id ID #IMPLIED
69 node IDREF #REQUIRED

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

124

DTDs—Document Type Definitions A “Real Life” DTD—GraphML

70 port NMTOKEN #IMPLIED
71 type (inlout|undir) "undir"
72 >

73

74

75 |K!ELEMENT key (#PCDATA)>
76 |[<IATTLIST key

7 id ID #REQUIRED
78 for (graphl|nodel|edgelhyperedge|port|endpoint|all) "all"

79 >

80

81 [<!ELEMENT data (#PCDATA)>

82 |K!ATTLIST data

83 key IDREF #REQUIRED
84 id ID #IMPLIED

87 <!
88 end of graphml.dtd

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

125

Concluding remarks on DTDs
XMLns: XML name spaces

@ ... provide a means of importing a couple of predefined element and
attribute declarations (from different DTDs),
@ are used to resolve name clashes when importing several DTDs

@ are declared as an attribute of the top-level document element:

Name space declaration
1 | <elementname xmlns:name_space_ID = "name_space_URI">

For example:
~ Importing several DTD (name spaces)
1 <touristinformation
xmlns:hotelinfo="http://www.hotels.de"
xmlns:eventinfo="http://www.events.de">
<hotelinfo:ort>Konstanz</hotelinfo:ort>
<eventinfo:ort>Zuerich</eventinfo:ort>

N

D ot e W

</touristinformation>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 126

DTDs—Document Type Definitions Concluding remarks on DTDs

Concluding remarks

@ DTD syntax:

Pro: compact, easy to understand
Con: not in XML

@ DTD functionality:
» no distinguishable types (everything is character data)
» no further value constraints (e.g., cardinality of sequences)
» no built-in scoping (but: use XMLns for name spaces)
o From a database perspective, DTDs are a poor schema
definition language. (but: see XMLSchema below. . .)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

127

XML Schema

@ With XML Schema!’, the W3C provides a schema description
language for XML documents that goes way beyond the capabilities
of the “native” DTD concept.

Specifically:

@ XML Schema descriptions are valid XML documents themselves.

@ XML Schema provides a rich set of built-in data types.
(Modelled after the SQL and Java type systems.)

© Far-reaching control over the values a data type can assume
(facets).

© Users can extend this type system via user-defined types.

@ XML element (and attribute) types may even be derived by
inheritance.

[0 XML Schema vs. DTDs

Ad @): Why would you consider this an advantage?
Ad @: What are the data types supported by DTDs?

Yhttp://www.w3.org/TR/xmlschema-0/

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 128

http://www.w3.org/TR/xmlschema-0/

Some XML Schema Constructs
Some XML Schema Constructs

Declaring an element
@1 ‘<xsd:element name="author"/> ‘

No further typing specified: the author element may contain string

values only.
Declaring an element with bounded occurence

@1 <xsd:element name="character" minOccurs="0" maxOccurs="unbound%d"/>

Absence of minOccurs/max0ccurs implies exactly once.
Declaring a typed element
1 ‘<xsd:element name="year" type="xsd:date"/>

Content of year takes the format YYYY-MM-DD. Other simple types:
string, boolean, number, float, duration, time, base64Binary,
AnyURI, ...

@ Simple types are considered atomic with respect to XML Schema (e.g.,
the YYYY part of an xsd:date value has to be extracted by the XML
application itself).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 129

XML Schema Some XML Schema Constructs

@ Non-atomic complex types are built from simple types using type

constructors.
Declaring sequenced content

1 <xsd:complexType name="Characters">

2 <xsd:sequence>

3 <xsd:element name="character" minOccurs="1" maxOccurs="unbounded" /P>
4 </xsd:sequence>

5 </xsd:complexType>

6 <xsd:complexType name="Prolog">

7 <xsd:sequence>

8 <xsd:element name="series"/>

9 <xsd:element name="author"/>
10 <xsd:element name="characters" type="Characters"/>
11 </xsd:sequence>
12 </xsd:complexType>
13 <xsd:element name="prolog" type="Prolog"/>

An xsd:complexType may be used anonymously (no name
attribute).

@ With attribute mixed="true", an xsd:complexType admits mixed
content.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 130

XML Schema Some XML Schema Constructs

@ New complex types may be derived from an existing (base) type.

Deriving a new complex type
<xsd:element name="newprolog">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="Prolog">
<xsd:element name="colored" type="xsd:boolean"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

© 00 N O U RE W NN

@ Attributes are declared within their owner element.
Declaring attributes

<xsd:element name="strip">

<xsd:attribute name="copyright"/>

<xsd:attribute name="year" type="xsd:gYear"/> ...
</xsd:element>

[N

Other xsd:attribute modifiers: use (required, optional,
prohibited), fixed, default.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

XML Schema Some XML Schema Constructs

@ The validation of an XML document against an XML Schema

declaration goes as far as peeking into the lexical representation of

simple typed values.

N OO e W N

N OOt R W N =

Restricting the value space of a simple type (enumeration)
<xsd:simpleType name="Tone">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="question"/>
<xsd:enumeration value="angry"/>
<xsd:enumeration value="screaming"/>

</xsd:restriction>
</xsd:simpleType>

— Restricting the value space of a simple type (regular expression) ___
<xsd:simpleType name="AreaCode">
<xsd:restriction base="xsd:string">
<xsd:pattern value="0[0-9]+"/>
<xsd:minLength value="3"/>
<xsd:maxLength value="5"/>
</xsd:restriction>
</xsd:simpleType>

@ Other facets: length, maxInclusive, minExclusive, ...

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

132

Other XML Schema Concepts

@ Fixed and default element content,
@ support for null values,

@ uniqueness constraints, arbitrary keys (specified via XPath), local
keys, key references, and referential integrity,

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 133

Validating XML Documents Against DTDs
@ To validate against this DTD ...

DTD featuring regular expression (RE) content models
<IDOCTYPE a [

<!ELEMENT a (b, c*, a?)>

<!ELEMENT b (#PCDATA) >

<!ELEMENT c (d, d+) >

<!ELEMENT d (#PCDATA) >
1>

[N

... means to check that the sequence of child nodes for each
element matches its RE content model:

Text Text Text Text Text Text

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 134

Validating XML Documents Against DTDs

@ When, during RE matching, we encounter a child element t, we need
to recursively check t’s content model cm(t) in the same fashion:

[S __ |
NI T
L Text d d d- 4 d b
Ti—l l_f‘—l I—i—l I—i—l I—f—l = O
Jlext, | Text; | Text, | Text; Text; | Text,
cm(a) = b,c*a?
cm(b) = #PCDATA
cm(c) = d,dt
cm(d) = #PCDATA

0 SAX and DTD validation?
© Can we use SAX to drive this validation (= RE matching) process?

@ If so, which SAX events do we need to catch to implement this?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 135

Validating XML Documents Against DTDs Regular Expressions

Regular Expressions

@ To provide adequate support for SAX-based XML validation, we
assume REs of the following structure:

RE = 0 matches nothing
| € matches empty sequence of SAX events
| #PCDATA matches characters(-)
| t matches startElement(t, -)
| RE,RE concatenation
| RET one-or-more repetitions
| RE* zero-or-more repetitions
| RE? option
| RE|RE alternative
| (RE)

° @ 0 and € are not the same thing.
@ In the startElement(t, -) callback we can process <!ATTLIST t...>
declarations (not dicsussed here).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 136

Validating XML Documents Against DTDs Regular Expressions

@ Associated with each RE is the regular language L(RE) (here: sets
of sequences of SAX events) this RE accepts:

L(0)

L(e)

L (#PCDATA)
L(t)

L(RE:, RE>)
L(REY)

L(RE*)

L(RE?)
L(RE1 | RE2)

0

{e}

{characters(-)}
{startElement(t,-)}'8

{s152 | s1 € L(RE1), s2 € L(RE2)}
_001 L(RE)

Ej L(RE")
i=0
{e} UL(RE)

L(RE1) U L(RE>)

@ N.B.: RE° =¢ and RE'=RE,RE'1.

18To save trees, we will abbreviate this as {t} from now on.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

137

Validating XML Documents Against DTDs Regular Expressions
Example

@ Which sequence of SAX events is matched by the RE #PCDATA | b*?

L (#PCDATA | b*)
= L(#PCDATA) U L(b*)
= L(#PCDATA) U (U=, L(b")
= L(#PCDATA) U L(¥°) U U, L(b")
= L(#PCDATA) U L(¥°) U L(b") U U2, L(b)
= L(#PCDATA) U L(b°) U L(b") U L(b%) U U, L(b)

= L(#PCDATA) U L(g) U L(b) U L(b,b') U ...

= L(#PCDATA) U L(e) U L(b) U {s152 | s1 € L(b),s2 € L(®)} U ...

= {characters(-),e,b,bb,...}

O L(d,dt) = 7

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

138

Evaluating Regular Expressions (Matching)
Evaluating Regular Expressions (Matching)

@ Now that we are this far, we know that matching a sequence of SAX
events s against the content model of element t means to carry out
the test

?
se L(cm(t)) .
@ L(cm(t)), however, might be infinite or otherwise too costly to
construct inside our DTD validator.

@ We thus follow a different path that avoids to enumerate L(cm(t))
at all.

@ Instead, we will use the derivative s\RE of RE with respect to
input event s:

L(s\RE) = {s'|ss’'e€L(RE)}

“s\RE matches everything matched by RE, with head s cut off.”

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 139

Validating XML Documents Against DTDs Evaluating Regular Expressions (Matching)

@ We can use the derivate operator \ to develop a simple RE
matching procedure.

Suppose we are to match the SAX event sequence s;s,s3 against RE:

515253 € L(RE) s15:53€ € L(RE)
sys3€ € L(s1\RE)
s3€ € L (s5\(s1\RE))

e € L(s3\(s2\(s1\RE))) .

T ¢ e

@ We thus have solved our matching problem if
@ we can efficiently test for e-containment for a given RE,
and

@ we are able to compute L(s\RE) for any given input event s and any
RE.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 140

Validating XML Documents Against DTDs Evaluating Regular Expressions (Matching)

0 Ad (1): Testing for €'s presence in a regular language.
Define a predicate (boolean function) nullable(RE) such that

nullable(RE) < €€ L(RE) .

nullable(D)
nullable(e) = true
nullable(#PCDATA)
nullable(t) =
nullable(RE1, REZ) =
nullable(RE™) =
nullable(RE*) =
nullable(RE?) =
nullable(RE; | RE>)

false

false

v

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 141

Validating XML Documents Against DTDs Evaluating Regular Expressions (Matching)
Example

Does L(#PCDATA | b*) contain the empty SAX event sequence €7

nullable(#PCDATA | b*) = nullable(#PCDATA) V nullable(b*)
= falseV true
= true .

O nullable(Prof?,Dr, (rernat | emer | phil)™) = 7

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

142

Validating XML Documents Against DTDs Evaluating Regular Expressions (Matching)

Ad @: Note that the derivative s\ is an operator on REs (to REs). We define
it like follows and justify this definition on the next slides.

s\0 = 0
s\e = 0

€ if s = characters(-)
s\#PCDATA

=

otherwise

™

if s = startElement(t,-) //% recursively match cm(t)

s\t B {(0 otherwise

S\(RE1, RE») E(s\REl), RE>) | (s\RE2) if nullable(RE?)

s\RE1), RE> otherwise
S\RE* = (s\RE), RE*
s\RE* = (s\RE), RE"
s\RE? = s\RE
S\(RE1 | REz) = (s\RE1) | (s\RE2)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 143

Evaluating Regular Expressions (Matching)
Correctness: Case Analysis |

To assess the correctness of this derivative construction s\RE = RE’ we
can systematically check all 9 cases for language equivalence, i.e.

L(s\RE) = L(RE") .
Q RE=0:

L(s\0) = {s'|ss’ eL(D)}
= {s'|ss' €0}
=0
= L(0).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 144

Evaluating Regular Expressions (Matching)
Correctness: Case Analysis |l

Q RE=¢:

L(s\e) {s'|ss’" € L(e)}

= {s'|ss'e{e}}
0

= L(0).

© RE = #PCDATA, s = characters(-):

L(characters(-)\#PCDATA) = {s’| characters(-)s’ € L(#PCDATA)}

= {s'| characters(-) s’ € {characters(-)}}

= {e}
= L(e).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 145

Validating XML Documents Against DTDs Evaluating Regular Expressions (Matching)

Correctness: Case Analysis ||
RE = #PCDATA, s # characters(-):

L(s\#PCDATA) = {s'|ss € L(#PCDATA)}
{s'| ss’ € {characters(-)}}
= 0

L(0).

© RE =t. Analogous to (3).
@ RE = RE., RE>, nullable(RE;) = false:

L(s\(RE1, RER))

{Sl | ss S L(REl, REQ)}
{s'|s" € L((s\RE1), RE2)}
L((S\REl), REz)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

146

Evaluating Regular Expressions (Matching)
Correctness: Case Analysis |V

RE = RE;, RE>, nullable(RE;) = true:

L(s\(RE1, RE2))

{s' | ss’ € L(RE1, RE>)}

= {s'|ss’e€ L(REy) V ss’' € L(RE1, REy)}

= {s'|s' € L(s\RE2) v s’ € L((s\RE1), RE2)}

= {s'|s"e L(s\REz)} U {s' | s’ € L((s\RE1), RE2)}
= L(s\REz) U L((s\RE1), RE>)

— L((s\RE>) | ((5\RE:), RE2)).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 147

Evaluating Regular Expressions (Matching)
Correctness: Case Analysis V

Q RE = RE, | RE»:

L(s\(RE1 | RE2)) = {s'|ss' € L(RE1|RE)}
= {s'|ss' € L(RE1)UL(RE>)}
= {s'|ss’e L(RE1)} U {s'|ss' € L(REy)}
= {s'|seLl(s\RE1)} U{s'|s €L(s\REx)}
= L(s\RE1) U L(s\RE>)
— L((5\RE1) | (5\RE2)).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 148

Validating XML Documents Against DTDs Evaluating Regular Expressions (Matching)

Correctness: Case Analysis VI
@ RE = RE*, nullable(RE) = false:

L(s\RE*)

L(s\(e | (RE, RE™)))
= L(s\e) U L(s\(RE,RE"))
= L(s\(RE,RE"))
= L((s\RE), RE*).
RE = RE*, nullable(RE) = true:
L(s\RE*)

L(s\(e | (RE, RE™)))

= L((s\e) | (s\(RE,RE™)))

= L(0|(s\(RE,RE™)))

= L(s\(RE, RE*))

— L((s\RE") | ((s\RE), RE"))
= L(s\RE*) U L((s\RE), RE¥)

= L((s\RE), RE*).
——E

149

Correctness: Case Analysis VII

@ RE = RE™. Follows from RE* = RE | RE, RE*.
@ RE = RE?. Follows from RE? =¢ | RE.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Validating XML Documents Against DTDs Evaluating Regular Expressions (Matching)

[l Matching SAX events against an RE

Assume the RE content model b,c*,a? is to be matched against the SAX
events bcca.t?

To validate,
@ construct the corresponding derivative RE' = a\ (c \ (c \ (b \(b,c*,a?)))),
@ then test nullable(RE").

Hint: To simplify phase (), use the following laws, valid for REs in general:

e* = ¢ e, RE = RE
0 = ¢ 0,RE = 0
et = ¢ RE,e = RE
0t = 0 RE,0 = 0
e? = ¢ 0|RE = RE
0? € RE|0 = RE

9 Actual event sequence:
startElement(b,-), startElement(c,-), startElement(c,-), startElement(a,-).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 151

Validating XML Documents Against DTDs Plugging It All Together

Plugging It All Together

The following SAX callbacks use the aforementioned RE matching techniques to
(partially) implement DTD validation while parsing the input XML document:

The input DTD (declaring the content models cm(+)) is

<IDOCTYPE r [... 1>
startDocument () startElement(t, -) gnaflement(t)
- RE « t\RE; if nullable(RE) then
S.empty(); S push(RE): | RE < S.pop();
RE <+ cm(r); R.E - cm(t')' else
return ; ! L % FAIL %;
return ; .
characters(-) return ;
#PCDATA\RE; * OK %:
return ;

N.B. Stack S is used to suspend [resume] the RE matching for a specific
element node whenever SAX descends [ascends] the XML document tree.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 152

Part VII

Querying XML—The XQuery Data Model

Marc H. Scholl (DBIS, Uni KN) XML and Databases

N
Outline of this part

@ Querying XML Documents
@ Overview

€@ The XQuery Data Model
@ The XQuery Type System
@ Node Properties
@ Items and Sequences
@ Atomic Types
@ Automatic Type Assignment (Atomization)
@ Node Types
@ Node |dentity
@ Document Order

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 154

Dzl
Querying XML Documents

@ "“Querying XML data” essentially means to

identify (or address) nodes,

to test certain further properties of these nodes,

then to operate on the matches,

and finally, to construct result XML documents as answers.

@ In the XML context, the language XQuery plays the role that SQL
has in relational databases.

v VvV v v

@ XQuery can express all of the above constituents of XML querying:
» XPath, as an embedded sublanguage, expresses the locate and test
parts;
» XQuery can then iterate over selected parts, operate on and construct
answers from these.
» There are more XML languages that make use of XPath as embedded
sublanguages.

@ We will first look into the (XML-based) data model used by XQuery
and XPath ...

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 155

Querying XML Documents Overview

Motivating example
Recall DilbertML and the comic strip finder:

@ “Find all bubbles with Wally being angry with Dilbert.”
Query: Starting from the root, locate all bubble elements
somewhere below the panel element. Select those bubble
elements with attributes @tone = "angry", @speaker =
"Wally", and @to = "Dilbert".

@ “Find all strips featuring Dogbert.”

Query: Starting from the root, step down to the element
prolog, then take a step down to element characters. Inside
the latter, step down to all character elements and check for
contents being equal to Dogbert.

Note the locate, then test pattern in both queries.
@ An XML parser (with DOM/SAX backend) is all we need to
implement such queries.
= Tedious! <«

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

156

Overview
XPath as an embedded sublanguage

@ XPath?? is a declarative, expression-based language to locate and
test doc nodes (with lots of syntactic sugar to make querying
sufficiently sweet).

@ Addressing document nodes is a core task in the XML world.
XPath occurs as an embedded sub-language in

» XSLT?! (extract and transform XML document [fragments] into
XML, XHTML, PDF, ...)

> XQuery?? (compute with XML document nodes and contents,
compute new docs, ...)

» XPointer?® (representation of the address of one or more doc nodes
in a given XML document)

Dhttp://wuw.w3.org/TR/xpath20/
2http://wuw.w3.org/TR/xslt/
2http://wuw.w3.org/TR/xquery/
Bhttp://www.w3.org/TR/xptr/

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 157

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xslt/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xptr/

XQuery Type System
The XQuery Data Model

Like for any other database query language, before we talk about the
operators of the language, we have to specify exactly what it is that
these operate on . ..
@ XQuery (and the other languages) use an abstract view of the XML
data, the so-called XQuery data model.

Data Model (DM)

The XQuery DM determines which aspects of an XML document may be
inspected and manipulated by an XQuery query.

@ What exactly should the XQuery DM look like...?
@ A simple sequence of characters or other lexical tokens certainly
seems inappropriate (too fine-grained)!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 158

XQuery data model (1)

[l Which aspects of XML data are relevant to queries?

<x>Symbols like & and <! [CDATA[<]]> can be
tricky in XML.</x>

@ What is an adequate representation of XML element x?

DOM style. .. ?

P

n
text("Symbols ™ i(ngn) text(" and ") cdata("<")

like ")

text(" can be
tricky in XML.")

@ Faithfully preserves entities and CDATA sections, paying the price of
creating more DM nodes during parsing.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 159

XQuery data model (2)

[0 Which aspects of XML data are relevant to queries?

<x>Symbols like & and <! [CDATA[<]]> can be
tricky in XML.</x>

XQuery style. . .
@ Do not distinguish between

O exssmuosousassunscanszcosce 52 ordinary text, entities, and
CDATA sections
text(" Symbols like (the latter two are merely
& and < can be requirements of XML syntax).

tricky in XML.")

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

160

XQuery Data Model XQuery Type System

XQuery data model (3): untyped vs. typed

An XML element containing an integer

<x>
04<!-- unexpected comment -->2
</x>
¥
Untyped view ...
() 09600000000006008000050060

comment("_unexpected

text("(LF)..-04") —comment._")

text("2(LF)")

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

161

XQuery data model (3): untyped vs. typed

An XML element containing an integer

<x>
04<!-- unexpected comment -->2
</x>
U
Typed view ... @ XQuery can work with the typed view,
L x if the input XML document has been
validated against an XML Schema
integer(42) description.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 162

XQuery DM: Node properties (1)

@ A separate W3C document?* describes the XQuery DM in detail.

In the XQuery DM, a tag in an XML document—an
element—exhibits a number of properties, including:

node-name tag name of this element

parent parent element, may be empty

children children lists, may be empty

attributes set of attributes of this element, may be empty
string-value concatenation of all string values in content
typed-value element value (after validation only)
type-name type name assigned by validation

?http://www.w3.org/TR/xpath-datamodel/

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

163

http://www.w3.org/TR/xpath-datamodel/

XQuery Data Model Node Properties

XQuery DM: Node properties (2)

An XML element containing an integer

<x>

04<!-- unexpected comment -->2

</x>

I

Node properties of unvalidated element x

node-name
parent
children
attributes
string-value
typed-value
type-name

X

0

(t1, ¢, t2)

0
"(LF)__042(LF)"
"(LF)__042(LF)"
untypedAtomic

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

164

XQuery DM: Node properties (3)

An XML element containing an integer
<x>
04<!-- unexpected comment -->2
</x>

I

Node properties of validated element x

node-name x

parent 0
children (t1, ¢, t2)
attributes 0
string-value "042"
typed-value 42
type-name integer

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

XQuery Data Model Node Properties

XQuery: Access to the DM in a query

XQuery provides various ways to access properties of nodes in a query.

For example:

access node-name

name (<x>content here</x>) = "x"

access parent element (this is actually XPath functionality)
<x>content here</x>/parent::* = ()

access string value:

string(<x>content here</x>) = "content here"

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

166

XQuery Data Model Items and Sequences

ltems and sequences (1)

Two data structures are pervasive in the XQuery DM:

© Ordered, unranked trees of nodes (XML elements, attributes, text
nodes, comments, processing instructions) and

@ ordered sequences of zero or more items.
[l Item
An XQuery item either is
a node (of one of the kinds listed above), or

an atomic value of one of the 50+ atomic types built into the XQuery DM.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 167

ltems and sequences (2)

@ A sequence of n items xq is written in parentheses, comma-separated

[l Sequence of length n and empty sequence J

(X1, X2, ..., Xp) O

@ A single item x and the singleton sequence (x) are equivalent!
@ Sequences cannot contain other sequences (i.e., nested sequences
are implicitly flattened):
[l Flattening, order

o, O, (1, 2, 3) = (0, 1, 2, 3)
(o, 1) # (1, 0)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 168

Sequence types (1)

XQuery uses sequence types to describe the type of sequences:

Sequence types t (simplified)

t

occ
item
node
name
atomic

empty-sequence ()

item occ

+x[7]e

atomic | node | item()

element (name) | text() | node() | ---
* | QName

integer | string | double | ---

@ A QName (qualified name) denotes an element or attribute name,

possibly with a name space prefix (e.g., ns:x).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

169

Sequence types (2)

Sequence type examples

Value Sequence type
42 integer, item()
<x>foo</x> element (x), item()
O empty-sequence(),integer*

("foo", "bar") string+, item()=*
(x/>, <y/>) element (*)+, node () *

@ In the table above, the most specific type is listed first.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

170

XQuery Data Model Atomic Types

[tems: atomic values

@ XQuery, other than XPath 1.0 or XSLT which exclusively manipulate
nodes, can also compute with atomic values (numbers, Boolean
values, strings of characters, ...).

» XQuery knows a rich collection of atomic types (i.e., a versatile
hierarchy of number types like fixed and arbitrary precision decimals,
integers of different bit-widths, etc.).

» In this course, we will only cover a subset of this rich type hierarchy.

@ The hierarchy of atomic types is rooted in the special type
anyAtomicType.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 171

XQuery Data Model Atomic Types

Hierarchy of atomic types

Atomic Type Hierachy (excerpt)

anyAtomicType
| T
untypedAtomic string double decimal float boolean
|
integer
Numeric literals .
Boolean literals
12345 : int :
12.345 E' SZC:iZE '; B
’)) false()

12.345E0 (: double :)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 172

XQuery Data Model Automatic Type Assignment (Atomization)

Computing with untyped values

Atomic values of type untypedAtomic, which appear whenever text
content is extracted from non-validated XML documents, are implicitly
converted if they occur in expressions.

Implicit extraction®® of element content and conversion of values
of type untypedAtomic

"42" + 1 = 4 type error (compile time)
<x>42</x> + 1 = 43.0E0 (: double :)
<x>fortytwo</x> + 1 = 4 conversion error (runtime)

@ This behavior saves a lot of explicit casting in queries over
non-validated XML documents.

2’Known as atomization, discussed later.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

173

XQuery Data Model Node Types

[tems: nodes

Just like XML, XQuery differentiates between several kinds of nodes:
Six XML node kinds

<element attribute="foo">
text <!--comment-->
<?processing instruction?>
</element>

+ The (“invisible”) root node of any complete XML document is the
so-called document node.

@ In XQuery, a query may extract and construct nodes of all these
kinds.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 174

Node Types
Nodes: observable properties

Each node kind has specific properties but a few important properties are
shared by all kinds:

[l Node identity and document order

Each node has a unique node identity which is never modified. XQuery
allows for node identity comparison using the operator is .

All nodes are ordered relative to each other, determined by the so-called
document order (XQuery operator <<). This orders nodes of the same
tree according to a pre-order traversal.

Nodes in different trees are ordered consistently.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 175

Node identity

@ Node identity J

<x>foo</x> is <x>foo</x> = false()

@ Note: To compare items based on their value, XQuery offers the
operators = and eq.

Value comparison
<x>foo</x> = <x>foo</x> = true() J

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 176

XQuery Data Model Document Order

Document order

<a>
<b c="..." d="...">e
<f><!--g-->h</f>

b/a\f
T

@c ed text("e")

comment("g")

text("h")

@ Parent nodes precede their children and attributes (e.g., a << b and

b << @d). << is transitive.

@ Siblings are ordered with attributes coming first (e.g., b << f£,
@d << text("e")), but the relative order of attributes (@c, @d) is

implementation-dependent.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06 177

XQuery Data Model Document Order

Notes on document order

XML documents always carry this implicit order of their contents.

@ Typical XML processing follows this order when accessing
components of an XML document (see, e.g., SAX parsing).

@ Often, operations on XML documents are supposed to deliver their
results also in this particular order. Document order is part of the
(formal) semantics of many XML related languages.

@ Contrast this with relational database query languages, where
set-orientation always gives the freedom to the query processor to
access and deliver tuples in arbitrary order!

@ We will (later) see that document order has far-reaching
consequences XML query processing.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 178

Part VIII

XPath—Navigating XML Documents

Marc H. Scholl (DBIS, Uni KN) XML and Databases

N
Outline of this part

@ XPath—Navigational access to XML documents
@ Context
@ Location steps
@ Navigation axes
@ Examples

€@ XPath Semantics
@ Document order & duplicates
@ Predicates
@ Atomization
@ Positional access

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 180

Context
XPath—Navigational access to XML documents

@ In a sense, the traversal or navigation of trees of XML nodes lies at
the core of every XML query language.

@ To this end, XQuery embeds XPath as its tree navigation
sub-language:

» Every XPath expression also is a correct XQuery expression.
» XPath 2.0: W3C http://www.w3.org/TR/xpath20/ .

@ Since navigation expressions extract (potentially huge volumes of)
nodes from input XML documents, the efficient implementation of
the sub-language XPath is a prime concern when it comes to the
construction of XQuery processors.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 181

http://www.w3.org/TR/xpath20/

Context node

@ In XPath, a path traversal starts off from a sequence of context
nodes.

» XPath navigation syntax is simple:
An XPath step

cso/step

cso denotes the context node sequence, from which a navigation in
direction step is taken.

» It is a common error in XQuery expressions to try and start an XPath
traversal without the context node sequence being actually defined.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 182

Context
Multiple steps

@ An XPath navigation may consist of multiple steps step;,i > 1
taken in succession.

@ Step step; starts off from the context node sequence csg and arrives
at a sequence of new nodes cs;.

@ csy Is then used as the new context node sequence for step,, and
So on.

Multi-step XPath path

cso/stepy/stepy/ - - -

((cso/stepy) /stepy)/ - -+
————

CS1

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 183

Location steps
XPath location steps

XPath step
Step syntax:
ax::ntlpi] -+ [ppl

@ A step (or location step) step; specifies
@ the axis ax, i.e., the direction of navigation taken from the context
nodes,
@ a node test nt, which can be used to navigate to nodes of certain
kind (e.g., only attribute nodes) or name,

© optional predicates p; which further filter the sequence of nodes we
navigated to.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 184

Navigation axes
XPath axes

XPath defines a family of 12 axes allowing for flexible navigation within
the node hierarchy of an XML tree.

XPath axes semantics, o marks the context node

@ @ marks attribute nodes, e represents any other node kind (inner e

nodes are element nodes).

v

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 185

Navigation axes
XPath axes: child, parent, attribute

XPath axes: , , attribute

@ Note: the child axis does not navigate to the attribute nodes
below o. The only way to access attributes is to use @
the attribute axis explicitly.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 186

XPath axes: descendant, ancestor, self

XPath axes: , , self

@ In a sense, descendant and ancestor represent the transitive
closures of child and parent, respectively.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

187

XPath axes: preceding, following,
ancestor-or-self

XPath axes: , , ancestor—-or-self

@ Note: In the serialized XML document, nodes in the preceding
(following) axis appear completely before (after) the context node.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 188

XPath axes: preceding-sibling,

following-sibling, descendant-or-self

XPath axes:
descendant-or-self

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

189

XPath axes: Examples (1)

In these first examples, there is a single initial context node, i.e., a
context node sequence of length 1: the root element a.

@ Here, we set the node test nt to simply node () which means to not
filter any nodes selected by the axis.

XPath example

(
<c d="1"><e>f</e></c> (<c d="1"><e>f</e></c>,
<g><h/></g> <g><h/></g>)

)/child: :node()

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 190

XPath axes: Examples (2)

XPath example
(
<c d="1"><e>f</e></c>
<g><h/></g>
)/attribute: :node()

= attribute b { "0" }

XPath example

(<c d="1"><e>f</e></c>,

(<e>f</e>,
<c d="1"><e>f</e></c> N text { "f" },
<g><h/></g> <g><h/></g>,
)/descendant: :node () <h/>
)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

191

XPath axes: Examples (3)

XPath example

(
(<e>f</e>,
<c d="1"><e>f</e></c>
= <h/>
<g><h/></g>

)/child: :node()/child: :node())

Notes:

@ If an extracted node has no suitable XML representation by itself,
XQuery serializes the result using the XQuery node constructor
syntax, e.g.,

attribute b { "0" } or text { "f" }

@ Nodes are serialized showing their content. This does not imply that
all of the content nodes have been selected by the gég
XPath expression!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 192

XPath semantics Document order & duplicates

XPath results: Order & duplicates

XPath Semantics

The result node sequence of any XPath navigation is returned in
document order with no duplicate nodes (remember: node identity).

Examples:

Duplicate nodes are removed in XPath results . ..

(
<a>
<c d="1"><e>f</e></c>
<g><h/></g> s
)/child: :node() /parent: :node ()
(<a><c/><d/> N (;Ci;i
)/child: :node()/following-sibling: :node())

Winter 2005/06

193

XPath semantics Document order & duplicates

XPath: Results in document order

XPath: context node sequence of length > 1
(<a><c/>,
<d><e/><f/></d>)/child: :node() (PSP

Note:

@ The XPath document order semantics require to occur before
<c/> and <e/> to occur before <f/>.

» The result (<e/>,<f/>,,<c/>) would have been OK as well.

» In contrast, the result (,<e/>,<c/>,<f/>) is inconsistent @
with respect to the order of nodes from separate trees!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 194

Document order & duplicates
XPath: Node test

Once an XPath step arrives at a sequence of nodes, we may apply a
node test to filter nodes based on kind and name.

XPath node test

Kind Test Semantics

node () let any node pass

text () preserve text nodes only
comment () preserve comment nodes only
processing-instruction() preserve processing instructions

processing-instruction(p) preserve processing instructions
of the form <?p ... ?>

document-node () preserve the (invisible) document
root node

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

195

XPath semantics Document order & duplicates

XPath: Name test

A node test may also be a name test, preserving only those element or
attribute nodes with matching names.

XPath name test

Name Test Semantics

name preserve element nodes with tag name only

(for attribute axis: preserve attributes)
preserve element nodes with arbitrary tag names
(for attribute axis: preserve attributes)

v

Note: In general we will have cs/ax: :* C cs/ax: :node(). gé?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 196

XPath: Node test example

[0 Retrieve all attributes named id from this XML tree:

<c id="1"><d id="2"/></c>
<c id="3"/>

<e di="X" id="4">f</e>

A solution

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

197

XPath: Node test example

Collect and concatenate all text nodes of a tree
string-join(<a>A<c>B</c>
<d>C</d>
/descendant-or-self: :node()/child: :text ()
n ll)

@ The XQuery builtin function string-join has signature

string-join(string*, string) as string .

Equivalent: compute the string value of node a
string(<a>A<c>B</c>
<d>C</d> = "ABC"
)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 198

XPath: Ensuring order is not for free
The strict XPath requirement to construct a result in document order

may imply sorting effort depending on the actual XPath implementation
strategy used by the processor.

(<x>
<x><y id="0"/></x> N (<y id="0"/> ,
<Y id=||1|I/> <y id="1"/>)

</x>)/descendant-or-self::x/child::y

@ In many implementations, the descendant-or-self: :x step will
yield the context node sequence (<x>---</x>,<x>---</x>) for the
child: :y step.

@ Such implementations thus will typically extract <y id="1"/> before
<y id="0"/> from the input document.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 199

XPath semantics Predicates

XPath: Predicates

The optional third component of a step formulates a list of predicates
[p1]--- [pn] against the nodes selected by an axis.

XPath predicate evaluation

Predicates have higher precedence than the XPath step operator /, @
le.:

cs/steplpil[po] = cs/((steplpil) [po])

The p; are evaluated left-to-right for each node in turn. In p;, the
current context node? is available as '.".

26 Context item, actually: predicates may be applied to sequences of arbitrary items.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 200

XPath semantics Predicates

XPath: Predicates

An XPath predicate p; may be any XQuery expression evaluating to some
value v. To finally evaluate the predicate, XQuery computes the

effective Boolean value ebv(v).

Effective Boolean value

Value v2’ ebv(v)
O false()
0, NaN false()
[0 false()
false() false()
X true()
(X1,X2,...,%Xp) true()

ZItem x ¢ {0, "",NaN, false()}, items x; arbitrary. Builtin function

boolean(item*) as boolean also computes the effective Boolean value.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

201

Predicates
XPath: Predicate example
Select all elements with an id attribute

(

<c id="1"/>

<c></c>

<d id="2">e</d>
)/descendant-or-self::x[./attribute: :id]

(
,
<c id="1"/>,

<d id="2">e</d>
)

Select all elements with a b grandchild element
(
<c id="1"/>
<c></c>
<d id="2">e</d>

= <c></c>

)/descendant-or-self::*[./child::*/child: :b]

@ Note: Existential semantics of path predicates.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06 202

XPath: Predicate example

[0 How to select all non-leaf elements of a tree?

You may use the builtin function not (item*) as boolean which
computes the inverted effective Boolean value, i.e.,

not(v) = —boolean(Vv).

A solution

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

203

XPath: Predicates and atomization

In XQuery, if any item x—atomic value or node—is used in a context
where a value is required, atomization is applied to convert x into an
atomic value.

@ Nodes in value contexts commonly appear in XPath predicates.
Consider:

Value comparison in a predicate

(<a>
42 (42,
<c><d>42</d></c> <c><d>42</d></c>,
<e>43</e> <d>42</d>

)/descendant-or-self::x[. eq 42]

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 204

XPath semantics Atomization

Atomization

Atomization

Atomization turns a sequence (xq,...,X,) of items into a sequence of
atomic values (v1,...,Vvy):

@ If x; is an atomic value, v; = x;,

Q@ if x; is a node, v; is the typed value®® of x;.

@ The XQuery builtin function data(item*) as anyAtomicTypex
may be used to perform atomization explicitly (rarely necessary).

28Remember: the typed value is equal to the string value if x; has not been
validated. In this case, v; has type untypedAtomic.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

205

XPath: Predicates and atomization

Atomization (and casting) made explicit

<a>
42
<c><d>42</d></c>
<e>43</e>
/descendant-or-self::*[data(.) cast as double
eq
42 cast as double]

@ Note: the value comparison operator eq is witness to the value
context in which "." is used in this query.
@ For the context item <c><d>42</d></c> (a non-validated node),

data(.) returns "42" of type untypedAtomic.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

206

XPath semantics Atomization

Atomization and subtree traversals
Since atomization of nodes is pervasive in XQuery expressio
e.g., during evaluation of

@ arithmetic and comparison expressions,
@ function call and return,

@ explicit sorting (order by),

efficient subtree traversals are of prime importance for any
implementation of the language:

Applying data() to a node and its subtree:

n evaluation,

a
data(<a> .
foo<c> 1.;/1\2
<d>b</d><e>ar</e> = data l "o 21/ \2
</C> nEoM | |
) llb.all II;II
.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

207

Positional access
XPath: Positional access

Inside a predicate [p] the current context item is ". .

@ An expression may also access the position of '." in the context
sequence via position(). The first item is located at position 1.

@ Furthermore, the position of the last context item is available via
last ().
Positional access

(X1,X2,...,%Xy) [position() eq i1 = X
(Xl 3 X250 s :Xn) [pOSition() eq last()] = Xp

A predicate of the form [position() eq /] with / being any XQuery
expression of numeric type, may be abbreviated by [/].

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

XPath semantics Positional access

XPath: Positional access example

[0 Predicates [-] bind stronger than / @

Given the XML tree below as context cs, what is the result of evaluating

(cs/descendant-or-self: :node()/child: :x) [2]
vs.
cs/descendant-or-self: :node()/child::x[2] 7

<a>

<x id="1"/>

<d><x id="2"/><x id="3"/></d>

Solution

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 209

XPath: Positional access example

Predicates are evaluated after step and node test
Given the XML tree below as context cs, what is the result of evaluating

cs/descendant: : % [2]
vs.
cs/descendant: :x[2] 7?

<a>

<x id="1"/>

<d><x id="2"/><x id="3"/></d>

Solution

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 210

XPath: Predicate evaluation order

Remember: predicates are evaluated left to right

(1,2,3,4)[. gt 21[2] = ((1,2,3,4)[. gt 21) [2]

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Positional access
XPath: The context item ’

As a useful generalization, XPath makes the current context item '.
available in each step (not only in predicates).

XPath steps (/) and the context item

In the expression

cs/e

expression e will be evaluated with '.’ set to each item in the context
sequence cs (in order). The resulting sequence is returned.?°30

2°Remember: if e returns nodes (e has type nodex), the resulting sequence is sorted
in document order with duplicates removed.

30Compare this with the expression map (A . — €) ¢s in functional programming
languages.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 212

Fosfiloni] e
XPath: Using the context item
Accessing .’

(<a>1,2,<c>3</c>) /(. + 42) = (43.0,44.0,45.0)
(<a>1,2,<c>3</c>) /name(.) = ("a","b","c")
(<a>1,2,<c>3</c>) /position() = (1,2,3)
(<a>)/(./child::b, .) = (<a>,)

[0 Evaluate the following

@ cs/descendant-or-self::node()/count(./descendant: :node())
@ cs/descendant-or-self::node()/count(./ancestor: :*)

<a>
. <b c="0"/>
with cs = <d><e>f</e></d>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

213

XPath semantics Positional access

Combining node sequences

Node sequence combinations

Sequences of nodes (e.g., the results of XPath location step) may be
combined via

| union3!

intersect
except

These operators remove duplicate nodes based on identity and return
their result in document order.)

@ Note: Introduced in the XPath context because a number of useful
navigation idioms are based on these operators.

31| and union are synonyms

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 214

Navigation idioms (1)

Selecting all x children and attributes of context node
cs/(./child::x | ./attribute::x)

Select all siblings of context node

cs/(./preceding-sibling: :node() | ./following-sibling::node())
or
cs/(./parent: :node()/child: :node() except .)

Select context node + all its siblings
cs/(./parent: :node()/child: :node() | .)
—~—

*

Why is (*) required?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

215

XPath semantics Positional access

Navigation idioms (2)

First common ancestor (fca)

Compute the first common ancestor (

) of two contexts, and csq,
in the same tree:

b

s
PN
RIPZENN

(csp/ancestor: :* intersect cs;/ancestor::*) [last()]

[0 What is going on here?

And: Will this work for non-singleton csg 17

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 216

Positional access
XPath: Simulate intersect and except

In earlier versions of XPath (1.0), the following expressions could

simulate intersect and except of two node sequences csg,1:3?

Simulate intersect and except

CSp intersect ¢s; =
cso[count (. ¢cs;) eq count(csi)]

CSp except Cs1 =
cSglcount (. ¢s;) ne count(csy)]

32XQuery builtin operators eq and ne compare two single items for equality and
inequality, respectively.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

217

Positional access
XPath: Abbreviations

Since XPath expressions are pervasive in XQuery, query authors
commonly use the succinct abbreviated XPath syntax to specify
location steps.

Abbreviated XPath syntax

Abbrevation Expansion

nt child::nt
Q@ attribute: :
.. parent: :node()
// /descendant-or-self: :node()/
/33 root(.)
step33 ./step

33At the beginning of a path expression.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

218

XPath: Abbreviations

XPath abbrevation examples

Abbreviation Expansion

a/b/c ./child::a/child::b/child::c

a//@id ./child: :a/descendant-or-self: :node() /attribute: :id
//a root(.)/descendant-or-self: :node()/child::a

a/text () ./child::a/child: :text ()

[1 XPath abbreviation quiz

What is the expansion (and semantics) of

a/(x @) and alx] 7

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

219

XPath: Abbreviations @

NB: Use of these abbreviations may lead to confusion and surprises! @
Abbrevations + predicates = confusion

cs//cl1] # cs/descendant-or-self::c[1]

Evaluate both path expressions against

<a>
<c id="0"/><c id="1"/>
cs = <d><c id="2"/></d>
<c id="3"/>

More XPath weirdness
cs/(/)// (/) parent: :text () attribute: : comment ()

v

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 220

Part IX

XSLT—~Presentation of XML Documents

Marc H. Scholl (DBIS, Uni KN) XML and Databases

N
Outline of this part

€@ XSLT—An XML Presentation Processor
@ Separating content from style
@ XSL Stylesheets
@ XSLT Templates
@ Examples
@ Conflict Resolution and Modes in XSLT
@ More on XSLT

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 222

XSLT—An XML Presentation Processor

@ XML in itself is quite weak when it comes to data presentation.

@ An XML processor can derive nothing but the tree structure of the
XML data.
» XML by itself has no semantic meaning.
» XML markup (usually) does not include formatting information.
» The “vanilla” XML tree structure might not be the appropriate form
of presentation for all types of data.

@ XSLT (Extensible Style Sheet Language/Transformations)

W3C http://www.w3.org/TR/xslt introduces a separate
presentation processor that maps XML trees into

@ other XML trees (e.g., XHTML),
@ instructions for various output formatters (PDF writers, . ..)

N.B. (1) makes XSLT a general XML — XML transformer.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

223

http://www.w3.org/TR/xslt

Sl e o s
Separating content from style

Contrary to when style information is hard-coded into the content,
separation of style from content allows for the same data to be
presented in many ways:

@ Reuse fragments of data
(same contents looks different depending on context),

@ multiple output formats
(media [online, paper], sizes, devices [workstation, handheld]),

© styles tailored to reader’s preference
(accessibility issues, audio rendering),

© standardized styles
(corporate identity, web site identity),

© freedom from style
(do not bother tech writers with layout issues).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 224

XSLT—An XML Presentation Processor Separating content from style

@ An XSL stylesheet describes XML presentation using two basic
categories of techniques:
@ Optional transformation of XML document tree into another
structure,
@ specification of presentation properties to associate to each of the
various parts of the transformed tree.

XSL vs. CSS

How does CSS (Cascading Style Sheet Language) compare to XSL
as described until now?

@ Transformation?

Generation of (new) constant content,

suppress content,

moving subtrees (e.g., swap day/month in a date),

copying subtrees (e.g., copy section titles into tables of contents),
sorting,

general transformations that compute new from given content.

vV V.V v v Vv

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 225

XSLT—An XML Presentation Processor Separating content from style

@ Presentation properties?
» General page (or screen) layout,
» assign content to “containers” (e.g., lists, paragraphs),
» formatting properties (e.g, spacing, margins, alignment, fonts) for
each such container.

Example: XML — XHTML transformation via XSLT:

strip html
_— AN VAN
rolo anels ——— bod,
prones N xstt gt %
characters panel panel -+ hi div
N
character EE bubbles -+ h2 P 1img

bubble bubble

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 226

XSL Stylesheets
XSL Stylesheets

@ An XSL stylesheet defines a set of templates (“tree patterns and
actions”).

Each template ...

© matches specific elements in the XML doc tree, and then
@ constructs the contribution that the elements make to the
transformed tree.
@ XSL is an application of XML itself:
» Each XSL stylesheet is an XML document,
» elements with a name prefix3* xs1: are part of the XSLT language,
» non-"xsl:" elements are used to construct the transformed tree.

3*More correctly: elements in the namespace
http://www.w3.org/1999/XSL/Transform. For details on namespaces, see
http://wuw.w3.org/TR/REC-xml-names.

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/TR/REC-xml-names

XSLT—An XML Presentation Processor XSL Stylesheets

Example: Transform text markup into HTML style paragraph and
emphasis tags:

style.xsl
1 K?xml version="1.0"7>
2 Kxsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.
3
4 KKxsl:template match="para'">
5 <p><xsl:apply-templates/></p>
6 |[</xsl:template>
7
8 [Kxsl:template match="emphasis">
9 <i><xsl:apply-templates/></i>
10 [K/xsl:template>
11
12 KK/xsl:stylesheet>
input.xml
1 K?xml version="1.0"7>
2 [Kpara>This is a <emphasis>test</emphasis>.</para>
output.xml
1 K?xml version="1.0" encoding="UTF-8"7>
2 Kp>This is a <i>test</i>.</p>

o">

N.B. Note how XSLT acts like a tree transformer in this simple example.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

228

XSLT Templates
XSLT templates

<xsl:template match="e">
cons
</xsl:template>

@ e is an XPath expression,
selecting the nodes in the document tree XSLT will apply the
template to,

@ cons is the result constructor,
describing the transformation result that the XSLT processor will
produce for the nodes selected by e.

N.B. “xs1:” elements in cons will be interpreted by the XSLT
processor.

<xsl:apply-templates/> applies the template matching process
recursively to all child nodes of the matched node.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 229

XSLT Templates
Applying the template ...

The actual tree transformation in our previous example goes like this:

Doc Doc
\ \
para SN P
L XSLT TN
Text emphasis Text Text i Text
\ \ | \ \
This isa Text : This is a Text
\ \
test test

@Something else must be going on here:
@ The Text nodes have automatically been copied into the result tree.
@ How could the para and emphasis elements match anyway?
(The XPath patterns for both templates used relative paths
expressions.)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 230

XSLT—An XML Presentation Processor XSLT Templates

Default templates

Each XSLT stylesheet contains two default templates which
© copy Text and Attr (attribute) nodes into the result tree:
<xsl:template match="text()|@*">
<xsl:value-of select="self::node()"/>
</xsl:template>
@ recursively drive the matching process, starting from the
document root:
<xsl:template match="/|[*">
<xsl:apply-templates/>
</xsl:template>

<xsl:value-of select="e"/> copies those nodes into the result tree
that are reachable by the XPath expression e (context node is the
matched node).

The default templates may be overridden.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 231

XSLT—An XML Presentation Processor XSLT Templates

Overriding default XSLT templates

What would be the effect of applying the following XSLT stylesheet?
style.xsl

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.Q">

<xsl:template match="text()">foo</xsl:template>

<xsl:template match="para">
<p><xsl:apply-templates/></p>
</xsl:template>

<xsl:template match="emphasis">
<i><xsl:apply-templates/></i>
12 [K/xsl:template>

L=
H O © 0 N O GRA W N

14 [K/xsl:stylesheet>

More XSLT defaults

XSLT contains the following additional default template. Explain its effect.

<xsl:template match="processing-instruction() | comment()"/>

V.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 232

XSLT—An XML Presentation Processor XSLT Templates

Intermediate summary

XSLT Instruction

Effect

<xsl:template match="e">
cons
</xsl:template>

<xsl:apply-templates select="e"/>

<xsl:value-of select="e"/>

Replace nodes matching path
expression e by cons.

Initiate template matching for
those nodes returned by path
expression e (default: path
e = child::node()).

Returns the (string value3® of
the) result of XPath expres-
sion e.

%Read: The string value of an XML element node is the concatenation of the
contents of all Text nodes in the subtree below that element (in document order).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

XSLT Templates
More XSLT features

[0 Recursion in XSLT
Explain the effect of the following XSLT stylesheet

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<xsl:template match="foo">
<xsl:apply-templates select="/"/>
</xsl:template>
</xsl:stylesheet>

[1 What would be the effect of applying an empty stylesheet?

<?xml version="1.0"7>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0"/>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

234

XSLT—An XML Presentation Processor Examples

Example: Dilbert comic strips ...

Transform a DilbertML document into an HTML representation that
reflects the comic strip’s story:

@ From the prolog, generate the HTML header, title, heading,
copyright information.

@ From characters, generate an unordered HTML list (ul) of all
featured comic characters.

@ For all panels, reproduce the scene as well as all spoken bubbles,
indicating who is speaking to whom (if available).

Note:
<xsl:if test="p"/> cons </xsl:if> reproduces cons in the
result tree, if the XPath predicate p evaluates to true.3°

36Remember from XPath: an empty node sequence is interpreted as false, a
non-empty sequence as true.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 235

XSLT—An XML Presentation Processor Examples

© 0 N OOk W N =

O T T N e e S = S
I N S I L I S =)

dilbert.xsl

<?xml version="1.0"7>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<!-- Generate document head and body, insert prolog information -->
<xsl:template match="/">
<html>
<head>
<title>
<xsl:value-of select="/strip/prolog/series"/>
</title>
</head>
<body>
<h1> <xsl:value-of select="/strip/prolog/series"/>
</h1>
<p>A comic series by
<xsl:value-of select="/strip/prolog/author"/>,
copyright (C)
<xsl:value-of select="/strip/@year"/> by
<xsl:value-of select="/strip/@copyright"/>
</p>
<xsl:apply-templates/>

</body>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

236

XSLT—An XML Presentation Processor Examples

24
25
26
27
28
29

</html>
</xsl:template>

<!-- The next 2 templates generate the
"Featured Characters" bullet list -—>
<xsl:template match="characters">
<h2> Featured Characters </h2>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="character">
<1i> <xsl:value-of select="."/> </1i>
</xsl:template>

<!-- Reproduce the panel and the scene it displays --—>
<xsl:template match="panel">

<h3> Panel <xsl:value-of select="@no"/> </h3>

<p> <xsl:value-of select="scene"/> </p>

<xsl:apply-templates select="bubbles"/>
</xsl:template>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

237

XSLT—An XML Presentation Processor Examples

47 |K!-- Reproduce spoken text, indicating tone and
48 who is speaking to whom -->

49 [Kxsl:template match="bubble">

50 <p> <xsl:value-of select="id(@speaker)"/> speaking
51 <xsl:if test="@to">

52 to <xsl:value-of select="id(@to)"/>
53 </xsl:if>

54 <xsl:if test="Qtone">

55 (<xsl:value-of select="Qtone"/>)

56 </xsl:if>

57 :

58

59 <xsl:value-of select="."/>

60

61 </p>

62 |[</xsl:template>

63

64 |[<!-- Suppress all other text/attributes -->
65 [<xsl:template match="text()|@x"/>

66

67 |</xsl:stylesheet>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

XSLT—An XML Presentation Processor Examples

© 0 N OOk W N =

O T T N e e S = S
I N S I L I S =)

dilbert.html
<html>
<head> <title>Dilbert</title> </head>
<body>
<hi1>Dilbert</h1>

<p>A comic series by Scott Adams, copyright
(C) 2000 by United Feature Syndicate </p>

<h2> Featured Characters </h2>

<1i>The Pointy-Haired Boss
Dilbert, The Engineer

<1i>Wally</1i>
Alice, The Technical Writer

<h3> Panel 1</h3>
<p>Pointy-Haired Boss pointing to presentation slide.
</p>
<p>The Pointy-Haired Boss speaking :

Speed is the key to success.
</p>
<h3> Panel 2</h3>
<p>Wally, Dilbert, and Alice sitting at conference table.
</p>
<p>Dilbert, The Engineer speaking

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

239

XSLT—An XML Presentation Processor Examples

24 to The Pointy-Haired Boss :

25 Is it ok to do things wrong if

26 we’re really, really fast?

27 </p>

28 <h3> Panel 3</h3>

29 <p>Wally turning to Dilbert, angrily.

30 </p>

31 <p>The Pointy-Haired Boss speaking

32 to Dilbert, The Engineer :

33 Um. .. No.

34 </p>

35 <p>Wally speaking

36 to Dilbert, The Engineer (angry) :

37 Now I’m all confused. Thank you very much.
38 </p>

39 KK/body>

40 [</html>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Screenshot of Mozilla rendering file dilbert.html:

000 Dilbert (=)

Dilbert

A comic series by Scott Adams, copyright (C) 2000 by United Feature Syndicate

Featured Characters

® The Pointy-Haired Boss
* Dilbert, The Engineer
o Wally
¢ Alice, The Technical Writer
Panel 1
Pointy-Haired Boss pointing to presentation slide.

The Pointy-Haired Boss speaking :
Speed is the key to success.

Panel 2
Wally, Dilbert, and Alice sitting at conference table.

Dilbert, The Engineer speaking to The Pointy-Haired Boss :
Is it ok to do things wrong if we're really, really fast?

Panel 3
Wally turning to Dilbert, angrily.

The Pointy-Haired Boss speaking to Dilbert, The Engineer :
Um... No.

Wally speaking to Dilbert, The Engineer (angry) :
Now I'm all confused. Thank you very much.
Z

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Conflict Resolution and Modes
Conflict Resolution and Modes in XSLT

@ Note that for each node visited by the XSLT processor (cf. default
template (2)), more than one template might yield a match.

@ XSLT assigns a priority to each template. The more specific the
template pattern, the higher the priority:

<xsl:template match="e"> cons </xsl:template>

Pattern e Priority
* -0.5
ns:x —0.25
element/attribute name 0

any other XPath expression 0.5

o Example:
Priority of author is 0, priority of /strip/prolog/author is 0.5.

@ Alternatively, make priority explicit:
<xsl:template priority="p" ...>.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 242

XSLT—An XML Presentation Processor Conflict Resolution and Modes
Context

Quite often, an XSLT stylesheet wants to be context-aware.

@ Since the XSLT priority mechanism is not dynamic, this can cause
problems.

Example: Transform the following XML document (sectioned text with

cross references) into XHTML:
self-ref.xml

1 <section id="intro">

2 <title>Introduction</title>

3 <para> This section is self-referential: <xref to="intro">. </para>
4 |</section>

We want to generate XHTML code that looks somewhat like this:
self-ref.html

1 <hi>Introduction</h1>
2 <p> This section is self-referential: Introduction. </p>

@ The section title needs to be processed twice, once to produce the
heading and once to produce the cross reference.

XSLT—An XML Presentation Processor Conflict Resolution and Modes

=
H O © 0 N O Otk W N

The “obvious” XSLT stylesheet produces erroneous output:

buggy-self-ref.xsl
<?xml version="1.0"7>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="title">
<h1><xsl:apply-templates/></h1>
</xsl:template>

<xsl:template match="para">
<p><xsl:apply-templates/></p>
</xsl:template>

<xsl:template match="xref">
<xsl:apply-templates select="id(@to)/title"/>
</xsl:template>

</xsl:stylesheet>

buggy-output.html

<h1>Introduction</h1>

<p> This section is self-referential: <hi>Introduction</h1>. </p>
Winter 200506

244

XSLT—An XML Presentation Processor Conflict Resolution and Modes
XSLT modes

@ We need to make the processing of the title element aware of the
context (or mode) it is used in: inside an xref or not.

@ This is a job for XSLT modes.

> In <xsl:apply-templates> switch to a certain mode m depending on
the context:

<xsl:apply-templates mode="m" .../>

» After mode switching, only <xsl:template> instructions with a mode
attribute of value m will match:

<xsl:template mode="m" .../>

» As soon as <xsl:apply-templates mode="m" .../> has finished
matching nodes, the previous mode (if any) is restored.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 245

XSLT—An XML Presentation Processor Conflict Resolution and Modes

© W N W N

e e e e e e
W N U W N = O

self-ref.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:template match="title">
<h1><xsl:apply-templates/></h1>
</xsl:template>

<xsl:template match="title" mode="ref">
<xsl:apply-templates/>
</xsl:template>

<xsl:template match="xref">
<xsl:apply-templates select="id(@to)/title" mode="ref"/>
</xsl:template>

</xsl:stylesheet>

output.html

<hi>Introduction</h1>
<p> This section is self-referential: Introduction. </p>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

246

XSLT—An XML Presentation Processor More on XSLT
More on XSLT

XSLT Instruction Effect

xsl:choose, xsl:when switch statement (ala C)

xsl:call-template explicitly invoke a (named) template

xsl:for-each replicate result construction for a sequence of nodes
xsl:import import instructions from another stylesheet
xsl:output influence XSLT processor’s output behaviour
xsl:variable set/read variables

@ For a complete XSLT reference, refer to
W3C http://www.w3.org/TR/xslt

@ Apache’s Cocoon is an XSLT-enabled web server (see
http://xml.apache.org/cocoon/).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 247

http://www.w3.org/TR/xslt
http://xml.apache.org/cocoon/

Part X

XQuery—Querying XML Documents

Marc H. Scholl (DBIS, Uni KN) XML and Databases

N
Outline of this part

@ XQuery—Declarative querying over XML documents
@ Introduction
@ Preliminaries

€ Iteration (FLWORS)
@ For loop
@ Examples
@ Variable bindings
@ where clause
@ FLWOR Semantics
@ Variable bindings
@ Constructing XML Fragments
@ User-Defined Functions

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 249

Introduction
XQuery—Introduction

@ XQuery is a truly declarative language specifically designed for the
purpose of querying XML data.

@ As such, XML assumes the role that SQL occupies in the context of
relational databases.

@ XQuery exhibits properties known from database (DB) languages as
well as from (functional) programming (PL) languages.

@ The language is designed and formally specified by the W3C XQuery
Working Group (W3C http://wuw.w3.org/XML/XQuery/).

» The first working draft documents date back to February 2001. The
XQuery specification is expected to become a W3C Recommendation
during the summer of 2006.

» Members of the working group include Dana FlorescuP®, loana
ManolescuPB, Phil WadlerP:, Mary FernandezPB+PL, Don
ChamberlinP8 37 Jérdme SiméonPB, Michael RysPB, and many
others.

3"Don is the “father” of SQL.
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 250

http://www.w3.org/XML/XQuery/

1/2 Programming Language, /2 Query Language

XQuery is a hybrid exhibiting features commonly found in programming

as well as database query languages:
@ Programming language features:
explicit iteration and variable bindings (for---in, let---in)
recursive, user-defined functions
regular expressions, strong [static] typing
ordered sequences (much like lists or arrays)
o Database query language features:
» filtering
» grouping, joins } expressed via nested for loops

vV v v Vv

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

251

History of XQuery

1998 | [xstT] [xaL XIV\L QL
1999
2000 Quilt
2001 R Il W3C-Empfehlungen
[noch in der Entwicklung
() andere Vorschlage
XPath 2.0 | XQuery 1.0 @8 Norm-DB-Anfragesprachen

[illustration © C. Tiirker]

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 252

Preliminaries
XQuery—Preliminaries

@ Remember: XPath is part of XQuery (as a sublanguage).

@ Some constructs that have not previously been discussed, yet are
not within the core of our focus on XQuery include:

» Comparisons: any XQuery expression evaluates to a sequence of
items. Consequently, many XQuery concepts are prepared to accept
sequences (as opposed to single items).

General Comparisons

The general comparison e; 8 e; with
0 e{=1=<<=>=>}

yields true () if any of the items in the sequences e; » compare true
(existential semantics).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

253

Comparisons

General comparison examples

(1,2,3) > (2,4,5)
(1,2,3) =1

O =0

2 <=1

(1,2,3) '=3

(1,2) '= (1,2)
not((1,2) = (1,2))

R

true()
true ()
false()
false()
true()

true()
false() g%

Value comparisons

The six value comparison operators eq, ne, 1t, le, ge, gt compare

single items by value (atomization!):

2 gt 1.0 = true()
<x>42</x> eq <y>42</y> = true()
(0,1) eq 0 = ¢ (type error)
Winter 2005/06

254

More on comparisons . ..

Note: The existential semantics of the general comparison operators @
may lead to unexpected behavior:

Surprises

(1,2,3) = (1,3) = true()?
("2",1) =1 = true() or 4 (impl. dependent)

?For an item-by-item comparison use deep—equal().

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 255

Node comparisons

Node comparison
based on identity and document order:

e is e nodes e; » identical?
€1 << & node e; before e57?
e >> e node e; after e>?

Node comparison examples

<x>42</x> eq <x>42</x> = true()
<x>42</x> is <x>42</x> = false()
root(e;) is root(e;) = nodes e in same tree?

let $a := <x><y/></x>

= true()
return $a << $a/y

v

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 256

Working with sequences

XQuery comes with an extensive library of builtin functions to perform

common computations over sequences:

Common sequence operations

Function Example

count count((0,4,2)) = 3

max max((0,4,2)) = 4
subsequence subsequence((1,3,5,7),2,3) = (3,5,7)
empty empty ((0,4,2)) = false()
exists exists((0,4,2)) = true()
distinct-values distinct-values((4,4,2,4)) = (4,2)

to (1 to 10)[. mod 2 eq 11 = (1,3,5,7,9)

See W3C http://www.w3.org/TR/xpath-functions/.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

257

http://www.w3.org/TR/xpath-functions/

Preliminaries
Arithmetics

Only a few words on arithmetics—XQuery meets the common
expectation here. Points to note:

© |Infix operators: +, -, *, div, idiv (integer division),

@ operators first atomize their operands, then perform promotion to
a common numeric type,

© if at least one operand is (), the result is ().

Examples and pitfalls

<x>1</x> + 41 = 42.0
O *x42 = O
(1,2) - (2,3) = ¢ (type error)
x-42 = ./child::x-42 (use x.-_42)
x/y = ./child::x/child::y (use x div y)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 258

For loop
XQuery lteration: FLWORs

-

@ Remember that XPath steps perform implicit iteration: in cs/e,
evaluation of e is iterated with "." bound to each item in cs in turn.

@ XPath subexpressions aside, iteration in XQuery is explicit via the
FLWOR (“flower”) construct.

» The versatile FLWOR is used to express
* nested iteration,
* joins between sequences (of nodes),
* groupings,
* orderings beyond document order, etc.
» |n a sense, FLWOR assumes the role of the SELECT-FROM—WHERE
block in SQL.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 259

For loop
FLWOR: Iteration via for---in

Explicit iteration

Explicit iteration is expressed using the for---in construct:?

for $v [at $p] in &
return e

If e; evaluates to the sequence (xq,...,xn), the loop body e is
evaluated n times with varable $v bound to each x; [and $p bound to /]
in order. The results of these evaluations are concatenated to form a
single sequence.

“The construct 'at $p’ is optional.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 260

[teration

[teration examples
for $x in (3,2,1)

return ($x,"*")

for $x in (3,2,1)
return $x,"x*"

for $X in (3,2,1) (3,"&",3,"1)",
return for $y in ("a","b") = 2,"a",2,"b",
return ($x’$y) 1,"a",1,"b")

(3, II*II ,2’ Il*ll,l,ll*ll)

= (3,2,1,"s") @

FLWOR: Abbreviations

B Bl HE G for $v; in e
1 1

for $v; in e,
return o . . .
. = for $» in & = $v, in e
for $v, in e
return €3 return €3
return €3

Winter 2005/06

261

FLWOR: Iteration via for---in

[0 Purpose of this query Q7

max(for $i in cs/descendant-or-self::*[not(*)]

return count($i/ancestor::*x))

A sample cs

“Annotated” sample cs
a a
O O
VRN 7\
be ecC b ecC
VRN : 7\
de of 1de of
l ./ \. 3...' /..3\ —
e g e g n)
Answer
Winter 2005/06 262

Iteration (FLWORSs) Examples

FLWOR: lteration via for---in

Return every other item in sequence

These queries both return the items at odd positions in the input
sequence e:

for $i in (1 to count(e))[. mod 2 eq 1]
return e[$i]

for $i at $p in e

return if ($p mod 2)
then e[$p]
else ()

@ Remember: ebv(0) = false().

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

263

Ve LT il
FLWOR: Variable Binding via let--: :=

Note that in the examples on the last slide, expression e is re-evaluated
count (€)/2 times although e is constant in the loop.

Variable bindings
The result of evaluating an expression e may be bound to a variable $v

via let:
let $v := g

return &>

evaluates e, with free occurrences of $v replaced by e.

@ for and let clauses may be freely intermixed.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 264

Ve LT il
FLWOR: Variable Binding via let--: :=

Iteration vs. variable binding

for $x in (3,2,1)

3, Mk D Myt 4 My
e ($X,"*") () 14 s+)

let $x := (3,2,1)

= (3,2,1,""
return ($x,"x*x") ¢)

“Every other item” revisited (flip back two slides)

The following hoists the constant e out of the loop body:

let $seq := e
return for $i at $p in $seq
return if ($p mod 2)
then $seql$p]
else ()

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 265

Iteration (FLWORSs) where clause

Adding a where clause

Inside loop bodies, the idiom if (p) then e else () is so common
that FLWOR comes with a SQL-like where clause to address this.

A where clause
If ebv(p) evaluates to false() under the current variable bindings, the
current iteration does not contribute to the result:

for $v in ¢

return if (p)
then e
else ()

for $v in e
where p =
return e

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 266

Explicit vs. implicit iteration

XPath: implicit iteration
al[@b = "foo"]l/c[2]/d[@Ge = 42]

Equivalent nested FLWOR blocks

for $a in a
where $a/@b = "foo"
return for $c at $p in $a/c
where $p = 2
return for $d in $c/d
where $d/@e = 42
return $d

NB. Unlike the XPath step operator /, for does not change the context
item .’

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 267

Iteration (FLWORSs) where clause

FLWOR: Reorder iteration result via order by

In a FLWOR block for $v in e; return ey, the order of e
determines the order of the resulting sequence.

Reordering via order by
In the FLWOR block

for $v in ¢

order by e; [ascending|descending] [empty greatest|least]
return &

the value (atomization!) of e3 determines the order in which the bindings
of $v are used to evaluate e5.

v

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 268

FLWOR: Reordering examples

An order by “no-op”: reordering by sequence order
for $x at $p in (5,3,1,4,2)
order by $p = (5,3,1,4,2)
return $x

All bound variables in scope in order by

for $x at $p in (5,3,1,4,2)
order by $p + $x = (1,3,5,2,4)
return $x

Reordering as in SQL's ORDER BY

for $x in (5,3,1,4,2)
order by $x = (1,2,3,4,5)
return $x

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

269

Iteration (FLWORSs) where clause

FLWOR: Reordering examples
[0 Value-based reordering of an XPath step result

This query reorders the result of the XPath location step descendant: :

based on (string) value. Which result is to be expected?

let $a := <a>
<b

<b

<b

<b

<b

id="0">42
id="1">5
id="2"/>
id="3">3
id="4">1

for $b in $a/descendant::b
order by $b/text() empty greatest

return $b/@id

Answer

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

270

FLWOR Semantics
FLWOR semantics: tuple space

@ In the W3 XQuery specification, the interaction of the five clauses
of a FLWOR (for—-let—where—order by—return) block is formally
explained by means of a tuple space:

» Size of tuple space = number of iterations performed by FLWOR
block.
» The fields of the tuples represent, for each iteration,
@ for/let variable bindings,
@ the outcome of the where clause,
© the value of the reordering criterion, and
@ the value returned by the return clause.

@ Let us exemplify this here because our own relational compilation
scheme for FLWOR blocks resembles the tuple space idea.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 271

FLWOR semantics: tuple space (1)
Sample FLWOR block

for $x at $p in reverse(1l to 10)
let $y := $x * $x

where $y <= 42

order by 5 - $p

return ($p,$x)

@ Complete tuple space
$x $p 8y where order by return |
0] 1 | 100

1 false 4 (1,10)
9 2 81 false 3 (2,9)
8 3 64 | false 2 (3,8)
7 4 49 false 1 4,7)
6 5 36 true 0 (5,6)
5 6 25 true -1 (6,5)
4 7 16 true -2 (7,4)
3 8 9 true -3 (8,3)
2 9 4 true -4 (9,2)
1 10 1 true -5 (10,1)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

FLWOR semantics: tuple space (2)

@ Filtering: where clause ($y <= 42)

$x | $p $y where | order by| return

6 5 36 true 0 (5,6)
5 6 25 true -1 (6,5)
4 7 16 true -2 (7,4)
3 8 9 true -3 (8,3)
2 9 4 true -4 (9,2)
1 10 1 true -5 (10,1)

Marc H. Scholl (DBIS, Uni KN) XML and Databases

FLWOR semantics: tuple space (3)

© Reordering: order by clause

where order by return |

1 10 1 true -5 (10,1)
2 9 4 true -4 (9,2)
3 8 9 true -3 (8,3)
4 7 | 16 | true -2 (7,4)
5 6 25 true -1 (6,5)
6 5 36 true 0 (5,6)

© To emit the final result, scan the tuple space in the order specified by
the order by column, and concatenate the return column entries:

(10,1,9,2,8,3,7,4,6,5,5,6)

Observation: some values have been computed, but never used . ..

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 274

FLWOR: populate tuple space lazily (1)
Sample FLWOR block

for $x at $p in reverse(1l to 10)
let $y := $x * $x

where $y <= 42

order by 5 - $p

return ($p,$x)

© Populate variable bindings only
$x $p 8y |
100

X
10
81
64
49
36
25
16

9
4

1

RN WD OO N ® O
500N UEWN R

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

275

FLWOR: populate tuple space lazily (2)
© Evaluate: where clause ($y <= 42)

$x | $p 8y where | \
0 1 100

1 false
9 2 81 false
8 3 64 false
7 4 49 false
6 5 36 true
5 6 25 true
4 7 16 true
3 8 9 true
2 9 4 true
1 10 1 true

© Prune tuples

6 5 36 true
5 6 25 true
4 7 16 true
3 8 9 true
2 9 4 true
1 10 1 true

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

276

FLWOR: populate tuple space lazily (3)

© Evaluate: order by clause

6 5 | 36 6 (5,6)
5 6 | 25 5 (6,5)
4 7 16 4 (7,4)
3 8 9 3 (8,3)
2 9 4 2 (9,2)
1 10| 1 1 (10,1)

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

277

Ve LT il
Variable bindings: Variables are not variable!

“Imperative” XQuery
Evaluate the expression

let $x :=

<x><y>12</y>
<y>10</y>
<y>7</y>
<y>13</y>

</x>

let $sum := 0

for $y in $x//y

let $sum := $sum + $y

return $sum

W

Equivalent query

let $x :=
<x><y>12</y>
<y>10</y>
<y>7</y>
<y>13</y>
</x>

for $y in $x//y

return 0 + $y

@ let-bound variables are named values and thus immutable.

@ Obtain equivalent query via textual replacement (lhs — rhs).38

%8Not valid if rhs value depends on a node constructor!

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

278

S i UL Faens
Constructing XML fragments

@ XQuery expressions may construct nodes with new identity of all 7
node kinds known in XML:
» document nodes, elements, attributes, text nodes, comments,
processing instructions (and namespace nodes).

@ Since item sequences are flat, the nested application of node
constructors is the only way to hierarchically structure values in
XQuery:

» Nested elements may be used to group or compose data, and,

ultimately,
» XQuery may be used as an XSLT replacement, i.e., as an XML
transformation language.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 279

Iteration (FLWORSs) Constructing XML Fragments

Direct node constructors

XQuery node constructors come in two flavors:
@ direct constructors and

© computed constructors.

Direct constructors

The syntax of direct constructors exactly matches the XML syntax:

any well-formed XML fragment f also is a correct XQuery expression
(which, when evaluated, yields f).

Note: Text content and CDATA sections are both mapped into text nodes by the
XQuery data model (“CDATA isn't remembered.”)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

280

Iteration (FLWORSs) Constructing XML Fragments

Direct element constructors

“CDATA isn't remembered”
<x><! [CDATA[foo & bar]]></x> = <x>foo & bar</x> }

Query

@ The tag name of a direct constructor is constant, its content,

however, may be computed by any XQuery expression enclosed in
curly braces {---}.

Computed element content
<x>4{ max((1,2,0)) I</x> = <x>42</x> J

» Double curly braces ({{ or }}) may be used to create content
containing literal curly braces.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 281

Computed element constructors

Definition
In a computed element constructor

element {e1} {ex}

expression e; (of type string or QName) determines the element name,
e, determines the sequence of nodes in the element’s content.

Example: computed element name and content

element { string-join(("foo","bar"),"-") } { 40+2 }
= <foo-bar>42</foo-bar>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 282

Iteration (FLWORSs) Constructing XML Fragments

Computed element constructors

An application of computed element constructors: i18n

Consider a dictionary in XML format (bound to variable $dict) with entries like

<entry word="address">
<variant lang="de">Adresse</variant>
<variant lang="it">indirizzo</variant>
</entry>

We can use this dictionary to “translate” the tag name of an XML element $e
into Italian as follows, preserving its contents:

element

{ $dict/entry[@word=name($e)]/variant[lang="it"] }
{ $e/@x, $e/node() }

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 283

Constructing XML Fragments
Direct and computed attribute constructors

@ In direct attribute constructors, computed content may be
embedded using curly braces.

Computed attribute content

<x a="{(4,2)}"/> = <x a="4 2"/>
<x a=|l{{ll b=)}})/> = <x b=u}u a=n{n/>
<X a="’" b=""’/> = <x a="’'" b="""/>

@ A computed attribute constructor attribute {e;} {e>} allows
to construct parent-less attributes (impossible in XML) with
computed names and content.

A computed and re-parented attribute

let $a := attribute {"a"} { sum((40,2)) }
return <x>{ $a }I</x>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 284

Iteration (FLWORSs) Constructing XML Fragments

Text node constructors

Text node construction

Text nodes may be constructed in one of three ways:
© Characters in element content,
© via <! [CDATA[---11>, or
© using the computed text constructor text {e}.

Content sequence e is atomized to yield a sequence of type
anyAtomicType*. The atomic values are converted to type string and
then concatenated with an intervening "._".

If eis (), no text node is constructed—the constructor yields ().

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 285

Examples: computed text node constructor

Explicit semantics of text node construction text {e}
if (empty(e))
then ()
else text { string-join(for $i in data(e)
return string($i),

u‘_‘u) })
Text node construction examples
text { (1,2,3) } = text { "1 23"}
let $n := <x>
<y/><z/>

</x>//name(.) = <t>x y z</t>

return <t>{ text {$n} }</t>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 286

S i UL Faens
XML documents vs. fragments

@ Unlike XML fragments, an XML document is rooted in its
document node. The difference is observable via XPath:

@ Remember the (invisible) document root node!

— xyxml
b doc("xy.xml")/* = <x><y/></x>
2 <y/>
3 | </x> X><y/></x> /% = <y/>

The context node for the first expression above is the document node for
document xy.xml.

@ A document node may be constructed via document {e}.

Creating a document node

(document { <x><y/></x> })/* = <x><y/></x>

v

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 287

S i UL Faens
Processing element content

@ The XQuery element constructor is quite flexible: the content
sequence is not restricted and may have type itemx.

@ Yet, the content of an element needs to be of type nodex*:

@ Consecutive literal characters yield a single text node containing
these characters.
Expression enclosed in {---} are evaluated.
Adjacent atomic values are cast to type string and collected in a
single text node with intervening "._".
A node is copied into the content together with its content. A/l
copied nodes receive a new identity.
Then, adjacent text nodes are merged by concatenating their
content. Text nodes with content "" are dropped.

© 0 00

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 288

Iteration (FLWORSs) Constructing XML Fragments

Example: processing element content

[l Evaluate the expression below
count (
<x>Fortytwo{40 + 2}{ "foo",3.1415,<y><z/></y>,
(mr,mm) [1] ¥</x>/node ()

Solution:
The constructed node is

/
text e oy
oz

"Fortytwo42foo.3.1415"

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

289

Iteration (FLWORSs) Constructing XML Fragments

Well-formed element content

XML fragments constructed by XQuery expressions are subject to the
XML rules of well-formedness, e.g.,

@ no two attributes of the same element may share a name,

@ attribute nodes precede any other element content.3°

Violating the well-formedness rules

let $id := "id"
return)
element x { = 4 (dynamic error)

attribute {$id} {0},
attribute {"id"} {1} }

<x>foo{ attribute id {0} }</x> = 4 (type error)

39The content type needs to be a subtype of
attribute(*)*, (element (*) |[text () |---)*.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

290

Iteration (FLWORSs) Constructing XML Fragments

Construction generates new node identities

element x {e}: Deep subtree copy

let $e := <a><c><y>foo</y></c>
let $x := element x { $e } = false()
return exactly-one($e//y) is exactly-one($x//y)

v

@ Node constructors have side effects. @

Referential transparency is lost! J

let $x := <x/> _ £3150() | let $d := docégri) = true()

return $x is $x return $d is

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 291

Construction establishes document order

[0 Result of the following query?

let $x := <x/>

let $y := <y/>

let $unrelated := ($x, $y)

let $related := <z>{ $unrelated }</z>/*

return ($unrelated[1] << $unrelated[2],
$related[1] << $related[2])

Solution

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

Construction: pair join partners

A join query
let $a := <a><c>0</c>
<c>0</c><c>1</c><ec>2</ec>

let $x := <x><z id="2">two</z><z id="0">zero</z>
<y><z id="0">zero’</z><z id="3">three</z></y>
</x>
for $c in $a/b/c
for $z in $x//z[@id eq $c] (: join predicate :)

return <pair>{ $c,$z/text() }</pair>

Result

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 293

Grouping (attempt #1)

A grouping query

let $a := <a><c>0</c>
<c>0</c><c>1</c><ec>2</c>

let $x := <x><z 1id="2">two</z><z id="0">zero</z>

<y><z id="0">zero’</z><z id="3">three</z></y>
</x>
for $c in $a/b/c
return <group>{
$c, <mem>{ for $z in $x//z[@id eq $c]
return $z/text() }</mem>

}</group>

@ Aggregate functions (sum, count, ...) may be applied to group
members, i1.e., element mem inside each group.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 294

Grouping (attempt #1)

Result (NB: group of <c>0</c> appears twice)

<group><c>0</c><mem>zerozero’</mem></group>
<group><c>0</c><mem>zerozero’</mem></group>
<group><c>1</c><mem/></group> < empty group!
<group><c>2</c><mem>two</mem></group>

Remarks:
@ The preservation of the empty group for <c>1</c> resembles the
effect of a relational left outer join.

@ The duplicate elimination implicit in $a/b/c is based on node @
identity but we group by value (@id eq $c).
= Such groupings call for value-based duplicate elimination.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 295

Grouping (attempt #2)

Improved grouping query
let $a := --- unchanged - - -
let $x := --- unchanged - --
for $c in distinct-values($a/b/c)
return <group>{
<c>{ $c }</c>,
<mem>{ $x//z[0@id eq $c]/text() }</mem>
}</group>

Note:
@ Need to “rebuild” element c ($c bound to values).

@ Inner for loop replaced by equivalent XPath expression.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

296

User-Defined Functions
XQuery: user-defined functions

It is typical for non-toy XQuery expressions to contain user-defined
functions which encapsulate query details.

® User-defined functions may be collected into modules and then
"import’'ed by a query.

@ Function declarations may be directly embedded into the query
prolog (prepended to query, separated by ';").

Declaration of n-ary function f with body e
declare function f($p; as t1, ...,$p, as t,) as top { e }

@ If t; is omitted, it defaults to item() *.
@ The pair (f, n) is required to be unique (overloading).

@ Atomization is applied to the j-th parameter, if t; is atomic.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

297

Iteration (FLWORs) User-Defined Functions

User-defined function examples

Form textual root-to-node paths

declare default function namespace
"http://www-db.in.tum.de/XQuery/functions";

declare function path($n as node()) as xs:string
{ fn:string-join(for $a in $n/ancestor-or-self: :*
return fn:name($a), "/")

+s

let $a := <a><c><d/></c><d/>
return $a//d/path(.)

= ("/a/b/c/d","/a/b/d")

Avoid to place user-def'd functions in the XQuery builtin function
namespace (predefined prefix £n).

= Use explicit prefix for user-def'd or builtin functions.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

298

User-defined function examples

Reverse a sequence
Reversing a sequence does not inspect the sequence’s items in any way:
declare function reverse($seq)
{ for $i at $p in $seq
order by $p descending

return $i

};

reverse((42,"a",,doc("foo.xml"))

Note:
@ The calls f() and f(()) invoke different functions.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

299

Iteration (FLWORSs) User-Defined Functions

Uder-defined functions: recursion

Trees are the prototypical recursive data structure in Computer Science

and it is natural to describe computations over trees in a recursive
fashion.*0

Simulate XPath ancestor via parent axis

declare function ancestors($n as node()?) as node()*
{ if (fn:empty($n)) then ()

else (ancestors($n/..), $n/..)
}

0 Questions

@ Will the result be in document order and duplicate free?

@ What if we declare the parameter type as node () *7?

“OThis is a general and powerful principle in programming: derive a function’s
implementation from the shape of the data it operates over.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 300

Answers

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Iteration (FLWORSs) User-Defined Functions

User-defined functions: recursion examples

[0 Purpose of function hmm and output of this query?

declare function local:hmm($e as node()) as xs:integer
{ if (fn:empty($e/*)) then 1
else fn:max(for $c in $e/*
return local:hmm($c)) + 1
s

local:hmm(<a>
<c><d>foo</d><e/></c>
)

Good style:
@ Use predefined namespace local for user-def’'d functions.

@ hmm has a more efficient equivalent (cf. a previous slide 262),
exploiting the recursion “built into” axes descendant and ancestor.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 302

User-Defined Functions
User-defined functions: “rename” attribute

Rename attribute $from to $to

declare function local:xlate($n as node(),
$from as xs:string,
$to as xs:string)
{ typeswitch ($n)
case $e as element() return
let $a := ($e/0*) [name(.) eq $from]
return
element
{ node-name($e) }
{ $e/(@* except $a),
if ($a) then attribute {$to} {data($a)}
else (),
for $c in $e/node()
return local:xlate($c, $from, $to) }
default return $n

};

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

303

Iteration (FLWORSs) User-Defined Functions

User-defined functions:

Invoke xlate

local:xlate(<x id="0" foo="!">
foo
<y zoo="1">bar</y>
</x>,
llfooll
"bar“;
4
<x id="0" bar="!">
foo
<y zoo="1">bar</y>
</x>

v

“rename” attribute

@ NB: This constructs
an entirely new tree.

@ In XQuery 1.0, there is
currently no way to
modify the properties
or content of a node.

@ XQuery Update will fill
in this gap (work in
progress at W30).

N.B.: XSLT (see above) has been designed to support XML

transformations like the one exemplified here.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06 304

Iteration (FLWORs) User-Defined Functions

“Rename” attribute in XSLT

XSLT: rename attributes foo to bar

<xsl:template match="@foo">
<xsl:attribute name="bar">
<xsl:value-of select="."/>
</xsl:attribute>
</xsl:template>

<xsl:template match="node() |@x*">
<xsl:copy>
<xsl:apply-templates select="node() |@*"/>
</xsl:copy>
</xsl:template>

Remember:
@ The XSLT processor implicitly matches the given pattern rules
against the input tree (recursive traversal “built into” XSLT).
@ > 1 pattern matches: more specific rules override generic rules.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

305

User-Defined Functions
XQuery: the missing pieces

@ This chapter did not cover XQuery exhaustively. As we go on, we
might fill in missing pieces (e.g., typeswitch, validate).
@ This course will not cover the following XQuery aspects:

» (namespaces),
» modules (declaration and import),
» collations (string equality and comparison).

Reminder: W3 XQuery specification

http://www.w3.org/TR/xquery/
(Has entered Candidate Recommendation phase as we speak.)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

306

http://www.w3.org/TR/xquery/

Part Xl

Mapping Relational Databases to XML

Marc H. Scholl (DBIS, Uni KN) XML and Databases

N
Outline of this part

@ Mapping Relational Databases to XML
@ Introduction
@ Wrapping Tables into XML
@ Beyond Flat Relations
@ Generating XML from within SQL

@ Some XML Benchmarking Data Sets

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

308

Introduction
Why map relational database contents to XML?

@ Interoperability: we may want to use (parts of) our RDB contents
in many different application contexts (XML as data interchange
format).

@ Reconstruction: we might have stored (parts of) our XML
documents in an RDBMS in the first place (RDBMS as XML store).

@ Dynamic XML contents: we may use RDBMS queries to retrieve
dynamic XML contents (cf. dynamic Web sites).

@ Wrapping: everybody likes XML ..., so why don't we give it to
them?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 309

Why do we look at that mapping?

What we're really interested in is the mapping in the opposite direction:

How to get XML into a database!
@ Yes, but ...

this one is easier to start with,

we do get some insight for the other mapping,

we can see some of the problems,

we'll see some of the “standard” XML benchmark data,

we'll see in what respect XML supports semi-structured data,
we'll learn more about SQL as well.

vV v.v v v Vv

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

310

e iy Tl B DS
Representing relational tables in XML

is easy, since they have such a simple structure:

@ In a straightforward mapping, we generate elements for the relation,
for the tuples, and for the attribute values.

Example

Consider a relational schema Employees(eno, name, salary, phone),
and a corresponding table

<Employees>
Employees ORI
eno name salary phone <Employee>
E— <eno>007</eno>
. . : : <name>James</name>
007 James 1,000,000 123456 = <salary>1,000,000</salary>
<phone>123 456</phone>
</Employee>

</Employees>

@ This is but one possible representation! There are many more . ..

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 311

Mapping RDBs to XML Wrapping Tables into XML

Schemas of relational tables

@ In the XML representation just shown, every <Employee> element
“carries the relational schema’ of the Employees relation.

@ This can be considered some kind of “self-descriptive”
representation.

» As such, it incurs quite some (space) overhead— “attribute” names
are “stored” twice with each value!

» On the other hand, missing (NULL) values are easily represented by
leaving them out.

» Also, deviations from the given schema, such as extra attributes,
would be covered easily (— semi-structured data).

@ Even more self-descriptive representations can be chosen . ..

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 312

Mapping RDBs to XML Wrapping Tables into XML

Fully self-descriptive table representation

Completely generic XML “table” representation

<relation name="Employees">

<tuple>
<attribute
<attribute
<attribute
<attribute

</tuple>

</relation>

name="eno">007</attribute>
name="name">James</attribute>
name="salary">1,000,000</attribute>
name="phone">123 456</attribute>

Obviously, we could also represent table and attribute names using
additional XML elements instead of XML attributes.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

313

Mapping RDBs to XML Wrapping Tables into XML

Deriving DTDs for relational schemas

Given the schema of a relational table, we can generate a DTD that
describes our chosen XML representation.

DTD for the (first) XML representation of the Employees relation

<!DOCTYPE Employees [
<!ELEMENT Employees (Employeex) >
<!ELEMENT Employee (eno, name, salary, phone) >

<!ELEMENT eno (#PCDATA) >
<!ELEMENT name (#PCDATA) >
<IELEMENT salary (#PCDATA) >
<!ELEMENT phone (#PCDATA) >

1>

@ Optional attributes (NULL allowed) can be characterized as such in
the element specification for Employee, e.g., “... phone? ..."

@ All representations (and DTDs) can easily be extended to capture
whole relational databases (as a collections of tables).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 314

Mapping RDBs to XML Beyond Flat Relations

Beyond flat relational tables

Example: Nested Relation

A bibliography referring to journal articles might be described as a “Nested
Relation” Articles, where each tuple has atomic attributes, e.g., for title,
Journal, year, pages, as well as relation-valued attributes (aka. sub-relations),
e.g., Authors with a set of (firstname, lastname)-tuples and Keywords:
(keyword, weight)-tuples:

Artcls(tit, jnl, yr, pp, Auths(fn, In), Kwds(kw, wt))
One tuple in that table might look like this:

Artcls

tit jnl yr pp Auths Kwds

fn In kw wt

bla jacm 2000 30-57 J. Doe java 0.9
S. Shoe object 0.5
pgmg 0.7

v
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 315

Mapping RDBs to XML Beyond Flat Relations

SQL-3 tables

SQL-3 offers a number of extensions beyond 1NF (flat) relations. For
example, attributes may now be record-, array-, or (multi-)set-valued.

Nested relations are thus part of the SQL standard!
Nested table Artcls can be described by the following DTD:

<!DOCTYPE Artcls [

<IELEMENT
<|ELEMENT
<IELEMENT
<|ELEMENT
<IELEMENT
<|ELEMENT
<ELEMENT
<|ELEMENT
<ELEMENT
<|ELEMENT
<ELEMENT
<|ELEMENT
<ELEMENT
<|ELEMENT

1>

Artcls (Art*) >

Art (tit, jnl, yr, pp, Auths, Kwds) >
tit (#PCDATA) >
jnl (#PCDATA) >
yr (#PCDATA) >
PP (#PCDATA) >
Auths (Auth*) >
Auth (fn, 1n) >
fn (#PCDATA) >
1n (#PCDATA) >
Kwds (Kwd*) >

Kwd (kw, wt) >
kw (#PCDATA) >
wt (#PCDATA) >

v

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

316

XML tree of the example (including database node)

tit 7 jnl T yr— pp Auths Kwds

N

bla jacm 2000 30-57 Auth Auth Kwd Kwd Kwd

fn lp f n 1n kw wt kw wt kw wt

J. Doe S. Shoe java 0.9 object 0.5 pImg 0.7

“*"_edges indicate possible repetition (set-valued elements).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 317

Mapping RDBs to XML Generating XML from within SQL

Generating XML from within SQL

SQL/XML, a part of SQL:2003, allows the construction of XML
fragments within a SELECT-FROM—WHERE query.

SQL/XML example 1: generate XML from (1NF) Employees-tuple
SELECT XMLELEMENT (NAME "Employee",

XMLATTRIBUTES (eno) ,

name) AS element
FROM Employees

I

element

<Employee ENO="007">James</Employee>

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06 318

Generating XML from within SQL

SQL/XML example 2: generate XML from (1NF) Employees-tuple

SELECT XMLGEN (’<Employee Name="{$name}">
<salary>{$salary/13}</salary>
</Employee>’) AS Empls
FROM Employees

I

Empls

<Employee Name="James"> <salary>76923.077</salary> </Employee>

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 319

XML Benchmarking Data Sets

Some XML benchmarking data sets ... (1)

Among the benchmarks that are commonly used for comparing the
performance of various aspects of XML database technologies, there are
quite a few that are more or less XML-wrapped relational data, others
have converted special-purpose legacy data formats into XML.

@ Xmark is a very popular XML benchmark. It models an Internet
auctioning application. The data used is not XML wrapped relations
(the benchmark has been developed for XML), but quite a few bits
and pieces might as well have been transferred from (extended)
relational.

@ SwissProt is a large Bioinformatics protein “database”. Today, it is
offered in XML form, while it used to be in a special-purpose,
line-oriented “keyword-data” format.

» Swissprot XML databases typically exhibit multi-gigabyte file sizes.

» The hierarchical XML tag structure allows for rich annotation and
far-reaching queries on content.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 320

Some XML benchmarking data sets ... (2)

Swissprot Database Entry (original; non-XML)

ID
AC
DT
DT
DE
0s
oc

104K_THEPA STANDARD; PRT; 924 AA.

P15711;

01-APR-1990 (Rel. 14, Created)

10-MAY-2005 (Rel. 47, Last annotation update)

104 kDa microneme-rhoptry antigen.

Theileria parva.

Eukaryota; Alveolata; Apicomplexa; Piroplasmida; Theileriidae;

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

321

Some XML benchmarking data sets ... (3)

Swissprot XML Database Entry

<entry dataset="Swiss-Prot" created="1990-04-01" modified="2005-05-10">
<accession>P15711</accession>
<name>104K_THEPA</name>
<protein>
<name>104 kDa microneme-rhoptry antigen</name>
</protein>
<organism key="1">
<name type="scientific">Theileria parva</name>
<dbReference type="NCBI Taxonomy" id="5875" key="2"/>
<lineage>
<taxon>Eukaryota</taxon>
<taxon>Alveolata</taxon>

</lineage>
</organism>
<sequence length="924" mass="103626"
checksum="289B4B554A61870E" modified="1990-04-01">

MKFLILLFNILCLFPVLAADNHGVGPQGASGVDPITFDINSNQTGPAFLT
AVEMAGVKYLQVQHGSNVNIHRLVEGNVVIWENASTPLYTGAIVTNNDGP

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

322

Some XML benchmarking data sets ... (4)

@ MedLine is a commercial bibliographic database in the
biochemical /medical topic area.
Some XML database performance studies have been carried out
using an XML 'ified version akin to the journal bibliography discussed
above.

@ Astronomy data has also been used for benchmarking really large
data sets (satellites) beam down enormous amounts of—typically
simply structured—sensor data for (astro-) physical or
geo-observation experiments.

Here, (flat) relational representations would be possible, too.

@ DBLP*! is an on-line bibliographic service running on a special
purpose internal data representation. The data can be offloaded
from the server in a variety of formats, one of those is XML.

41dblp.uni—trier .de

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 323

dblp.uni-trier.de

Part XllI

Mapping XML to Databases

Marc H. Scholl (DBIS, Uni KN) XML and Databases

utline of this part
Mapping XML to Databases

@ Introduction
@ Relational Tree Encoding
@ Dead Ends
@ Node-Based Encoding
@ Working With Node-Based Encodings
€@ XPath Accelerator Encoding
@ Tree Partitions and XPath Axes
@ Pre-Order and Post-Order Traversal Ranks
@ Relational Evaluation of XPath Location Steps
@ Path-Based Encodings
@ Motivation
@ Data Guides
@ Skeleton Extraction and Compression
@ Data Vectors
@ Skeleton Compression and Semi-Structured Data
@ Improving Skeleton Compression

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Mapping XML to Databases Introduction

Mapping XML to Databases

We now start to look at our preferred mapping direction:
@ How do we put XML data into a database?
@ ... and how do we get it back efficiently?

@ ... and how do we run (XQuery) queries on them?

Mapping XML data to a database (and getting it back)

XML tree
£ g1

database

We will call the mapping £ an encoding in the sequel.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

326

ez
Exploiting DB technology

In doing so, our main objective is to use as much of existing DB
technology as possible (so as to avoid having to re-invent the wheel).

@ XQuery operations on trees, XPath traversals and node
construction in particular, should be mapped into operations over
the encoded database:

Our goal: let the database do the work!

XPath /construction
sl Tfl
Rel > Rel

relational query

@ Obviously, £ needs to be chosen judiciously. In particular, a faithful
back-mapping £~ ! is absolutely required.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 327

Mapping XML to Databases Introduction

How can we exploit DB technology?

@ Reuse knowledge gained by the DB community while you implement
a “native” XML database management system from scratch.
» |t is often argued that, if you want to implement a new data model
efficiently, there's no other choice.
@ Reuse existing DB technology and systems by defining an
appropriate mapping of data structures and operations.
» Often, relational DBMS technology is most promising, since it is most
advanced and mature.
» The challenge is to gain efficiency and not lose benchmarks against
“native” systems!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 328

Introduction
Native XML processors

. need external memory representations of XML documents, too!

@ Main-memory representations, such as a DOM tree, are insufficient,
since they are only suited for “toy” examples (even with today's
huge main memories, you want persistent storage).

@ Obviously, native XML databases have more choices than those
offered on top of a relational DBMS.

@ We will have to see whether this additional freedom buys us
significant performance gains, and

@ what price is incurred for “replicating” RDBMS functionality.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

329

Relational XML processors (1)

Recall our principal mission in this course:

Database-supported XML processors

We will use relational database technology to develop a highly efficient,
scalable processor for XML languages like XPath, XQuery, and

XML Schema.

We aim at a truly (or purely) relational approach here:

@ Re-use existing relational database infrastructure—table storage
layer and indexes (e.g., B-trees), SQL or algebraic query engine and
optimizer—and invade the database kernel in a very limited fashion

(or, ideally, not at all).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 330

Relational XML processors (2)

Our approach to relational XQuery processing:

@ The XQuery data model—ordered, unranked trees and ordered item
sequences—is, in a sense, alien to a relational database kernel.

@ A relational tree encoding € is required to map trees into the
relational domain, i.e., tables.

Relational tree encoding &

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 331

What makes a good (relational) (XML) tree encoding?

Hard requirements:
© ¢ is required to reflect document order and node identity.

» Otherwise: cannot enforce XPath semantics, cannot support << and
is, cannot support node construction.

Q ¢& is required to encode the XQuery DM node properties.

» Otherwise: cannot support XPath axes, cannot support XPath node
tests, cannot support atomization, cannot support validation.

© £ is able to encode any well-formed schema-less XML fragment
(i.e., £ is “schema-oblivious”, see below).

» Otherwise: cannot process non-validated XML documents, cannot
support arbitrary node construction.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

332

What makes a good (relational) (XML) tree encoding?

Soft requirements (primarily motivated by performance concerns):
@ Data-bound operations on trees (potentially delivering/copying lots
of nodes) should map into efficient database operations.
» XPath location steps (12 axes)

© Principal, recurring operations imposed by the XQuery semantics
should map into efficient database operations.

» Subtree traversal (atomization, element construction, serialization).

For a relational encoding, “database operations” always mean “table
operations” ...

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 888

Dead Ends
Dead end #1: Large object blocks

@ Import serialized XML fragment as-is into tuple fields of type CLOB
or BLOB:

"foo.xml" | fo0---

» The CLOB column content is monolithic and opaque with respect to
the relational query engine: a relational query cannot inspect the
fragment (but extract and reproduce it).

» The database kernel needs to incorporate (or communicate with) an
extra XML /XPath/XQuery processor = frequent re-parsing will
occur.

» This is not a relational encoding in our sense.

» But: see SQL/XML functionality mentioned earlier!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 334

Relational Tree Encoding Dead Ends

Dead end #2: Schema-based encoding
XML address database (excerpt)

<person>
<name><first>John</first><last>Foo</last></name>
<address><street>13 Main St</street>
<zip>12345</zip><city>Miami</city>
</address>
</person>
<person>
<name><first>Erik</first><last>Bar</last></name>
<address><street>42 Kings Rd</street>
<zip>54321</zip><city>New York</city>
</address>
</person>

Schema-based relational encoding: table person

id street zip
0 John Foo 13 Main St 12345 Miami
1

Erik Bar 42 Kings Rd | 54321 | New York

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

335

D= Bl
Dead end #2: Schema-based encoding

@ Note that the schema of the “encoding” relation assumes a quite
regular element nesting in the source XML fragment.

» This regularity either needs to be discovered (during XML encoding)
or read off a DTD or XML Schema description.

» Relation person is tailored to capture the specific regularities
found in the fragment.

@ Further issues:

» This encodes element-only content only (i.e., content of type
element (*)* or text()) and fails for mixed content.

» Lack of any support for the XPath horizontal axes (e.g., following,
preceding-sibling).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 336

Dead end #2: Schema-based encoding

Irregular hierarchy

<c>X</c><c/>

<c>Y</c>

<a>

A relational encoding

Issues:
@ Number of encoding tables depends on nesting depth.

@ Empty element c encoded by NULL€, empty element b encoded by
absence of «y (will need outer join on column b).

@ NULL? encodes absence of attribute, NULL? encodes absence of
element.
@ Document order/identity of b elements only implicit.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 337

Relational Tree Encoding Dead Ends

Dead end #3: Adjacency-based encoding
Adjacency-based encoding of XML fragments

 a

b>fo</b ®
Brtac/brs s gy

b ° °
@id 4+ text g RNe
() []

<d>b</d><e>ar</e> .
</c> text 1~ I
 text text

Resulting relational encoding

id parent tag text val
NULL a NULL | NULL
@id | NULL | "O"

b NULL | NULL
NULL | "fo" | NULL
NULL | "o" | NULL

@ NULL | NULL

-1 W NP O
O O N O O

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Dead Ends
Dead end #3: Adjacency-based encoding

@ Pro:

» Since this captures all adjacency, kind, and content information, we
can—in principle—serialize the original XML fragment.
» Node identity and document order is adequately represented.

o Contra:

» The XQuery processing model is not well-supported: subtree
traversals require extra-relational queries (recursion).

» This is completely parent—child centric. How to support
descendant, ancestor, following, or preceding?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

339

Relational Tree Encoding Node-Based Encoding

Node-based encoding

Several encoding schemes are based on an (appropriate) mapping of XML
nodes onto relational tuples. Key questions are:

@ How to represent node [Ds, and
@ how to represent XML-structure, in particular, document order.

Obviously, both questions are related, and—since we deal we tree
structures—we might as well think of an edge-based representation
scheme (in a tree, each non-root node has exactly one incoming edge!)

Most representations encode document order into node IDs by chosing
an appropriately ordered ID domain.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 340

Relational Tree Encoding Node-Based Encoding
Node IDs

Two very common approaches can be distinguished:
@ XML nodes are numbered sequentially (in document order).

@ XML nodes are numbered hierarchically (reflecting tree structure).

Observations:

@ In both cases, node ID numbers are assigned automatically by the
encoding scheme.

@ Sequential numbering necessarily requires additional encoding means
for capturing the tree structure.

@ Both schemes represent document order by a (suitable) numeric
order on the node ID numbers.

@ Both schemes envisage problems when the document structure
dynamically changes (due to updates to the document), since node
ID numbers and document structure/order are related! (see later)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 341

Relational Tree Encoding Node-Based Encoding

Sequential node ID numbering
Typically, XML nodes are numbered sequentially in document order.
@ For an example, see the adjacency-based encoding above
(id-attribute).
@ IDs may be assigned globally (unique across the document) or locally
(unique within the same parent node.)

Document structure needs to be represented separately, e.g., by means of
a “parent node ID" attribute (par).

In the most simple case (ignoring everything but “pure structure”), the
resulting binary relational table

id parent

could be considered a node-based (1 tuple per node ID) as well as an

- epresentation.*?
*2The edge-based representation would typically not include a tuple for the root
node ID.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 342

Relational Tree Encoding Node-Based Encoding

Hierarchical node ID numbering

While sequential numbering assigns globally unique 1Ds to all nodes,
hierarchical numbering assigns node IDs that are relative to a node’s
parent node’s ID.

Globally unique node IDs can then be obtained by (recursively)
prepending parent node IDs to local node IDs. Typically, “dot notation”
is used to separate the parts of those globally unique IDs:

(rootID).(rootchildID). - -.(parentID).(nodeID)

Observations:

@ In general, a node on level i of the tree (root = level 0) will have a
global node ID with i + 1 “components”: (IDg).(IDy).---.(ID;)

@ Such IDs represent tree structure as well.
@ (Local) node IDs need not be globally unique.

@ This could also be considered a path-based representation.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 343

Relational Tree Encoding Node-Based Encoding

The need for renumbering . ..

Depending on the choice of node IDs, updates to the document
(structure) may require the reassignment of IDs to (parts of) the
document'’s nodes.

@ Insertions and deletions of nodes/subtrees may require renumbering
of all following nodes within the document (global numbering) or
within the same parent (local).

@ In some cases, renumbering can be avoided, e.g., by leaving gaps
(sparse numbering).

Global Order Local Order Dewey Order

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 344

Relational Tree Encoding Working With Node-Based Encodings

Working with node-based encodings

Obviously, relational representations based on node-based encoding
(traditionally called “edge table encodings™) provide support for
(bi-directional) parent-child traversal, name tests, and value-based
predicates using the following kind of table:

edgetable

nodeID parentID elemname value ‘

As mentioned before, this table wastes space due to repetition of element
names. Furthermore, to support certain kinds of path expressions, it may
be beneficial to:
@ store paths instead of element names, so as to
» support path queries, while
» introduce even more storage redundancy; thus
@ use a separate (“path table™) to store the paths together with path
IDs.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 345

Relational Tree Encoding Working With Node-Based Encodings

Path table representation

Element names (or rather paths) can now be represented via path IDs in
the edge table, pointing (as foreign keys) to the separate path table:

edgetable

nodeID ‘ parentID ‘ pathID H value ‘

pathtable

pathID path

Notice that the path table entries represent paths of the form /bib/doc/author/name,
I.e., they record paths that end in element names, not values. Hence, they are type-
and not instance-specific: all document nodes that have identical root-to-element
paths are represented by a single entry in the path table!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 346

Tree partitions and XPath axes

Axes: , , preceding,

Given an arbitrary context node o, the XPath axes descendant,
ancestor, preceding, following cover and partition the tree
containing o.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

347

Tree partitions and XPath axes

Context node (here: £) is arbitrary

a
b/dl\e
| £ i
< PN [

g h J

{a...j} = {f}UUf/a::node()

ac{preceding, descendant,
ancestor, following}

NB: Here we assume that no node is an attribute node. Attributes
treated separately (recall the XPath semantics).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

348

T ey i annd $Psile £
The XPath Accelerator tree encoding

We will now introduce the XPath Accelerator, a relational tree encoding
based on this observation.

@ If we can exploit the partitioning property, the encoding will
represent each tree node exactly once.

@ In a sense, the semantics of the XPath axes descendant, ancestor,
preceding, and following will be “built into” the encoding =
“XPath awareness” .

@ XPath accelerator is schema-oblivious and node-based: each node
maps into a row in the relational encoding.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 349

XPath Accelerator Encoding Pre-Order and Post-Order Traversal Ranks

Pre-order and post-order traversal ranks

Pre-order/post-order traversal
(During a single scan through the document:) To each node v, assign its
pre-order and post-order traversal ranks (pre(v),).
Pre-order/ traversal rank assignment
08
113/31\4(0e
| 4 £ Ny
20 e e
: 60/ \70 9«|v
g h 7])

Winter 2005/06 350

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Pre-Order and Post-Order Traversal Ranks
Pre-order/post-order: Tree isomorphism

:»a, .
O% +. ""'ge.., L
£ i
| d £ N\ i 5T, of
e 5e sSe =+ - eh
c AN | +i0 *g
6% 71?1 oe 4 °d
J 1 Tap
| o | I N | pre
<0'O) :;- 6 T é T T
v
pre(v) encodes document order and node identity
vy << v <= pre(vy) < pre(va) | vi is vo <= pre(vy) = pre(v»)
v

Pre-Order and Post-Order Traversal Ranks
XPath axes in the pre/post plane

Plane partitions = XPath axes, o is arbitrary!

post
a +a él
b/d|\e T * | °i |
I £ \i T
o] 4 I'f onh
c / \ | -+ | o8
g h j 10y °d |

Pre/post plane regions = major XPath axes

The major XPath axes descendant, ancestor, following, preceding
correspond to rectangular pre/post plane windows.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 352

XPath Accelerator Encoding Pre-Order and Post-Order Traversal Ranks

XPath Accelerator encoding
XML fragment f and its skeleton tree

<a>

c 0%

<!——d{—> 9/3;52

<e><f><g/><?h?></f> 1 d .57 i
<i>j</i> 22 }'} H

o> e

Pre/post encoding of f: table accel

pre post par kind tag text
9 NULL | elem a NULL
elem b NULL
text | NULL c

com NULL d

elem e NULL
elem f NULL
elem g NULL
pi NULL h

elem i NULL
text | NULL j

©O0~NO O WN = O
ONP WOION O~
OO OORrO

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

353

XPath Accelerator Encoding Relational Evaluation of XPath Location Steps

Relational evaluation of XPath location steps

Evaluate an XPath location step by means of a window query on the
pre/post plane.

© Table accel encodes an XML fragment,

@ table context encodes the context node sequence (in XPath
accelerator encoding).

XPath location step (axis a) = SQL window query

SELECT DISTINCT v'.*
FROM context v, accel v/
WHERE v’ INSIDE window(a, v)
ORDER BY V'.pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 354

XPath Accelerator Encoding Relational Evaluation of XPath Location Steps

10 XPath axes* and pre/post plane windows

Window def’s for axis a, name test t (x = don’t care)

Axis o Query window window(a: : t, v)

pre post par kind tag
child ((v.pre, %) , (%, v.post) , v.pre , elem, t)
descendant ((v.pre,x) , (x,v.post), * ,elem, t)
descendant-or-self ([v.pre,*) , (x,v.post] , * ,elem, t)
parent (v.par , (v.post,*x), * ,elem, t)
ancestor ((x,v.pre) , (v.post,*), * ,elem, t)
ancestor-or-self {(,v.pre] , [v.post,*x) , * ,elem, t)
following ((v.pre,x) , (v.post,*), * ,elem, t)
preceding ((*,v.pre) , (x,v.post), = ,elem, t)
following-sibling ((v.pre, x) , (v.post,*) , v.par , elem, t)
preceding-sibling ((x,v.pre) , (x,v.post) , v.par , elem, t)

“3Missing axes in this definition: self and attribute.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

355

Relational Evaluation of XPath Location Steps
Pre/post plane window = SQL predicate

descendant: : foo, context node v
v/ INSIDE ((v.pre,), (*, v.post), x, elem, foo)

~

v/.pre>v.pre AND V'.post < v.post AND
v/ .kind = elem AND v'.tag = foo

ancestor-or-self: :*, context node v

v/ INSIDE ((x, v.pre], [v.post, x), x, elem, *)

v/.pre <=v.pre AND V’.post >=v.post AND
v/ .kind = elem

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

356

Relational Evaluation of XPath Location Steps
(e,f)/descendant: :node()

Context & frag. encodings

context accel | F%
wpost... Mpost E

ils |

OCONOUNPBWNRO
ONPWUION O
[N

v

SQL query with expanded window() predicate
SELECT DISTINCT vi.x*
FROM context v, accel vl
WHERE vl.pre > v.pre AND vl.post < v.post
ORDER BY vil.pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

357

Relational Evaluation of XPath Location Steps
Compiling XPath into SQL

path: an XPath to SQL compilation scheme (sketch)

SELECT Vv/.x
path(fn:root()) = FROM accel v’
WHERE V'.pre= 0

SELECT DISTINCT v'.*
FROM path(c) v, accel V'

ath(c/a) = .
FEHE)) WHERE ' INSIDE window(cx, v)
ORDER BY V'.pre
SELECT DISTINCT v.x*
FROM path(c) v, accel v/
path(clal) = path(c)

WHERE v/ INSIDE window (e, v)
ORDER BY v.pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

358

Relational Evaluation of XPath Location Steps
An example: Compiling XPath into SQL

Compile fn:root () /descendant: :a/child: :text ()
path(fn:root () /descendant::a/child: :text())

SELECT DISTINCT v;.*
FROM path(fn:root/descendant: :a) v, accel v;
WHERE v; INSIDE window(child: :text (), v)
ORDER BY v;.pre

SELECT DISTINCT vy.%*

SELECT DISTINCT vp.*

FROM path(fn:root) v, accel v»
WHERE v, INSIDE window(descendant: :a, V)
ORDER BY v».pre

accel vy

WHERE v; INSIDE window(child: :text (), v)
ORDER BY vj.pre

FROM v,

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

359

Relational Evaluation of XPath Location Steps
Does this lead to efficient SQL7 Yes!

@ Compilation scheme path(-) yields an SQL query of nesting depth n
for an XPath location path of n steps.
» On each nesting level, apply ORDER BY and DISTINCT. @
@ Observations:
@ All but the outermost ORDER BY and DISTINCT clauses may be safely
removed.
@ The nested SELECT-FROM-WHERE blocks may be unnested without any
effect on the query semantics.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 360

XPath Accelerator Encoding Relational Evaluation of XPath Location Steps

Result of path(-) simplified and unnested

path(fn:root () /descendant: :a/child: :text())

SELECT
FROM
WHERE
AND

AND
ORDER BY

DISTINCT vq.%

accel vz, accel v, accel v,

vy INSIDE window(child: :text (), v2)
v> INSIDE window(descendant: :a, v3)
va.pre = 0

vi.pre

@ An XPath location path of n steps leads to an n-fold self join of

encoding table accel.

@ The join conditions are

» conjunctions v' of

» range or equality predicates v'.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

multi-dimensional window!

Winter 2005/06

b
Path-based encodings

Some observations:

@ In many cases, the volume of large XML documents mainly comes
from their text contents (PCDATA); their markup/structure is of
moderate size.

@ In contrast, most queries tend to focus on structural aspects (XPath
navigation, tag name tests, ...), with only occasional access to
character contents.

@ Many document collections—even though of only semi-structured
objects—share large fractions of structure across individual
documents/fragments.

Possible conclusions: try to ...

@ represent structure separate from contents,

@ keep structural representation in (main) memory,

@ identify common structure (and possibly contents as well), and store
only once

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 362

Data guides/skeletons

Separate structure from contents ...

@ Chose representations for XML structure (non-leaf nodes) and text
contents independently.
@ Store the two representations separate from each other, such that
structural info (“skeleton” or “data guide™)
» can be kept small (and thus, in main memory),
» supports major XQuery functionality (esp., XPath navigation)
efficiently,
and text contents data

» can be accessed only on demand,
» directed by structure (hence the term “data guide”).

Often, main memory-oriented data structures are used for the skeleton,
while external memory data structures hold text contents.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 363

Skeleton Extraction and Compression
Skeleton extraction

@ Conceptually, a skeleton of an XML document can be obtained by
replacing all text content (leaf) nodes of an XML tree with a special
“marker” (e.g., a hash mark “#"), indicating that some textual
content has been removed.

@ The resulting XML tree is a faithful representation of the structure
of the original document, while all actual content has to be stored
elsewhere.

@ Since the skeleton is small (compared to the whole document), it
may even be feasible to represent it as a DOM tree in main memory.

» If we assign (global) node IDs to text contents nodes (as usual),
those IDs can be used to access text contents from the skeleton.

» If text contents is stored separately in document order, we may not
even need the IDs, since a joint traversal of the skeleton and the list
of text contents nodes can bring them together.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 364

Path-Based Encodings Skeleton Extraction and Compression

Skeleton compression

Notice the following:

@ the more regular the structure of the XML document (collection),
the more identical subtrees the skeleton will have,

@ it conserves (memory) space, if we fold identical, adjacent subtrees
in the skeleton,

© an even more compact representation can be obtained, if we share
common subtrees, resulting in a skeleton DAG.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 365

Skeleton Extraction and Compression
Skeleton compression (example)

Given this XML document . ..

book m N art

JIN/IN O ZIN D JIN G ZIN /]

au tit pub au tit pub au tit pub au au tit au au tit a tit

nam, tit, pub1 nam, tit, pub2 nam, tit, pub3 nam, nam_ tit, nam nam_ tit nam tit,

v

© Replace text contents by special marker “#" to obtain skeleton.

@ Fold identical, adjacent subtrees to obtain first version of a
compressed skeleton.

© Share common subtrees obtaining compressed skeleton DAG.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 366

Skeleton Extraction and Compression
Skeleton compression (example)

Extract the skeleton . ..

— N

book book book art art art

JIN/IN O /IN O ZIN N /]

au tit pub au tit pub au tit pub au au tit au au tit tit

I T e e e e e O
WA A HHHHHHHEHEHEHE A HH#

@ Replace text contents by special marker “#" to obtain skeleton.

@ Fold identical subtrees to obtain first version of a compressed
skeleton.

© Share common subtrees obtaining compressed skeleton DAG.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 367

Skeleton Extraction and Compression
Skeleton compression (example)

Compress the skeleton (1) ...

bib
(3)
/ (2)\\
book art art

/IN /N /|

au tit pub au au tit au tit

[T T I |
#OH# H#H# H# % #

© Replace text contents by special marker “#" to obtain skeleton.

@ Fold identical subtrees to obtain first version of a compressed
skeleton.

© Share common subtrees obtaining compressed skeleton DAG.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 368

Skeleton Extraction and Compression
Skeleton compression (example)

Compress the skeleton (2) ...

© Replace text contents by special marker “#" to obtain skeleton.

@ Fold identical subtrees to obtain first version of a compressed
skeleton.

© Share common subtrees obtaining compressed skeleton DAG.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 369

Skeleton Extraction and Compression
Skeleton compression (example)

Resulting compressed skeleton, redrawn . ..

(3) bw
(2) |

book

W

#

N.B.: text contents could be stored in several, different formats.
In the literature, skeleton compression has been proposed in combination
with data vectorization ... (see below)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 370

Data vectors

For each distinct (element name) path from the document root to a text
node, create a relational table named after that path. Tuples contain
node IDs and text contents.

Example (continued from above)

@ Distinct paths from the root node to text contents nodes in the bib
document are: /bib/book/au, /bib/book/tit, /bib/book/pub,
/bib/art/au, /bib/art/tit.

@ Vectorization thus generates 5 tables:

/bib/book/au /bib/book/tit /bib/book/pub /bib/art/au /bib/art/tit
D text D text
namp ... [B1tg ... | puby tity

E namp R I o &) ... | pubz ! tits
namg ... | tit3 ... | pubs tite

Question now: What are suitable “IDs” for text contents nodes in this
representation?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 371

Path-Based Encodings Data Vectors

Array implementation of data vectors

If we assign |IDs locally, within each of the vectorized tables, and in
document order, i.e., we sequentially number tuples in those tables,
sorted by document order,

@ we can completely dispense with the ID columns, and use offset
addressing (like in an array or vector—hence the name!),

@ a parallel, sequential traversal of the skeleton and the data vectors
will allow faithful reproduction of the original document,

@ structure-oriented queries will only need to access those large
tables/vectors, whose text contents is really needed for query
processing (predicate testing or result construction).

The vectorization approach to data storage corresponds to a full vertical
partitioning scheme for relational tables.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 372

Path-Based Encodings Skeleton Compression and Semi-Structured Data

Skeleton compression and semi-structured data

Skeleton compression works most effectively, if the XML data exhibits a
highly regular structure.

44 45

In the extreme (XML-wrapped flat table data)

compressed
skeleton

a
dan

dn

R
B
by
b>

bn

(4]
(6]

A

R
| (n)
(tuple)

/ I\
B

C

the 3 value vectors:

AV BV CV
A B C
+ ai bl C1
n bn Cn

. an RDBMS would/could do (roughly) the same: schema info
separate from values, cardinality (the “(n)") in the catalogs.

“n the sequel, we discuss skeleton compression together with data vectorization.

45Also, we do not explicitly show the “#" leaf nodes.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

373

Path-Based Encodings Skeleton Compression and Semi-Structured Data
Another example

XML-wrapped nested table data
(think of: D...document, A...author, K...keyword, xS. .. x-set)

DS ’ the 3 value vectors:
D AS KS compresse
skeleton DV AV KV
A K
DS D A K
d1 ai kl dl 2 kl
2 k2 (n) . . .
ds as ks — (tuple) + : : :
ds Ky \ dn dn Kn
: : D S KS any1 Knya
: ’ (2) ‘ (2) . .
dn a1 kon-1 A K
a2n kan azn kon

N.B. Notice how this works, if and only if each document has exactly the
same number of authors and keywords!
e

Less regularity

Assume no. of authors and/or keywords varies with documents . ..
Skeleton compression suffers from lack of uniformity and adjacency!

not so very much compressed skeleton

DS
D AS KS DS
ALK 7
o]} a ki (tuple) (tuple) --- _ (tuple)
ko /
o)} as ks -~ D
dg

AS KS AS KS

d.n 321;71 k21-1—1 \(2><(2)/
A K

aocn k2n

+ (... the value vectors as above)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

375

Path-Based Encodings Skeleton Compression and Semi-Structured Data

Sharing of common subtrees (1)

In the example on the previous slide,

o if adjacent document tuples share the exact same number of
authors and keywords,

> no new “(tuple)”-node will be generated in the compressed skeleton,

but rather
» the multiplicity counter “(i)" of the corresponding
"DS — (tuple)”-edge will be incremented;

@ if, however, non-adjacent tuples share the exact same number of
authors and keywords,

» new "DS — (tuple)”-edges will be created between the “DS" node
and the corresponding “(tuple)”-node.

Notice the “spaghetti” structure of the compressed skeleton!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

376

Skeleton Compression and Semi-Structured Data
Sharing of common subtrees (2)

As a result, a compressed skeleton will have
@ as many “(tuple)” nodes as there are distinct (# authors, #
keywords)-pairs
@ each of these nodes will have as many edges connecting to the
“DS" parent node as there are groups of adjacent documents
sharing this number of authors and keywords,

@ each of these edges will have a multiplicity counter “(/)" attached
to it, giving the cardinality of the corresponding group of adjacent
documents.

The “DS” node and its “(tuple)” children are linked by an ordered
sequence of multiple edges.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

377

Path-Based Encodings Skeleton Compression and Semi-Structured Data

Example of the general case
For N documents with 1...n authors and 1...m keywords, we get:

() Ds (i)
(tupl% .. .mup/@

KS -

AS ... AS \\~-KS
\\A/m> K/m>

@ Each “(tuple)” node connects to exactly one “AS” and one "KS" node.

@ Edges with /; > 1 represent sequences of i; adjacent documents with same
#(authors) and #/(keywords).

@ The sum of all jj's is equal to .

@ Not all of the n "AS” and m "KS" nodes are necessarily present.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 378

Path-Based Encodings Skeleton Compression and Semi-Structured Data
Discussion (1)

Pros:

@ Skeleton extraction/compression follows the (database) idea of
separating type and instance information.

@ (Compressed) skeletons are typically small enough to fit into main
memory, while only the (mass) instance data needs to be paged in
from secondary storage.

@ Experiments reported in the literature prove large performance gains
compared to both

» completely disk-based storage schemes (because of skeleton being
kept in main memory), and

» completely memory-based schemes (because of capability to handle
much larger document collections).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 379

Path-Based Encodings Skeleton Compression and Semi-Structured Data
Discussion (2)

Cons:

@ Skeletons do not compress too well in some cases (semi-structured
data).

@ Compressed skeletons exhibit very clumsy structure (typically
implemented in some kind of spaghetti, main memory-only data
structure).

@ Consequently, if skeleton does not fit into memory, usefulness is
unclear.

Possible ways out ...
@ Improve compression scheme.
@ Chose skeleton representation also suitable for secondary storage.

@ Combine basic ideas with other representation schemes.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

380

Improving Skeleton Compression
Improving skeleton compression

Basic idea:
@ Even more separation between structural (type) and contents
(instance) information. For instance:
» number of repetitions of set/list-valued substructures is not part of
structural (skeleton), but of contents representation,
» while the fact that there is a repeating substructure is clearly part of

the type info.

In the fully regular, flat table example:
R compressed the 3 value vectors

_— skeleton

A B C we have already seen before

ai bl C1 R* L

dn b2 Co - | +

(tuple)

s b c / | \ a cardinality counter n stored

Y A B C somewhere together with these.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 381

Improving Skeleton Compression
Nested table example

In general, we need multiple cardinality counters, one for each parent
node:

DS-(t) DS-(t)-AS-A DS-(t)-KS-K
DS cnt cnt cnt
|* n 1 2
(tuple) 2 1
/| + 5 ! 5 !
D AS KS . .

* *

A K
+ (... the value vectors as above)

= Keep one count-vector per “*” path.
(assuming we want to store counts in vectors again, to avoid new kinds
of data structures)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 382

Path-Based Encodings Improving Skeleton Compression

Space & time comparison

Space needed.
Compared to the original skeleton compression scheme, this structure
does not introduce any space overhead, on the contrary:

@ repeating identical structural information is avoided, while

@ the counters have been present in the compressed skeleton before.

Algorithms.
Like the original scheme, this structure lends itself towards sequential,
top-down processing (e.g., document serialization, SAX parsing).

@ In the original scheme, traversal needs to follow a more “blown-up”
tree structure, while

@ in the modified scheme, traversal needs to tally counters.

The (in-memory) cost should be comparable.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 383

Path-Based Encodings Improving Skeleton Compression

More complex (semi-) structures

In reality, single documents have more “attributes”, authors have more
attributes, among them more repeating items, such as firstnames . ..

The compressed skeleton could then look like this:

(docset)

|*

(doc)

|
(Did) (Dtit) (auset) (kwset)
|- |
(author) (keyw)
P N /N

(Aid) (fnset) (lastn) (kw) (wt)

(fn)

. nothing more than bare structural information (aka. a “schema”).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 384

Path-Based Encodings Improving Skeleton Compression
Future work

This initial idea needs further elaboration.
@ Similar idea can be applied for optional substructures (0 or 1
repetition).
@ Still no good solution for non-consecutive shared substructures.
@ Skeleton extraction and compression can be viewed as one approach
to schema inference for XML documents.
@ In the general case, though, it has already been shown that

» Generating a DTD from an XML document is an A'P-complete
problem!

So, there are performance limitations . ..

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 385

Part XIlI|

Index Support

Marc H. Scholl (DBIS, Uni KN) XML and Databases

N
Outline of this part

@ Index Support
@ Overview

@ Hierarchical Node IDs and BT Trees
@ Pre/Post Encoding and B* Trees
@ Pre/Post Encoding and R Trees

@ More on Physical Design Issues

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

387

Index Support Overview

Index support

All known database indexing techniques (such as B trees, hashing, ...)

can be employed to—depending on the chosen representation—support

some or all of the following:

uniqueness of node IDs,

direct access to a node, given its node ID,

ordered sequential access to document parts (serialization),
name tests,

value predicates,

structural traversal along some or all of the XPath axes,

We will only look into a few interesting special cases here.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

388

Hierarchical Node IDs and B+ Trees
Hierarchical node IDs and B™ trees
Using a hierarchical numbering scheme for node IDs captures the

complete XML structure in the IDs. Hence, no separate representation of
structure is needed.

A simplified edge table could be stored as a BT tree over the nodelD field:

‘ nodelID ‘ elemname ‘ value ‘

B* tree
on nodelID

Since nodeIDs are of the hierachical form

(root#).(rootchild#). - --.(parent#).(node#), with local numbers
assigned within each parent, a left-to-right traversal of all leaf node
entries of the BT tree reads all element nodes in document order.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 389

Pre/post encoding and BT trees

As we have already seen before, the XPath Accelerator encoding leads to
conjunctions of a lot of range selection predicates on the pre and post
attributes in the resulting SQL queries.

Two BT tree indexes on the accel table, defined over pre and post

attributes:
B* tree B* tree
on pre on post

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 390

Index Support Pre/Post Encoding and B+ Trees

Query evaluation (example)

Evaluating, e.g., a descendant step can be supported by either one of
the BT trees:

post N
I \'\\ Two options:

@ Use index on pre.

@ Start at v and scan
along pre.

@ Many false hits!

ueds

@ Use index on post.

@ Start at v and scan
along post.

pre @ Many false hits!
scan

@ Many false hits either way!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

391

Query evaluation using index intersection

Standard BT trees on those columns will support really efficient query

evaluation, if the DBMS optimizer generates index intersection
evaluation plans.

Query evaluation plans for predicates of the form
“pre € [...] A post € [...]" should will then

@ evaluate both indexes separately to obtain pointer lists,
@ merge (i.e., intersect) the pointer lists,

© only afterwards access accel tuples satisfying both predicates.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

392

Pre/post encoding and R trees

In the geometric/spatial database application area, quite a few
multi-dimensional index structures have been developed. Such indexes
support range predicates along arbitrary combinations of dimensions.

@ Diagonal of pre/post plane

Pre/post encoding of a 100-node densely populated.
XML fragment @ R-Trees partition plane
post incompletely, adapts well to
. A0 node distribution.
L) . .‘ . .
. v @ Node encodings are points
L) . . .
‘\s" in 5-dimensional space.
d .
“ \\‘ @ 5-dimensional R-Tree
\ N\ evaluates XPath axis and
\,\ node tests in parallel.
.
0\;
- pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 393

Preorder packed R tree

R tree loaded in ascending
preorder, leaf capacity 6 nodes

post

&%

R
pre

Insert node encodings into
R tree in ascending order of
pre ranks.

Storage utilization in R tree
leaf pages maximized.

Coverage and overlapping of
leaves minimized.

Typical: preorder packing
preserves document order
on retrieval.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 394

Index Support More on Physical Design Issues

More on physical design issues

As always, chosing a clever physical database layout can greatly improve
query (and update) performance.

@ Note that all information necessary to evaluate XPath axes is
encoded in columns pre and post (and par) of table accel.

@ Also, kind tests rely on column kind, name tests on column tag
only.

Which columns are required to evaluate the steps below?

Location step Columns needed

descendant: :text ()
ancestor: :x
child: : comment ()
/descendant: :y

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 395

i o Plysi=] Dect e
Splitting the encoding table

These observations suggest to split accel into binary tables:

Full split of accel table

prepost prepar rekind

| piepost | it par | pre “iand |
0 9 0 | NU elem
1

elem

pretag
]

1 1 0 1

2 0 2 1 2 | text
3 2 3 0 3 com
4 8 4 0 4 | elem
5 5 5 4 5 | elem
6 3 6 5 6 | elem
7 4 7 5 7 i

8 7 8 4 8 eEem
9 6 9 8 9 | text

@ NB. Tuples are narrow (typically < 8 bytes wide)

= reduce amount of (secondary) memory fetched
= lots of tuples fit in the buffer pool/CPU data cache

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

396

1] - - 12
Vectorization

@ In an ordered storage Dense pre column
(clustered index!), the pre

. . repost
column of table prepost is plain ﬂ@l

redundant.

@ Tuples even narrower. Tree
shape now encoded by ordered
integer sequence (cf. “data
vectors” idea).

NP WUTON O

@ Use positional access to access such tables (— MonetDB).
» Retrieving a tuple t in row #n implies t.pre = n.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

397

Indexes on encoding tables?

@ Analyse compiled XPath query to obtain advise on which indexes to
create on the encoding tables.®

path(fn:root () /descendant: :a/descendant: :text())

SELECT DISTINCT vl.pre
FROM accel v2, accel vi

WHERE v2.kind = elem and v2.tag = a ia
AND v1.pre > v2.pre
AND v1.post < v2.post
AND v1.kind = text titext ()

ORDER BY vl.pre

} descendant

4®Supported by tools like the IBM DB2 index advisor db2advis.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 398

Index Support More on Physical Design Issues

Indexes on encoding tables

Query analysis suggests:

SQL index creation commands

© CREATE INDEX itag ON accel (tag)
© CREATE INDEX ikind ON accel (kind)
© CREATE INDEX ipar ON accel (par)

© CREATE UNIQUE INDEX ipost ON accel (post ASC)
© CREATE UNIQUE INDEX ipre ON accel (pre ASC) CLUSTER

® D—@: Hash/B-tree indexes (@)—(): B-tree indexes

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

399

i o Plysi=] Dect e
Resulting storage layer layout

Table and index contents (ordered!)

accel
RID pre post ---
Po 0 9
P1 1 1
P2 2 0
P3 S 2
P4 4 8
Ps 5 5
Pe 6 3
p7 7 4
P8 8 7
P9 9 6

ipost

RID post

P2
P1
P3
Pe
p7
Ps
P9
Ps
P4
Po

©OoO~NOUIPd WN - O

ikind

Po elem
P1 elem
P4 elem
Ps elem
P6 elem
Ps elem
P2 text
Po text
3 com
o7 pi

Notes:

@ p; in RID column: database internal row identifiers.
@ Rows of table accel ordered in preorder (CLUSTER).

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

400

Evaluation plan (DB2)

Plan for the query given above

FETCH
/ pre
SORT N\
unique accel
NLJOIN
index

FETCH —

pre,post IXAI\Q
— N TXSCAN
IXAND accel IXAND kind=text
hvs

RN RN |

IXSCAN TIXSCAN IXSCAN IXSCAN .

tag=a kind=elem > pre < post ikind
| | | |

itag ikind ipre ipost

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

401

More on Physical Design lssues
A note on the IBM DB2 plan operators

Query plan operators used by IBM DB2 (excerpt)

Operator Effect
IXSCAN Index scan controlled by predicate on indexed
column(s); yields row ID set
IXAND Intersection of two row ID sets; yields row ID set
FETCH Given a row ID set, fetch specified columns from
table; yields tuple set
SORT Sort given row ID/tuple set, optionally removing duplicates
NLJOIN Nested loops join, optionally using index lookup for inner
input
TBSCAN Scan entire table, with an optional predicate filter

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

402

Part XIV

Some Optimizations of the XPath Accelerator
Representation

Marc H. Scholl (DBIS, Uni KN) XML and Databases

R
Outline of this part

€ Scan Ranges
@ descendant Axis

€ Streched Pre/Post Plane

€@ XPath Symmetries

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Scan ranges: descendant axis

Consider a descendant step originating in context node v:

post

0,0 |

A significant fraction of the ipre and ipost B-tree index scan is

guaranteed to deliver false hits only.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

405

descendant Axis
Shrink-wrapping the descendant window

Subtree below v
@ v has min. postorder rank below v

ot @ v/ has max. preorder rank below v
sv o pre(V') = pre(v) + size(v)

',}..”'“ .".*., @ post(v") = post(v) — size(v)

Y Y o Sufficient to scan B-tree in the (pre(v), pre(v'))

range
@ size(v) =|v/descendant: :node ()| @J

If we can derive (a reasonable estimate for) size(v) from pre(v) and
post(v), we can shrink the descendant window.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 406

Shrink-wrapping the descendant window

An alternative characterization of preorder/postorder ranks

= level(v)

pre(v) = | v/preceding: :node() | + | v/ancestor::node() | + 1
post(v) = | v/preceding: :node() | + | v/descendant::node() | +1

= size(v)

I
post(v) — pre(v) = size(v) — level(v)
—
< height(t)

Estimate the location of v/ and v” in the pre/post plane

pre(v") < post(v) + height(t) | post(v") = pre(v) — height(t)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 407

Shrink-wrapping the descendant window

:post(

pre
v)+height(t)

@ Size of B-tree scan region
now dependent on actual
subtree size below v (and
independent of fragment t's
sizel!).

@ Scan region size estimate
maximally off by height(t).

Overestimation of descendant window size

How significant would you judge this estimation error? How to avoid the

error at all?

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06 408

Streched Pre/Post Plane

Streched pre/post plane

@ While index intersection (IXAND) and window shrinking go a long
way in making location step evaluation efficient in the pre/post

plane, windows are still evaluated in a two-step process, leading to
false hits.

» A different way to approach this problem is to employ concatenated
(pre, post) B-trees.

@ Here, instead we will exploit the observation that predicate
window () solely depends on comparisons (<, >) on pre and post.
The absolute pre/post values are immaterial.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 409

Streched pre/post plane

“Stretched” (or coupled) preorder/postorder ranks
Perform a depth-first, left-to-right traversal of the skeleton tree.
Maintain counter rank (initally 0).
© Whenever a node v is visited first, assign pre(v) < rank; increment
rank.

© When v is visited last, assign post(v) < rank; increment rank.

Example
a
e19
1‘98/1]\95 8
2l7 10011 12817
PN & N
34 Seg 13614 1Be16
d e i]

This encoding is also known as “start—end” numbering.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 410

Streched Pre/Post Plane

Streched pre/post plane

start-end numbering

Ny
207 10§11 1217
/N
364 5e6 13014 1516
d e i J

Stretched pre/post plane

post

pre

Node identifiers of bit width n encode 27~ nodes.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06 411

XPath axes in the streched pre/post plane

Node distribution in the stretched pre/post plane has interesting
properties:

@ The axes window(-) predicates continue to work as before.
Further:

Characterization of descendant axis
Node v is selected by c/descendant: :node(), iff

pre(v) € (pre(c), post(c)) or post(v) € (pre(c), post(c))

Subtree size (exact, no estimation)

For any node v:

size(v) = 1/2- (post(v) — pre(v) — 1)

v

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 412

Streched Pre/Post Plane

c/descendant: :node ()

post
al
| of
oh .
[]
15 : J
I '3
|
| °g
10
1.2
post(c) —+—o— ;e—ﬁ _______
5 1ol . 1%
Id
re(c) - -
p(3010)l|‘lﬂl¢IHHIIHHI > pre
AN 15
pre(c) post(CS
v
Winter 2005/06 413

XPath axes in the streched pre/post plane

In terms of query windows, on the stretched pre/post plane we may
modify window(-) as follows:

Axis descendant in the stretched plane

((pre(v), post(v)), , *, elem, t)

window(descendant: : t, v) = or
(*, (pre(v), post(v)), %, elem, t)

A single index scan suffices (no IXAND, no false hits).
@ Axes descendant-or-self and child benefit, too.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

414

Streched Pre/Post Plane

Leaf node access

For a certain class of XPath steps, we can statically*’ infer that all result
nodes will be leaves (let ¢ denote an arbitrary XPath expression):

@ c/text(), c/comment(), c/processing-instruction()
@ c[not(child::node())]

Characterization of any leaf node ¢
A diagonal in the stretched pre/post plane:

post(£) = pre(£) + 1

4T At query compile time.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 415

Streched Pre/Post Plane

eaves diagonal

post(£) = pre(£) + 1

a
*19
1 t-’t/]\gﬁs post
)
Cc

Marc H. Scholl (DBIS, Uni KN) XML and Databases

“Backwards” step processing

Presence of the leaves diagonal enables the RDBMS to evaluate certain
XPath expressions in a “backwards” fashion.

Exploit symmetries in XPath
Consider the query

descendant: :t/child: :text ()
We can instead process the equivalent symmetric query

descendant: :text () [parent: : t]

Vv
found on leaves diagonal

NB. The latter query does not require window evaluation at all.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

417

Streched Pre/Post Plane

Exploiting schema/DTD information

The presence of a DTD (or XML Schema description) for a

pre-/postorder encoded document may be used to generalize the leaves
diagonal discussion.

@ From a DTD we can derive maximal/minimal subtree sizes for any
XML element node v with tag t.

@ Together with

size(v) = 1/2- (post(v) — pre(v) — 1)
i
post(v) = 2 - size(v) + pre(v) + 1

we can establish a stripe in the stretched pre/post plane which is
guaranteed to contain all elements with tag t.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 418

Exploiting schema/DTD information

Sample DTD and encoding of
a valid fragment

<!ELEMENT a (b+)>

<!ELEMENT b (c,d?)>
<IELEMENT c EMPTY>
<|ELEMENT d EMPTY>

= Minimum (maximum) subtree
size of b elements in a valid
fragment is 1 (2).

Marc H. Scholl (DBIS, Uni KN)

XML and Databases

= All b elements in stripe
3 < post(v) — pre(v) <5

post ;o
s 7
a / 4
10 pb//
/// @
s
// P oC
/
5 /
7/ /.b
4 .
Ve C
71
(0.0
1 5 10pre

Winter 2005/06

419

XPath symmetries

@ Clearly, pre/post plane window size is the dominating cost factor
for the XPath Accelerator.

» The window size determines the stride of B-tree range scans and thus
the amount of secondary memory touched (affects # /O operations
necessary).

(We could even try to derive a cost model from window size.)

@ How can we benefit from this observation?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 420

XPath symmetries

Plan choices: /descendant: :t/ancestor::s

© Forward mode.
Find intermediary context node sequence of elements with tag t.
Then, for each node v/ in this sequence, evaluate
window (ancestor: :s, V).

© Backward mode.
Find intermediary context node sequence of elements with tag s.
Then, for each node v in this sequence, check whether
window(descendant: : t) yields at least one node v'. If no such v/
is found, drop v.

NB. Based on the descendant <+ ancestor symmetry.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 421

XPath symmetries and window size

post
1 Y
| e 0‘0’
| eea®
‘f
v |
P _ % 4°
R
L
o L Y
R "
°
" N
(0.0} s pre

Note: plan () evaluates the , plan @ the M window(s).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

XPath symmetries

@ Note that plan (2) corresponds to the symmetrical equivalent of
the original location path:
XPath Symmetry

@ /descendant: :t/ancestor::s

7

(@ /descendant-or-self::s[descendant::t]

Can you suggest a proof for the symmetry?
Why is axis descendant-or-self used in)7

@ The query rewrite () — (2) could also be initiated on the XQuery
(XPath) source level.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 423

More XPath symmetries

XPath Symmetries (due to Dan Olteanu, et.al.)

descendant: :t/parent: :s <> descendant-or-self::s[child: :t]
child::t/parent::s <> self::s[child::t]
c/child::t/ancestor::s <+ c[child::t]/ancestor-or-self::s
/descendant: :t/preceding: :s <> /descendant::s[following: :t]

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

424

Part XV

Updating XML Documents

Marc H. Scholl (DBIS, Uni KN) XML and Databases

R
Outline of this part

@ Updating XML Trees
@ Update Specification
@ XUpdate

@ Impact on XPath Accelerator Encoding

@ Impacts on Other Encoding Schemes

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Updating XML trees

Throughout the course, up to now, we have not been looking into
updates to XML documents at all.

e If we want to discuss efficiency/performance issues w.r.t. mappings
of XML documents to databases, though, we need to take
modifications into account as well as pure retrieval operations.

@ As always during physical database design, there is a trade-off
between accelerated retrieval and update performance.

@ While there is a whole host of languages for querying (i.e., read
access to) XML documents, there is not yet an update language (for
write access) that has been agreed upon.

@ We will briefly sketch the XUpdate language, currently under
consideration in the XML and XQuery communities.*®

“http://xmldb-org.sourceforge.net/xupdate/

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 427

http://xmldb-org.sourceforge.net/xupdate/

Updating XML Trees Update Specification

Updates and tree structures

During our discussion of XQuery, we have seen that tree construction has
been a major concern. Updates, however, cannot be expressed with
XQuery.

@ Yet, we need to be able to specify modifications of existing XML
documents/fragments as well.

@ The basic necessary update functionality is largely agreed upon,
syntax and semantic details, however, are subject to discussion.

@ We certainly need to be able to express:

» modification of all aspects (name, attributes, attribute values, text
contents) of XML nodes, and

» modifications of the tree structure (add/delete/move nodes or
subtrees).

@ Like in the SQL case, target node(s) of such modifications should be
identifiable by means of expressions in an/any XML query language.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 428

XUpdate
XUpdate: ldentify, then modify

XUpdate element update statement

<xupdate:modifications>

<xupdate:update select="p">
c
</xupdate:update>

</xupdate:modifications>

@ Given a context node, evaluate XPath expression p to identify an
XML element node v.

@ The content of element v will be modified to be c. Otherwise, the
updated tree does not change.

(Compare with the XSLT approach!)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 429

XUpdate: Text node updates

Obviously, the kind of ¢ determines the overall impact on the updated
tree and its encoding.

XUpdate: replacing text by text

<a>
<b id="0">foo
<b id="1">bar

' <xupdate:update select="//bl[@id = 1]">
foo
</xupdate:update>
<a>
<b id="0">foo

<b id="1">foo

@ New content c: a text node.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 430

XUpdate: Text node updates

Translated into, e.g., the XPath Accelerator representation, we see that

@ Replacing text nodes by text nodes has local impact only on the
pre/post encoding of the updated tree.

XUpdate statement leads to local relational update

pre post --- pre post
0 4 NULL 0 4 NULL
1 1 NULL - 1 1 NULL
2 0 foo 2 0 foo
3 3 NULL 3 3 NULL
4 2 bar 4 2 foo

@ Similar observations can be made for updates on comment and
processing instruction nodes.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 431

XUpdate: Structural updates

XUpdate: inserting a new subtree

<
azb><c><d/><e/></c>
<f><g/>
<h><i/><j/></h>
</f>

<xupdate:update select="/a/f/g">
Y <k><1/><m/></k>
</xupdate:update>

<
aZb><c><d/><e/></c>
<E><g><k><1/><m/></k></g>
<h><i/><j/></h>
</f>

Question: What are the effects w.r.t. our structure encoding...?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

XUpdate: Global impact on encoding

Global shifts in the pre/post Plane

post post post+3 pre+3;post+3
T | $a. g I Oﬁ
T | 1, 'f
10 + [10 + N «h
<+a = e]
B ‘f L | '.i
£ §|~‘:h) ______L.g _____
1 e = 7 ek
B Trs | o] 5 | em
e 1 1
+eb : +eb !
+ ‘ec I T *C I
1 Loee l 1T L ee ‘
(00— o)
1 5 10 pre 1 5 10 pre
.
Y TR T

XUpdate: Global impact on pre/post plane

Insert a subtree of n nodes below parent element v
@ post(v) « post(v)+ n
@ VvV € v/following::node():
pre(v') < pre(v') 4+ n; post(v') < post(v') + n

@ VYV € v/ancestor: :node():
post(v') < post(v') + n

Cost (tree of N nodes) Update cost
O(N) +O(log N) @3 is not so much a problem of
—— N—— .
@ ©) cost but of locking. Why?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 434

Updates and fixed-width encodings

Theoretical result [Milo et.al., PODS 2002]

There is a sequence of updates (subtree insertions) for any persistent*?
tree encoding scheme &, such that £ needs labels of length Q2(N) to
encode the resulting tree of N nodes.

@ Fixed-width tree encodings (like XPath Accelerator) are inherently
static.
= Non-solutions:

» Gaps in the encoding,
» encodings based on decimal fractions.

*9A node keeps its initial encoding label even if its tree is updated.
Wi BN e

A variable-width tree encoding: ORDPATH

Here we look at a particular variant of a hierarchical numbering scheme,
optimized for updates.

@ The ORDPATH encoding (used in MS SQL Server ™) assigns node
labels of variable length.

ORDPATH labels for an XML fragment

@ The fragment root receives label 1.

@ The nth (n=1,2,...) child of a parent node labelled p receives label
p.(2-n—1).

@ Internally, ORDPATH labels are not stored as .-separated ordinals
but using a prefix-encoding (similarities with Unicode).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 436

Impacts on Other Encoding Schemes

ORDPATH encoding: Example

ORDPATH encoding of a sample XML fragment

<a>

<c>
<d/><e/> /13\11 1.5
<f><g/></f> \ / \
e de ee 1f Sol ie J ok
<h> 1.3% 1.3%3 1.5.1 1.523 1.5.5
<i/><j/><k/>
</h> 1.3.5.18
 4
Note:

@ Lexicographic order of ORDPATH labels = document order
= Clustered index on ORDPATH labels will be helpful.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

437

ORDPATH: Insertion between siblings

In ORDPATH, the insertion of new nodes between two existing sibling
nodes is referred to as “careting in” (caret = insertion mark,).

ORDPATH: node insertion

Let (vi,...,vn) denote a sequence of nodes to be inserted between two
existing sibling nodes with labels p.s and p. (s + 2), s odd. After
insertion, the new label of v; is

p.(s+1).(2-i—1) .

Label p.(s+ 1) is referred to as a caret.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 438

Impacts on Other Encoding Schemes

ORDPATH: Insertion between siblings (Example)

Insertion of (<1/>, <m/>) between <j/> and <k/>

/

ecC 1.5
/\\ _ /.\1.5.5
de ec of ie J_ ek

°
1.5.1 1.5.3

e

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

439

Impacts on Other Encoding Schemes

ORDPATH: Insertion between siblings

ORDPATH: Insertions at arbitrary locations?

° 1.5.4.1e ©1.5.4.3
1 m

Determine ORDPATH label of new node v inserted
@ to the right of <k/>,
@ to the left of <i/>,
© between <j/> and <1/>,
@ between <1/> and <m/>,

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

440

Impacts on Other Encoding Schemes

Processing XQuery and ORDPATH
Is ORDPATH a suitable encoding £7

Mapping core operations of the XQuery processing model to operations
on ORDPATH labels:

v/parent: :node ()

Q Let p.m.n denote v's label (n is odd).
@ If the rightmost ordinal (m) is even, remove it. Goto ().

In other words: the carets (&) do not count for ancestry.

v/descendant : :node ()
@ Let p.n denote v's label (n is odd).

@ Perform a lexicographic index range scan from p.n to
p . (n+ 1)—the virtual following sibling of v.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 441

ORDPATH: Variable-length node encoding

@ Using (4 byte) integers for all numbers in the hierarchical numbering
scheme is an obvious waste of space!
@ Fewer (and variable number of) bits are typically sufficient;

@ they may bear the risk of running out of new numbers, though. In
that case, even ORDPATH cannot avoid renumbering.
» In principle, though, no bounded representation can absolutely avoid
the need for renumbering.
@ Several approaches have been proposed so as to alleviate the
problem, for instance:
» use a variable number of bits/bytes, akin to Unicode,
» apply some (order-preserving) hashing schemes to shorten the
numbers,

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 442

ORDPATH: Variable-length node encoding

@ For a 10 MB XML sample document, the authors of ORDPATH
observed label lenghts between 6 and 12 bytes (using Unicode-like
compact representations).

@ Since ORDPATH labels encode root-to-node paths, node labels
share common prefixes.
ORDPATH labels of <1/> and <m/>

e 5 el
1.5.4.3

= Label comparisons often need to inspect encoding bits at the far
right.

@ MS SQL Server™ employs further path encodings organized in
reverse (node-to-root) order.

@ Note: Fixed-length node IDs (such as, e.g., preorder ranks) typically
fit into CPU registers.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 443

Part XVI

Serialization, Shredding, and More on Pre/Post
Encoding

Marc H. Scholl (DBIS, Uni KN) XML and Databases

R
Outline of this part

@ Sserialization
@ Problem
@ Serialization & Pre/Post Encoding

@ shredding (€)

@ Completing the Pre/Post Encoding Table Layout

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Serialization (£71)

Any encoding of XML documents into some database representation is
typically meant to be the only representation of the stored XML
documents.

@ In particular, the original textual (serialized) form of the input XML
documents will not be available, and

@ XQuery expressions may construct entirely new documents.

Communicating the XML result of XQuery evaluation (dump to console,
send over the wire), requires a process inverse to encoding £ and is
referred to as serialization (£71).

W3C http://www.w3.org/TR/xslt-xquery-serialization/

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 446

http://www.w3.org/TR/xslt-xquery-serialization/

Serialization & Pre/Post Encoding
Serialization & pre/post encoding

@ For XML elements, document order coincides with the relative order
of opening tags in serialized XML text.
= We thus scan the nodes v in table accel in ascending pre column
order and can emit opening tags as we scan.
» Then push v onto a stack S to remember that we still need to print
the closing tag of v.

© Likewise, the postorder rank of v encodes the relative order of
closing tags in the serialized XML text.

= Emit closing tags of nodes v/ on stack S with post(v') < post(v)
before we process v itself.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 447

Serialization & Pre/Post Encoding
Serialization & pre/post encoding

serialize(T): serialize encodings in table T

for v in T in ascending pre(v) order do
while not(S.empty()) A post(S.top()) < post(v) do
L print('</’, name(S.top()), '>’);
S.pop();
if kind(v) = elem then
print('<’, name(v), '>");
S.push(v);
else
| { process other node kinds here }

while not(S.empty()) do
print('</’, name(S.top()), >");
L S.pop();

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

448

Serialization & Pre/Post Encoding
Serialization & pre/post encoding

@ To serialize an encoded XML document in its entirety, invoke
serialize(accel).

@ To serialize the XML fragment with root element v, invoke
serialize(-) on the result of query Q, where

Q = path(v/descendant-or-self: :node()) .

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

449

Serialization: Example (1)

Sample XML fragment and pre/post encoding
<a> 0% pre | post kind tag
£00 19{ %24 0| 5 | elem| a | NULL
<c> | 7\ 1 1 elem b NULL
<d/><e/> QQQC 40D Fe3 2 0 text | NULL | foo
¢ text 4 e 3| 4 |elem| ¢ | NULL
e 4| 2 | elem| 4 |wULL
 nfooh 5| 3 |elem| e |NULL
v

To ensure a scan in order of the pre column, perform a forward scan of
the ipre index (— yields RIDs).

@ A function invocation like kind(v) in serialize(-) thus corresponds to
an RID-based tuple access on table accel.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 450

Serialization: Example (2)

Scan of pre/post encoding

— 5 | elem | a | NULL
1 1 elem b NULL
2 0 text NULL foo
3 4 elem c NULL
4 2 elem d NULL
5 3 elem e NULL

v

Stack S Output (console)
S <a>

kind tag| text

e i | L

Serialization: Example (3)

Scan of pre/post encoding

5 | elem | a | NULL
— | 1 1 elem b NULL
2 0 text NULL foo
3 4 elem c NULL
4 2 elem d NULL
5 3 elem e NULL
v
Stack S Output (console)
S <a>
: >
kind tag text <b
T BNl o

Serialization: Example (4)

Scan of pre/post encoding

5 | elem | a | NULL
1 1 elem b NULL
— | 2 0 text NULL foo
3 4 elem c NULL
4 2 elem d NULL
5 3 elem e NULL
v
Stack S Output (console)
S <a>
- >
kind tag — text foo
T

Serialization: Example (5)

Scan of pre/post encoding

5 | elem | a | NULL
1 1 elem b NULL
2 0 text NULL foo
—| 3 4 elem c NULL
4 2 elem d NULL
5 3 elem e NULL
v
Stack S Output (console)
S <a>
- > >
kind tag — text foo</b
<c>
TR

Serialization & Pre/Post Encoding
Serialization: Example (5)

Scan of pre/post encoding
accel

pre post kind tag

0 5 elem a NULL

1 1 elem b NULL

2 0 text | NULL foo

3 4 elem c NULL
| 4 2 elem d NULL

5 3 elem e NULL

v
Stack S Output (console)
<a>
pre post kind tag text foo
2 <c>

<d>

’

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 455

Serialization & Pre/Post Encoding
Serialization: Example (6)

Scan of pre/post encoding

accel

pre post kind tag
0 5 elem a NULL

1] 1 | elem b NULL
2 | 0 | text | NULL | foo
3| 4 | elem c NULL
4 | 2 | elem d NULL
—| 5| 3 | elem e NULL
”
Stack S Output (console)
S <a>
kind tag| text foo
<c>
<d></d><e>

’

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 456

Serialization: Example (7)

Scan of pre/post encoding

5 | elem | a | NULL
1 1 elem b NULL
2 0 text NULL foo
3 4 elem c NULL
4 2 elem d NULL
X | 5 3 elem e NULL
v
Stack S Output (console)
S <a>
: > >
kind tag — text foo</b
<c>
<d></d><e></e>
Wirter BG05/08 T ET

Serialization & Pre/Post Encoding
Serialization: Example (8)

Scan of pre/post encoding

5 | elem a NULL
1] 1 | elem b NULL
2| 0 | text | NULL | foo
3| 4 | elem c NULL
4 | 2 | elem d NULL
x| 5| 3 | elem e NULL
Stack S Output (console)
S <a>
kind tag| text foo
<c>
<d></d><e></e>
</c>

’

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Serialization & Pre/Post Encoding
Serialization: Example (9)

Scan of pre/post encoding

accel

pre post kind tag

0 5 elem a NULL
1 1 elem b NULL
2 | 0 | text | NULL | foo
3 4 elem © NULL
4 2 | elem d NULL
x| 5 3 | elem e NULL
Stack S Output (console)
S <a>
i foo
pre post kind tag b>foo</b
- <c>
<d></d><e></e>
</c>
Dy

vy

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

SAX-based shredding (&)

Recall that:

@ SAX (Simple API for XML, http://www.saxproject.org/)
parsers use constant space, regardless of XML input size.

@ Communication between parser and client is event-based and does
not involve an intermediate data structure.

SAX: Event-based XML parsing

startElement!
callback table

startElement ()

XML
Application

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 460

http://www.saxproject.org/

SAX-based shredding

@ A SAX parser reads its input (serialized XML) sequentially and
once only, retaining no memory of what the parser has seen so far.

» Selective memory may be built into the client, though.

@ The client acts on/ignores events by populating a function
callback table.

» In effect, the client and the parser act in parallel.

@ Here, we sketch the use of SAX to implement £.

NB. SAX has more uses in the database-supported XML context,
e.g., the stream-based evaluation of a subset of XPath @
location steps (the so-called forward axes).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 461

SAX callbacks for &

The XPath Accelerator encoding table accel for an input XML document
may readily be constructed in terms of few SAX callback functions.

@ The callbacks perform SQL DML INSERT commands on table accel
created via

CREATE TABLE accel (pre INT PRIMARY KEY,
post INT UNIQUE NOT NULL,
par INT,
kind INT(1),
tag VARCHAR,
text VARCHAR)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 462

SAX callbacks for &

startDocument()

pre < 0;

post < 0;

create empty stack S;

S.push({pre, ., NULL, doc, NULL, NULL));

pre < pre + 1;

startElement(t, (az, v1), ..., (an, Va))
v < (pre, ., S.top().pre, elem, t, NULL);
S.push(v);
pre < pre + 1;

{ process attributes a; here }

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

463

SAX callbacks for &

endElement(t)

v < S.pop();

V.post < post;

INSERT INTO accel VALUES v;
post < post + 1;

characters(buf)

v < (pre, post, S.top().pre, text, NULL, buf);
INSERT INTO accel VALUES v;

pre < pre + 1;

post < post + 1;

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 464

SAX callbacks for &

endDocument()

v < S.pop();

V.post < post;

INSERT INTO accel VALUES v;
COMMIT WORK;

[0 SAX-based XML document encoding (“shredding”)

@ What is the maximum depth of stack S?

@ How can the shredder detect that the input is not well-formed
(improper tag nesting)?

© In which order are tuples inserted into accel?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

SAX-based shredding: Example (1)

Input XML document

<?xml version="1.0"7>,
<a>
foo
<c>
<d></d><e></e>
</c>

Stack S
(0, -, NULL, doc, NULL, NULL)

Current SAX event

startDocument ()

Current pre, post

pre : 0 post : 0

Table accel

pre | post par | kind

tag text

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

466

SAX-based shredding: Example (2)

Input XML document Current SAX event
:Z);Tl version="1.0%7> startElement(a)
foo
<c>
<d></d><e></e> Current pre, post
</;£C> pre : 1 post : 0
Stack S Table accel

pre | post par| kind | tag text

(1,.,0 ,elem,a ,NULL)
(0, _, NULL, doc , NULL, NULL)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 467

SAX-based shredding: Example (3)

Input XML document Current SAX event
:Z};ml version="1.0"7> startE/ement(b)
, foo
<c>
<d></d><e></e> Current pre, post
</;£C> pre: 2 post : 0
Stack S Table accel

pre | post par kind tag text

(2,.,1 ,elem,b ,NULL)
(1,.,0 ,elem,a ,NULL)
(0, _, NULL, doc , NULL, NULL)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 468

SAX-based shredding: Example (4)

Input XML document Current SAX event
:Z};ml version="1.0"7> Characters(foo)
foo,
<c>
<d></d><e></e> Current pre, post
</;£C> pre : 3 post : 0
Stack S Table accel

pre | post par kind tag text
0

(2,.,1 ,elem,b ,NULL)
(1,.,0 ,elem,a ,NULL)
(0, _, NULL, doc , NULL, NULL)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 469

SAX-based shredding: Example (5)

Input XML document Current SAX event
:;;cml version="1.0"7> endElement (b)
foo,
<c>
<d></d><e></e> Current pre, post
</c>
</a£c pre: 4 post : 1)

Stack S Table accel

pre post par
0

(1,.,0 ,elem,a ,NULL)
(0, -, NULL, doc , NULL, NULL)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 470

SAX-based shredding: Example (6)

Input XML document Current SAX event
:Z};ml version="1.0"7> startEIement(c)
foo -
<c>,
<d></d><e></e> Current pre, post
</2£C> pre : 4 post : 2
Stack S Table accel

pre post par kind

(4,.,1 ,elem,c ,NULL)
(1,.,0 ,elem,a ,NULL)
(0, _, NULL, doc , NULL, NULL)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 471

Completing the pre/post encoding table layout

@ As discussed up to now, table accel lacks some critical details to
really support XQuery evaluation. We need to

@ add support for attribute nodes,

@ reflect the fact that multiple tree fragments may be constructed by
an XQuery compression (with more than one fragment “alive” at a
time),

© add support for multiple documents referenced in a single query.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 472

“Alive” fragments and XPath evaluation

Multiple alive fragments in a single XQuery expression
let $a := <a><c/>
let $d := <d><e/></d>
return ($a/b/following: :node(), $d)

@ Fragments bound to variables $a and $d are encoded in a table of
transient trees:

Alive fragments at

pre | post --- | tag

0 a
1 1 b
2 0 C
S 4 d

4 3 e

» Axis following: :node() at b produces 4, e? @

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 473

Completing the Pre/Post Encoding Table Layout

Attributes and XPath evaluation

Remember the XQuery DM: attribute nodes are not children of their
containing elements.

Axes child vs. attribute
let $a := <c/><!--d-->
return ($a/child: :node(),
$a/attribute: : *,
$a/(./child: :node() | ./attribute::*))

4
(</c>, <'-——d——>,
attribute b {"foo"},
attribute b {"foo"}, <c/>, <!--d-->)

= Storing attribute nodes with other XML node kinds implies filtering
overhead for both, the attribute axis and all other axes.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 474

Relational encoding in MonetDB/XQuery

In MonetDB/XQuery,

the central table accel is extended by a column frag which identifies
the fragment a node belongs to,

attribute nodes live in a separate table, using column pre as a
foreign key to identify the owner element,

the qualified names of tags and attributes (ns:/oc) are held in
separate tables (sharing!),

any textual content (text, comments, processing instructions)
resides in separate tables,

finally, a table of referenced documents (referred to via doc(-)) is
maintained.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 475

Table layout in MonetDB /XQuery

Table schemas (=— denotes foreign key relationship)

pre post par kind heap frag

attr | own qn ©heap ©heap | val

alus

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

476

MonetDB/XQuery: Encoded fragment

<my:a lv="0">

<b 1v="1">
<!--two foos—->
<c>foo</c><d>foo</d>

<b lv="1"/>
</my:a>

@heap | val

0 7 |NULL |elem| O 0 0 0 1 0 0
e el 21 0] [%]3]1
2 3 1 com| O 0 Pl 7 1
3 2 1 |elem| 3 0
4 1 3 text 0 0
5 4 1 |elem| 4 0
6 3 5 text 0 0
7 6 0 |elem| 2 0
qn ins proc tgt
two foos L []
v
Wirter B0E/08 T

MonetDB/XQuery: Encoded fragment

@ Column frag indicates the fragment a node belongs to. Windows for
axes following, preceding modified to guarantee that axis
evaluation does not escape fragment.

@ Note: Size of QName table typically independent of fragment size
(usually < 20 rows).

» Value ns™ encodes namespace with prefix my (prefixes immaterial for
QName comparison).

e Identifiers of attributes (0%, ...) distinguishable from node ids.%°
Document order of attributes derived from document order of
owner element (column own). @

@ Generally ignored here: white space only text nodes.

5OMost significant bit set, for example

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 478

Part XVII

Staircase Join—Tree-Aware Relational (X)Query
Processing

Marc H. Scholl (DBIS, Uni KN) XML and Databases

N
Outline of this part

@ XPath Accelerator—Tree aware relational XML representation
@ Enhancing Tree Awareness

@ staircase Join
@ Tree Awareness
@ Context Sequence Pruning
@ Staircases

@ Injecting <1 into PostgreSQL

@ Outlook: More on Performance Tuning in MonetDB/XQuery

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

480

XPath Accelerator—Tree aware relational XML representation Enhancing Tree Awareness

Enhancing tree awareness

@ We now know that the XPath Accelerator is a true isomorphism
with respect to the XML skeleton tree structure.

» Witnessed by our discussion of shredder (£) and serializer (£71).
@ We will now see how the database kernel can benefit from a more

elaborate tree awareness (beyond document order and semantics of
the four major XPath axes).

@ This will lead to the design of staircase join 1, the core of
MonetDB/XQuery's XPath engine.

» We will also discuss issues of how to tune] to get the most out of
modern CPUs and memory architectures.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 481

XPath Accelerator—Tree aware relational XML representation Enhancing Tree Awareness

Tree awareness?

Document order and XPath semantics aside, what are further tree
properties of value to a relational XML processor?

@ The size of the subtree rooted in node a is 5
@ The leaf-to-root paths of nodes b, ¢ meet in node d

© The subtrees rooted in e and a are necessarily disjoint

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

XPath Accelerator—Tree aware relational XML representation Enhancing Tree Awareness

Tree awareness (7): Subtree size

We have seen that tree property subtree size ((T) on previous slide) is
implicitly present in a pre/post-based tree encoding:

post(v) — pre(v) = size(v) — level(v)

J

@ To exploit property subtree size, we were able to find a means on
the SQL language level, i.c., outside the database kernel.

= This led to window shrink-wrapping for the XPath descendant axis.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 483

XPath Accelerator—Tree aware relational XML representation Enhancing Tree Awareness

Tree awareness on the SQL level

Shrink-wrapping for the descendant axis

Q = (¢)/following: :node () /descendant: :node ()

path(Q)

SELECT DISTINCT vy.pre
FROM accel vy, accel v»
WHERE vj.pre > c.pre
AND vj.pre < v».pre
AND vj.post > c.post
AND v;.post > v,.post
AND v,.pre <= vy.post + h AND v,.post >= vy.pre + h
ORDER BY w,.pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 484

Sitieyelis Tes Sz i
Tree awareness (2): Meeting ancestor paths

@ Evaluation of axis ancestor can clearly benefit from knowledge
about the exact element node where several given node-to-root

paths meet.
» For example:
For context nodes ¢y, ..., ¢,, determine their lowest common
ancestor v = lca(cy, ..., ¢p).

= Above v, produce result nodes once only.

(This still produces duplicate nodes below v.)

@ This knowledge is present in the encoding but is not as easily
expressed on the level of commonly available relational query
languages (such as, SQL or relational algebra).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 485

XPath Accelerator—Tree aware relational XML representation Enhancing Tree Awareness

Flashback: XPath: Ensuring order is not for free

The strict XPath requirement to construct a result in document order

may imply sorting effort depending on the actual XPath implementation
strategy used by the processor.

(x>
<x><y id="0"/></x> (<y id="0"/>,
<y id="1"/>

<y id="1"/>)
</x>)/descendant-or-self::x/child::y

@ In many implementations, the descendant-or-self: :x step will

yield the context node sequence (<x>---</x>,<x>---</x>) for the
child: :y step.

@ Such implementations thus will typically extract <y id="1"/> before
<y id="0"/> from the input document.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 486

Flashback: (e,f)/descendant: :node()

Context & frag. encodings

context
pre post - --

ils |

pre

OCONOUIPWNF-O

post
accel
post oo
(1) 5
2
8
5 1
: (0,0)
7
6

SQL query with expanded window() predicate

SELECT
FROM
WHERE

DISTINCT vi.x*
context v, accel vl

vl.pre > v.pre AND vl.post < v.post
ORDER BY vil.pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

487

XPath Accelerator—Tree aware relational XML representation Enhancing Tree Awareness

Tree awareness (3): Disjoint subtrees

@ An XPath location step cs/a is evaluated for a context node
sequence cs.

» This “set-at-a-time" processing mode is key to the efficient
evaluation of queries against bulk data. We want to map this into
set-oriented operations on the RDBMS.

(Remember: location step is translated into join between context
node sequence and document encoding table accel.)

@ But: If two context nodes ¢;; € cs are in a-relationship, duplicates
and out-of-order results may occur.

» Need efficient way to identify the ¢; € cs which are not in
a-relationship with any other ¢;
(for @ = descendant: “c;; in disjoint subtrees?").

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 488

XPath Accelerator—Tree aware relational XML representation Enhancing Tree Awareness

Staircase Join: An injection of tree awareness

Since we fail to explain tree properties (2) and (3) at the relational

language level interface, we opt to invade the database kernel in a

controlled fashion.®!

@ Inject a new relational operator, staircase join 1, into the relational
query engine.

@ Query translation and optimization in the presence of &1 continues
to work like before (e.g., selection pushdown).

@ The &I algorithm encapsulates the necessary tree knowledge. <1 is a
local change to the database kernel.

51Remember: All of this is optional. XPath Accelerator is a purely relational XML
document encoding, working on top of any RDBMS.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 489

Tree awareness: Window overlap, coverage

Location step (c1, ¢z, €3, ¢4)/descendant: :node (). The pairs (c1, ¢2)
and (cs, ¢4) are in descendant-relationship:

Window overlap and coverage (descendant axis)

pgst
°
_ e
3, %@
_____ Dl
('1T_ o ° I
o 2
[)
| e ° | -
I A
AL O | [
(0,0) pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

490

Tree awareness: Window overlap, coverage

Axis window overlap Axis window overlap
(descendant axis) (ancestor axis)
post post
+ > I
[] ®
® :. ::::—_—_l—_éc3| 4
3 |C4?;. | I ..
o | °
_____ ([OF . b | O
Cl?_ o ° T C1 o C°
| (F—.—|— + = - — -2 O
€ o | .
le 1 °
[] []
| e | | °
[] [)
Ioegt I e
o I | | | re ~_9 re
(0,0)® p (0,0)® P
Winter 2005/06

491

Tree awareness: Window overlap, coverage

Axis window overlap
(following axis)

post
T |
| &=
| :C3 C‘ho.
.
a '@_.___
() ..
[]
o [)
..
o [)
(0,0)™

pre

Axis window overlap
(preceding axis)

post
) @ .
______ Cy4
—————— e
loc o®!
? o CPl
= - — o | I
le O 1® !
[—Y . | |
loeg” I
<0’0>=| L [pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

492

Context node sequence pruning

We can turn these observations about axis window overlap and coverage
into a simple strategy to prune the initial context node sequence for
an XPath location step.

Context node sequence pruning
Given cs/a, determine minimal ¢s~ C cs, such that

cs/a = c¢s /o .

We will see that this minimization leads to axis step evaluation on the
pre/post plane, which never emits duplicate nodes or out-of-order
results.>?

52The ancestor axis needs a bit more work here.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 493

Context node pruning: following axis

Once context pruning for the following axis is complete, all remaining
context nodes relate to each other on the ancestor/descendant axes:

Covering nodes ¢; > in descendant relationship

post;’ |

0.0

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 494

Empty regions in the pre/post plane

Relating two context nodes
(c1, ¢2) on the plane

post
g
R 5 ‘T
......... (osooo
S
o
u % %
c
X Y z

pre

Empty regions?

Given c; » on the left, why are
the regions U,S marked &
guaranteed to not hold any
nodes?)
t
.~.~.
y X T
XML and Databases Winter 2005/06

Marc H. Scholl (DBIS, Uni KN)

495

Context pruning (following axis)

(c1, cz)/following: :node()

post
@
RSl
C1
g
vV W
€2
X vz
pre
(c1,c2)/following: :node() = SUTUW
= Tuw

Marc H. Scholl (DBIS, Uni KN) XML and Databases

(c2)/following: :node()

Winter 2005/06

496

Context pruning (following axis)

Context pruning (following axis)

post‘

X
|
| G

G

(0.,0)

|
.
C.

$____I_._'__§

= pre

Context pruning (following axis)

Replace context node sequence cs by singleton sequence (c), ¢ € cs,

with post(c) minimal.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Context pruning (preceding axis)

Context pruning (preceding axis)

Replace context node sequence cs by singleton sequence (c), ¢ € cs,
with pre(c) maximal.

@ Regardless of initial context size, axes following and preceding
yield simple single region queries.

@ We focus on descendant and ancestor now.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 498

More empty regions

Remaining context nodes Empty region?
¢1, ¢ after pruning for Why is region Z marked @
descendant axis guaranteed to be empty?
post
RS . . el.
e
U v w
(G
%)
X by Z
pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

Context pruning (descendant axis)

Context pruning (descendant axis)
post

0.0)® '

@ The region marked @ above is a region of type Z (previous slide).In
general, a non-singleton sequence remains.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 500

Context pre-processing: Pruning

prune_contexty...(context : TABLE (pre, post))

begin
result <~ CREATE TABLE(pre, post);
prev < 0;
foreach c in context do
/* retain node only if post rank increases */

if c.post > prev then
L APPEND c TO result;

prev < c.post;

/* return new context table */
return result;

end

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

501

“Staircases” in the pre/post plane

Note that after context pruning, the remaining context nodes form a
proper “staircase” in the plane. (This is an important assumption in the

following.)

Context pruning & “staircase”
post0

pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

502

Flashback: Intersecting ancestor paths

Even with pruning applied, duplicates and out-of-order results may still be

generated due to intersecting ancestor paths.

@ We have observed this before: apply function ancestors(cy, ¢)
where c¢; (c2) denotes the element node with tag d (e) in the

sample tree below.

(Nodes c¢1,» would not have been removed during pruning.)

Simulate XPath ancestor via parent axis

declare function

ancestors($n as node()*) as node()*
{ if (fn:empty($n)) then ()

else (ancestors($n/..), $n/..)
}

v

Remember: ancestors((d,e)) yielded (a,b,a,c).

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Sample tree

Winter 2005/06 503

Separation of ancestor paths

Idea: try to separate the ancestor paths by defining suitable cuts in
the XML fragment tree.

@ Stop node-to-root traversal if a cut is encountered.

Path separation (ancestor axis)
post .
[I I

a °_ &4 |_l| a .

. e g * e
b—ai >~ . F-rEp B0 e .
| £f N\t L — —fn | Sf N
° © o o & o ;@
c N . & SN

° o 9 - — g g e 0:09:

g h] ob g h:J:

—& P p p p> Ps
Po Pp1 P2 p3
v

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 504

Parallel scan along the pre dimension

Separating ancestor paths

post

> pre

Scan partitions (intervals): [po, p1), [P1, P2), [P2, P3)-
@ Can scan in parallel. Partition results may be concatenated.

@ Context pruning reduces numbers of partitions to scan.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

505

Basic Staircase Join (descendant)

aesc(accel : TABLE (pre, post), context : TABLE (pre, post))

begin
result < CREATE TABLE(pre, post);
foreach successive pair (c1, ¢) in context do
| scanpartition(cy.pre + 1, co.pre — 1, ¢.post,<);
C < last node in context;
n < last node in accel,
scanpartition(c.pre + 1, n.pre, c.post,<);
return result;

end

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

506

Partition scan (sub-routine)

scanpartition(pre;, pre,, post, 6)

begin
for i from pre; to pre, do
\\ if accelli].post 6 post then
| APPEND accel[i] TO result;

end

Notation accel[i] does not imply random access to document encoding:

@ Access is strictly forward sequential (also between invocations of
scanpartition(-)).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 507

Basic Staircase Join (ancestor)

.nc(accel : TABLE (pre, post), context : TABLE (pre, post))

begin
result <— CREATE TABLE(pre, post);
c < first node in context;
n < first node in accel,
scanpartition(n.pre, c.pre — 1, c.post,>);
foreach successive pair (c1, ¢;) in context do
| scanpartition(cy.pre + 1, co.pre — 1, ca.post,>);
return result;

end

[]
|——éC2
——éCl

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

508

Basic Staircase Join: Summary

@ The operation of staircase join is perhaps most closely described as
merge join with a dynamic range predicate: the join predicate
traces the staircase boundary:

»] scans the accel and context tables and populates the result table
sequentially in document order,

»] scans both tables once for an entire context sequence,

» £ never delivers duplicate nodes.

@ 1 works correctly only if prune_context(-) has previously @
been applied.

» prune_context(-) may be inlined into £, thus performing context
pruning on-the-fly.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 509

Sz
Pruning on-the-fly

aesc(accel: TABLE (pre, post), context:TABLE (pre, post))

begin
result < CREATE TABLE (pre, post);
c1 < first node in context;
while (¢, < next node in context) do
if c;.post < cp.post then
| /% prune */
else
| scanpartition(cy.pre + 1, ca.pre — 1, ¢y.post, <);
C1 < Cp,
return result;

end

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

510

__________________StaircaseJoin R
Skip ahead, if possible

(c1, ¢2)/descendant: :node ()

post

cafs ™
o| :

Marc H. Scholl (DBIS, Uni KN) XML and Databases

@ While scanning the
partition associated
with ¢y 2:

@ Vv is outside staircase
boundary, thus not
part of the result.

@ No node beyond v in
result (&-region of
type Z).

= Can terminate scan

early and skip ahead
to pre(c).

Winter 2005/06

511

Staircases
Skipping for the descendant axis

scanpartition,.s.(pre,, pre,, post)

begin
for / from pre; to pre, do
if accel[i].post < post then
| APPEND accel[/] TO result;
else
| /* on the first offside node, terminate scan */ break;

end

Note: keyword break transfers control out of innermost enclosing loop
(cf. C, Java).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 512

Effectiveness of skipping

@ Enable skipping in scanpartition(-). Then, for each node in context,
we either

@ hit a node to be copied into table result, or
@ encounter an offside node (node v on slide 511) which leads to a skip
to a known pre value (— positional access).

@ To produce the final result, <1 thus never touches more than
| context | + | result |

nodes in the plane (without skipping: | context | + | accel |).
» In practice: > 90 % of nodes in table accel are skipped.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 513

Skipping for the ancestor axis

Skipping over the subtree of v

post
3 : | .
° _écz
_____ : S
o
° | ®
e
(]
post(v)__ ® - o O
.. o
°
(0,0)® ,'k. l ’
T pre

pre(v) =" post(v)

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Encounter v outside staircase

boundary

¥

v and subtree below v in
preceding axis of context

node.

How far to skip?

Conservative estimate:
size(v) > post(v) — pre(v)

Winter 2005/06

514

0 Uiy e PesimeBOL |
Injecting < into PostgreSQL

PostgreSQL (http://postgresql.org/): Conventional disk-based
RDBMS, SQL interface.

@ Detection of &1 applicabilty on SQL level (self-join with conjunctive
range selection on columns of type tree®?).

Algebraic query plan for two—step XPath location path

/ \
SCAN
SORTp,e \SCAN acLe/

TBSCAN accel

context

53postgreSQL is highly extensible, also permits introduction of new column types.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 515

http://postgresql.org/

Injecting < into PostgreSQL

@ Create clustered ascending B-tree index on column pre of table
accel.

» Standard no-frills PostgreSQL B-tree index, entered with search
predicates of the form pre > c.pre (¢ context node).
?
» B-tree on column pre also used for skipping.

@ Following performance figures obtained on a 2.2 GHz Dual Intel™
Pentium 4, 2 GB RAM, PostgreSQL 7.3.3.

» Compares Zl-enabled (tree-aware) PostgreSQL with vanilla
PostgreSQL instance.

» Evaluate XPath location path /descendant::a/a: :b on document
instances of up to 1.1 GB serialized size.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

516

Injecting] into PostgreSQL

/descendant: :

a/descendant: : b

10" E{@- original exec. time 10’
F |—@— time, tree-aware
106 F orig. page misses 106
© | mm misses, tree-aware
10° & n
Ew“ ﬁ
. f E
£10° &
=) ©
102 £ -
10" &
oL] 0
10" 511 1.1 1155110 1100 10
document size [MB]
V.
Wit 300866 e

Injecting] into PostgreSQL

For oo = descendant observe:

@ For both PostgreSQL instances, query evaluation time grows
linearly with the input XML document size (since the results size

grows linearly).
@ For the original instance, this is due to window shrink-wrapping
(expressible at the SQL level).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

518

Injecting] into PostgreSQL

/descendant: :a/ancestor:: b

107
10°

time [ms]
= R =
o o o
w B o

T
o o
— N

10°

—@- time, tree-aware

_]-.- original exec. time

.

1.1 11

55110

document size [MB]

1100

page misses

Marc H. Scholl (DBIS, Uni KN)

XML and Databases

Winter 2005/06

519

Injecting <1 into PostgreSQL

Injecting < into PostgreSQL

@ For o € {ancestor, preceding, following} observe:
» For the <J-enabled PostgreSQL instance, query evaluation time grows
linearly with the input XML document (and result) size.

For the original instance, query evaluation time grows quadratically
(| accel | scans of table accel performed).

» Original instance is incapable of completing experiment in reasonable
time (> 15 mins for XML input size of 55 MB).

@ Generally:

» The number of buffer page misses (= necessary |/O operations)
determines evaluation time.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 520

Injecting] into PostgreSQL

/descendant: :a/preceding: : b

E |~ original exec. time]
107 F{-@- time, tree-aware [~ g 1107
T e { 10°
710 110°9
] 1)
Eot prors ~310*E
(0] E o
E 10% E 110° %
3 o
10% ooy 310
10! L~ {10!
0]] (0]
107 511 1.1 11 55110 1100 10
document size [MB])
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 521

Injecting] into PostgreSQL

/descendant: :a/following: : b

= original exec. time]
107 F|-@- time, tree-aware [~y T 1107
T { 10°
710 110°9
] 1)
Eot prorrs ~310*E
(0] E o
E 0 [= = 1102 Q
3 o
10% ooyl o 310
10 L {10!
0]] (0]
107 511 1.1 11 55110 1100 10
document size [MB])
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 522

MonetDB/XQuery: Targetting modern CPU/memory

architectures

Memory Hierarchy

bandwidth increases

Primary Memory

latency increases

A~

@ Computation performed with CPU registers only.

@ Cache miss may escalate: L; — L, — RAM, data transport all the
way back: L; «+ Ly + RAM.

@ Data transport in cache line granularity.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 523

CPU/cache characteristics

Intel™ Dual Pentium 4 (Xeon)%*

CPU/Cache Characteristics

Clock frequency 2.2 GHz
L;1/L> cache size 8kB/512kB
L;/L, cache line size LS,,/LS,, 32byte/128byte
L; miss latency Ly, 28 cycles = 12.7 ns
L, miss latency Ly, 387 cycles = 176 ns
@ For this CPU, a full cache miss implies a stall of @
the CPU for 28 + 387 = 415 cycles (cy).

54Measure these characteristics for your CPU with Stefan Manegold's Calibrator,
http://monetdb.cwi.nl/Calibrator/.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 524

http://monetdb.cwi.nl/Calibrator/

Outlook: More on Performance Tuning in MonetDB/XQuery

Staircase join: Wrap-up

@ Standard BT-tree implementation suffices to support 1.
» A single BT-tree indexes the pre/post plane as well as the context
node sequence.
= Less index pages compete for valuable buffer space.
@ 1 derives pruning and skipping information from the plane itself,
using simple integer arithmetic and comparisons.
» Simple] logic leads to simple memory access pattern and control
flow.
= Branches in inner] loops are highly predictable, facilitating
speculative execution in the CPU.

Predictable branches?
Explain why! J

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 525

Part XVIII

Relational XQuery Compilation

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Outline of this part
@ Where We Are
@ XQuery Core
@ Restricted XQuery Subset
@ Normalization
@ Typing
@ Type-Based Simplifications
@ XQuery Compilation
@ Representing Sequences
@ Target Language
@ Compiling FLWORs
@ Example
@ Representation Issues
@ Relational Algebra for FLWOR Blocks
@ Nested Iterations
@ Resulting Relational Algebra Plans

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

527

Where We Are

Where we are

We have been discussing an infrastructure for the relational
representation of XML documents:

@ a relational tree encoding &, the XPath Accelerator,

@ support for efficient XPath location step processing using its
pre/post numbering scheme,

@ possibilities to enhance relational DBMSs by a specialized, and tree
aware processing algorithm, Staircase Join <.

We will now focus on the translation of XQuery expressions into
relational execution plans.

@ We will discuss the translation of a subset of XQuery.

@ The compiler will emit expressions over a (rather restricted) classical
variant of relational algebra.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 528

Source language: XQuery Core

Supported XQuery Core Dialect

@ literals @ document order (e; << &)

@ sequences (e, e) @ node identity (e; is &)

@ variables ($v) @ arithmetics (+,-,%,idiv)

@ let---return @ fn:doc()

@ for:--return @ fn:root()

@ for---[at $v]---return @ fn:data()

@ if---then---else @ fn:distinct-doc-order ()

@ typeswitch---case---default @ fn:count()

@ element {---} {---} @ fn:sum()

@ text {---} @ fn:empty()

@ XPath (e/a) @ fn:position()

@ function application @ fn:last())
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 529

Restricted XQuery Subset
XQuery Core

XQuery Core removes ‘“syntactic sugar” from the XQuery surface syntax
without sacrificing expressiveness.

@ XQuery Core expressions tend to be significantly more verbose than
their XQuery equivalents.
Nevertheless, an XQuery compiler benefits:

@ Implicit XQuery semantics is made explicit, and
@ less constructs need to be treated in the compiler.

@ The process of turning XQuery expressions into XQuery Core is
referred to as normalization.
Normalization and XQuery Core are defined in the W37 XQuery 1.0
and XPath 2.0 Formal Semantics.>®

Shttp://www.w3.org/TR/xquery-semantics/

http://www.w3.org/TR/xquery-semantics/

Normalization: Simpler constructs

@ In XQuery surface syntax, for clauses may bind an arbitrary number
n of variables. In XQuery Core, n is fixed to be 1.

@ Further, there is no where clause in XQuery Core.

Multi-variable for into nested single-variable for loops

for $v; in e, $w in e, ..., $v, in e,
where p
return e
for $v; in e; return
for $v» in e, return

for $v, in e, return
if (p) then e else ()

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 531

Normalization
Normalization: Less constructs

0 No some (every) quantifier in XQuery Core

While the XQuery surface syntax supports the existential (universal)
quantifier some (every), no such support is present in XQuery Core.

How can

some $v in e; satisfies e
(every $v in e; satisfies ep)

be equivalently expressed in XQuery Core? (Hint: use fn:empty.)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

532

XQuery Core Normalization

Normalization: Implicit to explicit semantics

Implicit Semantics

Consider the simple XQuery path expression
/a/bl[@c >= 42]

In XQuery Core, implicit semantics is made explicit:

© The context node of the absolute path (starting with /---) is the
root node of the current context node (.).

© A multi-step path is broken into single steps. An XPath predicate
is turned into a conditional expression.

© General comparison >= has existential semantics.

© The comparison operands need to be atomized.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 533

XQuery Core Normalization

Normalization

Normalized expression for /a/b[@c >= 42]

for $_vO := fn:root(.) return
for $_v1 in $_vO/child::a return
for $_v2 in $_vi/child::b return
if (some $_v3 in fn:data($_v2/attribute::c) satisfies
some $_v4 in fn:data(42) satisfies
op:ge($_v3, $_v4))
then $_v2
else ()

Note:

@ Both some---in---satisfies still non-normalized. Normalization
of path steps more complex (see below).

@ Builtin function op:ge (greater or equal) implements a generic
(overloaded) variant of the comparison operator ge.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 534

XQuery Core Normalization

Normalization of location steps

In the W3" Formal Semantics documents, normalization is formally

defined in terms of function [e] which maps XQuery expression e into
Core (in a bottom-up fashion).

Normalize an XPath location step
[ei/e]

fs:distinct-doc-order(
let $fs:context as node()*

:= [e1] return
let $fs:last

:= fn:count($fs:context) return
for $fs:dot at $fs:position in $fs:context return [e;]

)

@ Names (functions, variables) introduced by the normalization are
located in namespace fs, unreachable by XQuery surface queries.

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06 535

XQuery Core Normalization

More normalization rules

Further cases for [-]

[.] = $fs:dot
[lastO] = $fs:last
[position()] = $fs:position
[nt] = child::nt
[ei//e2] = [ei/descendant-or-self::node()/e;]

[following-sibling: : nt]°°

[let $e := . return
$e/parent: :node()/child::nt[. >> $el]

56Used only if the XQuery processor does not provide builtin support for XPath axes
beyond parent, child, descendant(or-self), attribute.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 536

Static typing

@ The resulting normalized XQuery Core queries include many obvious
(and not so obvious) hooks for simplification.

@ Such opportunities for simplification are largely detectable once the
Core query has been statically typed.

» Static typing assigns a sequence type to any subexpression of a
given Core query.

» To achieve this, the static typing process traverses the Core
expression tree bottom-up.

» Static typing does not depend on the actual XML input data—only
on the query itself (and imported schemas).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 537

Sequence types (recap)

XQuery uses sequence types to describe the type of item sequences:

Sequence types t (simplified)

t

occ
item
node
name
tyname
atomic

empty-sequence ()

item occ

+x[7]e

atomic | node | item()

element () | element (name|[,tyname ,]) | - --
* | QName

QRName

integer|string|double| - --

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

538

Typing rules

In the W3_ XQuery Formal Semantics, static typing is defined in terms of
inference rules.

Typing a conditional expression
E - e; : xs:boolean Ete: : t EFes:ts
EFif (e;) then e, else e3: (tz | t3)

@ The premise of an inference rule may be empty (facts).
@ Read e : t as “expression e has type t".

e Environment E°7 contains a mapping of variables to types;
for $v ..., let $v ..., some $v/every $v ... enrich the
environment: E becomes E + {v — t}.

5"Named statEnv in the W3 document.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 539

Typing rules and the environment

Constants (no premise)

E42:xs:integer E I "foo" :xs:string

Variable binding (1et)
Ete:ty E+{V'—>t1}|_62:t2
Etlet $v := e return e : bt

Variable reference

E+{vetirs$v:t

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

540

Typing

Type inference: Example

A complete type inference (E' = E + {x + int})

E'F$x:int E'FO0:int

E'F $x gt 0:bool E'l<a/>:elem(a) E'F $x:int
- E'Fif ($x gt 0)
EF42:int then <a/> else $x: (elem(a) | int)

EF1let $x := 42 return
if ($x gt 0) then <a/> else $x: (elem(a) | int)

@ Note how environment E (and its enrichment E’) are passed
top-down while the inference of the type elem(a) | int proceeds
bottom-up.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 541

Typing

Static types vs. dynamic types

The XQuery static typing discipline is conservative in the sense that the
static types overestimate the actual types occurring during query
evaluation (the latter are also called dynamic types).

Dynamic type

let $x := 42 return L <a/>: elem(a)
a/>: elem(a
if ($x gt 0) then <a/> else $x

Dynamic types (here: elem(a)) are always subtypes of the static types
inferred at compile time:

elem(a) <: elem(a) | int

[If t<:t/, then t' accepts all values accepted by t (and possibly more).]

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 542

Static typing

Statically typed expression [type annotations]
for $_v0 [node()] := fn:root(.) [node()]

return
for $_v1l [element(a)] in $_vO0/child::a [element(a)x*]

return
for $_v2 [element(b)] in $_vi1/child::b [element (b)*]
return
if (
some $_v3 [xs:integer] in
fn:data($_v2/attribute::c [attribute(c)]) [xs:integer]

satisfies some $_v4 [xs:integer] in
fn:data(42) [xs:integer] satisfies

op:ge($_v3, $_v4)) [xs:boolean]
then $_v2 [element(b)]
else () [empty-sequence ()]
[element (b) 7]

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

543

Static typing and XML-Schema

Notes:

@ The static type xs:integer for the subexpression

fn:data($_v2/attribute: :c))

may only be derived if the schema attribute declaration
attr ¢ {xs:integer} is in scope. (Which type would be inferred
otherwise?)

@ Likewise, if schema element declarations elem a {71} and
elem b {7} are in scope, we can type the two XPath location steps
more rigidly (and gain).

@ The other way round, in specific cases, static typing @
may make validation (at runtime) unnecessary. (Research!)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 544

Type-Based Simplifications
Type-based simplifications

Single-item iteration
If the type of e; denotes a single item, then

for $v in e; return e = let $v := e; return e
some $v in e; satisfies e = let $v := e return &
every $v in e; satisfies e, = 1let $v := e return e

[0 “Empty” iteration
If the type of e; is empty-sequence (), then
for $v in e; return e =

some $v in e; satisfies e
every $v in e; satisfies e

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 545

Type-based simplification

@ Apply single item iteration simplification.
@ Specialize op:ge (no overloading anymore).

First simplification steps

let $_vO0 [node()] := fn:root(.) [node()]
return
for $_vl [element(a)] in $_v0/child::a [element(a)*]
return
for $_v2 [element(b)] in $_vi/child::b [element (b)*]
return
if (
let $_v3 [xs:integer] :=
fn:data($_v2/attribute::c [attribute(c)]) [xs:integer]
let $_v4 [xs:integer] := fn:data(42) [xs:integer]
return op:integer-ge($_v3, $_v4)) [xs:boolean]
then $_v2 [element(b)]
else () [empty-sequence ()]
[element (b) 7]

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

546

Type-Based Simplifications
Type-based simplification

@ fn:data() on atomic values is the identity.
@ Unfold 1let bindings (but only if this is safe to do). @

More simplification steps

for $_vl [element(a)] in fn:root(.)/child::a [element(a)*]
return

for $_v2 [element(b)] in $_v1/child::b [element (b)*]
return

if (op:integer-ge(fn:data($_v2/attribute::c), 42))

then $_v2 [element(b)]

else O [empty-sequence ()]
[element (b) 7]

@ For holistic XPath location step implementations, it might be more
efficient to “stitch” the path steps together again.
(For -based step evaluation, the above is just fine.)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 547

Type-Based Simplifications
When types get in the way

Static typing may be used to improve XQuery expressions at compile
time. Since data is not available at this point, typing is conservative.
This can get in the way.

Static typing gets in the way (ice-warning.xq)

for $w in $weather-reports/weather-report
return
if (($w/temp [element(temp)*] * 0.9) < 2.5)
then <ice-warning> { $w/@* } </ice-warning>
else O

$ XQuery ice-warning.xq
TYPE ERROR: no variant of function op:times accepts

the given argument type(s): double*; decimal

Marc H. Scholl (DBIS, Uni KN) Winter 2005/06

548

When types get in the way

In principle, the XQuery compiler could derive the type annotation
element (temp) for subexpression $w/temp from the type of $w and a
corresponding XML Schema: perform “location step” on schema type.

Possible fixes:

@ User shares her schema knowledge with the compiler:

$w/temp[1] [element(temp)] * 0.9]

@ User asserts that path expression yields exactly one node. System

checks at runtime:>8

fn:exactly-one($w/temp) [element(temp)] * 0.9 J

58 Also available: fn:zero-or-one(), fn:one-or-more().

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

549

XQuery compilation

Two principal data structures form the backbone of the XQuery data
model:

© Ordered, unranked trees of nodes
We know how to map these into the relational domain. A node v in
such a tree is representable by pre(v) (which may be used as a key
in the pre|post, pre|kind, ...tables to explore v’'s containing tree.

@ Ordered, finite sequences of items (i1,/,...,i)
An item either is a node or an atomic value of an XML Schema
simple type Ts. Note: 75 might not be available in the database
back-end. Maintaining sequence order in a relational back-end calls
for extra effort and care.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

550

Representing items and sequences

Let /, iy denote XQuery items (atomic values, nodes):

pos item

1
(b2 yin) J

0O J

@ |tem / and singleton sequence (/) share representation.

@ Issues of polymorphism in column ‘ not addressed here.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

551

(Explicit) Sequence positions

The maintenance of explicit sequence positions in column ‘ may
seem costly—but it is mandatory to properly implement XQuery
sequence order:

@ In arbitrary XQuery expressions, sequence order does not coincide
with document order.
@ Sequences may contain non-node items (and nodes).

@ For sequences of type node () * (nodes only) in document order, we
may derive ‘ from ‘ (see below).

@ Once the query has been mapped to the system’s physical algebra,
intermediate results (tables) are orderded. This physical order may

coincide with ‘

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 552

T o Lz
Target code: A dialect of relational algebra

Operators
Oa row selection
Tab:c projection/renaming
Qa:(b,...c)/d Fow numbering

X Cartesian product
M, Jjoin

U disjoint union

A\ o difference

0 duplicate elimination

©a:(b c) applyo € {*,=,<,...}

@ Column names denoted by a, b, c,

@ Last row: the algebra contains operators ®, ®,9,®,

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

535

T o Lz
Relational algebra dialect

@ This dialect of relational algebra has been chosen to be efficiently
implementable by standard database kernels.

@ A small library of simple support routines, ideally implemented in
or close to the database kernel, complete the target language.

» Support routines provide shorthands for “micro plans’ recurring in the
algebraic plans emitted by the XQuery compiler.

Support routines (excerpt)

&l staircase join (XPath evaluation) | ROOT support for fn:root
€ element node construction DOC support for fn:doc
T text node construction SUM support for £n:sum

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 554

T o Lz
Relational algebra dialect

Row selection

Row selection o does not support predicates as arguments. Instead, o,
(Boolean column a), selects all rows with column a = true:

true
false
(o true
true
false
true

~N P> O R NN W

Predicate evaluation is lifted onto the level relational algebra itself, using
the © operators.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 555

T o Lz
Relational algebra dialect

Applying operator o via ©®

o b
0|3 03| 3
40 | 2 40 | 2 | 42
Dc:(ab) 41 | 1 = 41 | 1| 42
5|5 5|5 10
—4 14 —4 14| 0
35| 7 35| 7|42

o b

0|3 0| 3| true

40 | 2 40 | 2 | false

@c:(a,b) 41 | 1 = 41 | 1 | false

5|5 51| 5| false

—4 | 4 —4 | 4| true

35 |7 35 | 7 | false

v

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

556

XQuery Compilation Target Language

Relational algebra dialect

[l Predicates on the algebraic level

Formulate the selection g5 c=42(€) on the algebraic level using
operators @®, S, ... (e denotes a relation containing columns a, b, ¢).

You will also need x.

(You will understand why this is considered a simple, “assembly-style
relational algebra.)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

557

T o Lz
Relational algebra dialect

Column projection and renaming

Column projection 7 is not required to remove duplicate rows after
column removal. Explicit duplicate removal is performed by .
(Note: also renames column a into c.)

IRzl

10
10
10 =
20
30
10

Tc:a

WNNN RO
Il
w N = o)

|0JMI\)I\)I—‘OH

|(JJNI\)I\)I—‘O

@ Note: In the plans emitted by the XQuery compiler, § is seldomly
necessary as the projection list includes key columns.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 558

XQuery Compilation Target Language

Relational algebra dialect

Order is prevalent in XQuery but row order has no meaning in the

relational model.

@ Reflect order on the level of the relational model by means of explicit

columns.

@ Derive these columns via the row numbering g operator.

Row numbering operator p

Qa:(b,c)(e)

Use order criteria (columns) b, ¢ to
order the rows of e, attach new
densely numbered (1,2, ...) column
a reflecting this order.

Qa:(b,c)/d(€)

As before, but perform the numbering
for each group of rows with identical
d values (numbering in each group
starts from 1).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

559

Relational algebra dialect

Row numbering via g

Suppose the evaluation of an XPath location step yields a one-column
() relation (node identifiers). Use g to derive sequence order from
document order:

100 5 100

12 3 12

@pos:(pre) 13 = 4 13
6 2 6
2 1 2

212 6 212

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 560

T o Lz
Relational algebra dialect

Grouped row numbering

Oc:(a)/b

0 00 — B~ W
N = NN ey

Note: if b is key or constant, g.(5),, may be simplified.

Oc:(a)/b(€) Is expressible using the SQL/OLAP amendment to SQL:1999

Grouped row numbering in SQL

SELECT a, b,DENSE RANK() OVER
(PARTITION BY b ORDER BY a) AS ¢
FROM e

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 561

T o Lz
Relational algebra dialect

@ As we will see, p operators are pervasive in the query plans emitted
by the XQuery compiler.

@ Since all conceivable implementations of g rely on a blocking sort,
the compiler will try to remove/simplify occurrences of p.

@ In particular cases, however, physical row order and the order criteria
of p coincide. This renders g almost a no-op.

1 Physical row order and p

Suppose the database delivers the rows of e in (b, ¢) order. Which of the
following p instances require a blocking sort?

) Qa:(b,c)(e) ©) Qa:(b)/c(e)
@ 0a:(b)(€) @ 0a:(c)/b(€)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 562

Relational algebra dialect

There are further properties of the emitted plans, which facilitate their
efficient evaluation by the database kernel:

@ All joins are equi-joins only (— use merge join or hash join

internally):

di=apz

egr X e J

@ All union operations consume disjoint operands only (— simply
concatenate rows internally):

61062 J

o All difference operators process keys only (— index-only operation):

m(e) \m(e) |

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 563

Support routines

@ Emitted plans may refer to a small number of support routines
which primarily encapsulate access to

@ tables maintained by the relational XML fragment encoding (i.e.,
the tables needed to implement £), and to

@ tables needed to maintain persistent XML documents in the
database.

@ The support routines consume and return tables just like relational
operators.

» For efficiency reasons, these routines are implemented next
to/inside the database kernel.

» Their semantics, however, is equivalent to specific algebraic
expressions (relational micro plans).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 564

Support routines

Access to persistent XML documents

The database maintains a

table uri|pre mapping XML

document URIs to preorder Titer. pre
r.

ranks of document nodes. B
item=uri

Routine DOC accepts a whole
table of URIs and performs
the mapping for each of
these.

foo.xml
"bar.xml" | 42015

Routine DOC encapsulates the join and the access to the uri|pre table.
(Table iter|item is the only argument to DOC.)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 565

Sl
Compiling FLWORSs

XQuery Core is designed around an iteration primitive, the for—return
construct.

@ A for loop iterates the evaluation of loop body e for successive
bindings of the loop variable $v:

for $v in (i1,h,...,I,) return e

Ce[ir/$v], e[i2/$\/_], ., e[in/$v])

where e[//$v] denotes the consistent replacement of all free
occurrences of $v in e by item J.

@ In principle, in XQuery it is semantically sound to evaluate all
iterations of e in parallel or in arbitrary order (as long as the final
result sequence is correctly ordered).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 566

___________________ Compiing FLWORs [l
Example: Compiling FLWORs

Parallel/arbitrary evaluation of for loop body
for $x in (1,2,3) return $x*10 gt 15

(($x*10 g;_15)P/$xL
($x*10 gt 15)[2/$x],
($x*10 gt 15)[3/$x])

(1x10 gt 15,
2%10 gt 15,
3%10 gt 15)

!

(false,true,true)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

567

The relational query processing mode

This iterative nature of evaluation does not fit too well with the
relational query processing mode.

true
false
true
true
false
true

e

D

~N D oOORR NN W

= Consume bulk of tuples, produce bulk of tuples (code locality).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 568

Variable representation

Relational representation of XQuery variables: collect the bindings of

all iterations into a single relation.
for $v in (i,h,...,I,) return e

(e[i1/$v]’ e[i2/$\/:], 2500 e[ln/$V])

Representation of (iy,i,...,Iy): Derive $v as follows:
pos item iter pos item

1 1 1 1 I

s 2 1 o

n 1 i

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

569

Compiling FLWORs Representation Issues

lterated item sequences: iter|pos|item tables

Such ‘ tables will be pervasive in this XQuery

compilation scheme: the relational plan for any compiled XQuery
subexpression will yield a relation of this form.

The iter|pos|item representation of item sequences

iter | pos item

“In the ith iteration, the item at position p has value x.”

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

570

The iter|pos|item representation

[0 The iter|pos|item representation

What is the iter|pos|item representation of the result of the for loop
below?

for $x in (1,2,3,4)
return if ($x mod 2 eq 0) then -10 else (10,%$x)

Result:

iter pos item

v

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 571

Compiling FLWORs Representation Issues

Deriving variable representations

[l Deriving Variables
Suppose we wrap the former query in another for loop:

for $y in (for $x in (1,2,3,4) return
if ($x mod 2 eq 0) then -10 else (10,%x))

return $y * 5

Devise an algebraic query that derives the representation of variable $y

from its bindings:>°
iter | pos item

iter | pos item

1 1 10
. pos
-10 X Titer:inner,item (Qinner:(iter,pos) ())

10
3
-10

59Remember: an XQuery variable is awlays bound to a single item.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

572

Compiling FLWORs Representation Issues

Iteration scopes

The principal idea of the compilation scheme is to compile any
subexpression in dependence of the iteration scope s; it appears in.

@ The outermost “iteration scope” is sg.
Note: in sy, no actual iteration is performed (any top-level
expression is evaluated exactly once).

@ A new iteration scope is opened for every for—return construct:

Outermost scope sy and iteration scope s;

for$xin(k,...,5,...,2,1)

S
0 S1 [return$x x5

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 573

lteration scopes

Flat iteration

for $x in (k,...,5,...,2,1)
sl[return $x*5

Encoding of subexpressions in their respective scopes:

In sp: In s1: In s1:

(k,...,2,1)l $x J 5 J

iter pos item iter pos item

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

574

Relational Algebra for FLWOR Blocks
Relational algebra evaluates FLWOR block

Input: XQuery

for $x in (k,...,5,...,2,1)
return $x*5

Output: Relational Algebra

~~~~~~~ Titer,pos,item:res

res:(item,item1)

jter=iterl

2 k-1| 1| 5
1

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

575



Loop lifting

Subexpressions are compiled in dependence of the iteration scope
si—represented as unary relation loop(s;)—in which they occur.

. loop(s1)
XQuery lteration loop(sp)
for $v in (ir,irs... in)
20 51[ return e
@ Item "a" in scope si: @ Sequence ("a","b") in s1:
iter pos
1 1 Ilall
: 1 2 llbll
n i Ilall E : .
n 1 Ilall
n 2 Ilbll

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

576



Compiling FLWORs Relational Algebra for FLWOR Blocks

Loop lifting

Much like the static typing process, we may formally specify a bottom-up
compilation procedure in terms of inference rules. The rules collectively
define the “compiles to" function =-.

@ The inference rules rely on

@ an variable environment [~ mapping variable names to algebraic
plans, and

@ relation loop encoding the current iteration scope.

Compilation rule for constant item i

pos item

[ loop = i loop x

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06 577



Compiling FLWORs Relational Algebra for FLWOR Blocks

More compilation rules

Compile arithmetics (here: op:plus)

[ loop e = g1 [ loop e = go

I[; loop = op:plus(e;, ) =

Titer,pos, il’em:res(®res:(item,item’) ( g1 I><Iii.‘er:ii.‘er’ Titer':iter,item’:item ( gz ) ) )

Compile 1let binding

[ loop ke = g1 F+{v— qi};loopt e & g
[;loopt1let $v := e; return e = ¢

Compile variable reference

{....v=>q,...};looptF $v = g

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

578



Compiling FLWORs Nested Iterations

Nested iteration scopes

: : loop(sy)
Nested for iterations Joop(so) /O,D(S1) o
Iter 1

for $vp in (10,20) iter
. 1 2
s, {for $v1 in (100,200) 3

52[ return $vp + $v»;

Derive $vg, $v1 as before (uses row numbering operator p):

ARSI /ter | pos | item VO M iter pos | item
1 1 10 1 1 | 100

2 1 20 2 1 | 200

3 1 | 100

4 1 | 200

Variable $vp in scope s,7 @

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 579



Compiling FLWORs Nested Iterations

Nested iteration scopes

Nested for iterations

for $vp in (10,20)
So for $v; in (100,200)
S1
52[ return $vp + $w»;

Capture the semantics of nested iteration in an additional relation map:

map

inner outer Read tuple (i, o) as:
1 1 “If the outer for loop is in its oth
2 1 iteration, the inner for loop is it-
2 g erated the jth time.”

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 580




Nested iteration scopes

. . map
Nested for iterations inner | outer
for $vp in (10,20)
So for $v; in (100,200)
! 52[ return $vp + $v»;

1 1

1
2
2

Representation of $vy in s,

Titer: inner,pos,item

X

iter=outer

iter | pos | item / \

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 581



FLWOR evaluation in scope s,

Nested for iterations

for $vp in (10,20)
for $v; in (100,200)
52[ return $vp + $v»;

1 1 10
2 1 10
2 % %8 iter pos
.y . . 1 1 |110
$V1 itero=itery ,-En; B :2’, % %%8
(itemg,itemy) 4 1 | 220
1 1 100
2 1 200
3 1 100
4 1 200

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

582



Compiling FLWORs Nested Iterations

Back-mapping to enclosing scopes

On the previous slide, note that the result of the iteration is represented
with respect to the innermost scope s;:

iter | pos item
110

We can re-use the map relation to map this result back into s; and finally
back into sp.

Representation of this result in scopes s; and sp7

IS /ter | pos WM /ter pos item
1 1 1 1 | 110

1] 2 1] 2
2 |1 1|3
2|2 1] 4

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 583



Compiling FLWORs Nested Iterations

Back-mapping to enclosing scopes

Back-mapping from scope s, to s;

" Titer:outer,pos:pos; ,item

Lpos, :(iter,pos)/outer

X

iter=inner

inner | outer R te

item
1 1 110 1 1 1 1 110 1 1
2 1 | 210 2 1 2 1 | 210 2 1
3 1 120 3 2 3 1 120 3 2
4 | 1 22| 4 2 4 | 1 |220 4 2

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

584



Compiling FLWORs Nested Iterations

Back-mapping to enclosing scopes

A further, identical, back-mapping step on this result yields the final
result in the outermost scope sg.

Of course, this second back-mapping step needs to use @
the map relation between scopes sp and s;.

[0 Relation map between scopes s and s;7

inner outer

1 1
2 1

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 585



Compiling FLWORs Nested Iterations

Compiling for $v in e; return e,

XQuery lteration

for$vine
! Sit1 [ return e,

Summary of for—return compilation scheme:

@ Compute relation map between current scope s; and new iteration
SCOpe Sjy1.
(a) Derive representation of $v from result of e;.
(b) Derive new loop relation from representation of $v.

@ Compile e, in a variable environment I~ where all variables have been
mapped into scope sj11 and $v is visible.

© Perform back-mapping of result of e, into scope s;.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 586



Compiling FLWORs Nested Iterations

Compiling for $v in e; return e,

Compiling for—return
[ loop e & q1 av @E(a) X ﬂiter:inner,item(Qinner:(iter,pos)(QI))
/OOPV @E(b) Witer(qv) map @E> 7router:iter,inner(Qinner:(iter,pos)(ql))

iter=outer

/—v =8 |:X — 7l'it’er:inner,pos,item(qx X maP)/x — qx:| + {V — qv}
ly;loop, - e 5 92

[";loop - for $v in e; return e, g

Titer:outer,pos:pos; ,item(gpos1 :(iter,pos)/outer ( a . M map)
iter=inner

Note: numbers in () refer to previous slide.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

587



Compiling FLWORs Nested Iterations

Compiling for $v in e; return e

Note that the for—return compilation rule indicates that the resulting
algebra tree will contain numerous identical subtrees.

@ Such opportunities for sharing common algebraic subexpressions
may be discovered after compilation: common subexpression
elimination (CSE).

@ Alternatively, the compiler may already make sharing explicit and
emit a directed acyclic graph (DAG) of algebraic operators
instead of an algebra tree.

We follow the latter approach.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 588



Compiling FLWORs Nested Iterations

Compiling nested FLWOR blocks
XQuery FLWOR Block

for $x in (100,200,300) return
So | ¢ for$yin return
. 52[ if ($xeqPy *#0) then $xelse ()

Encoding of invariable sub-expressions is denormalized in inner scopes
(i.e., item sequence value independent of iteration):

10 in sp: (30,20) in s1:

iter | pos | item iter | pos | item

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 589



Resulting Relational Algebra Plans
Typical DAG shape of relational plans

Titer,pos,item:--++-
. g 41 200
Q;’ferl 5| 1 |300

iterl:iter

@res (item,item1)

Qz

Titer:inner,pos, ltem Titerl:iter,iteml:res
iter=outer res:(item,item1)
it iterl

7riter1 :iter,item1:item

Titer: mner ltem\@

inner: (lter pos)

Touter:iter,inner

7rlfer
x T30

~
Titer:ii inper, ltem\@ 2]

Cinner: (lter pos)

T e
M 1 | 100 1|2 |200
I 1

2 (200 3 [ 300
3 | 300
y
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 590




Compiling FLWORs Resulting Relational Algebra Plans

Compiling complex queries

XMark query Q8

for $p in fn:doc("auction.xml")/site/people/person
return
let $a := for $t in fn:doc("auction.xml")/site/
closed_auctions/closed_auction
return if (fn:data($t/buyer/person/text()) =
fn:data($p/id/text()))
then $t
else O
return <item>{ <person>{ $p/name/text() }</person>,
text { fn:count($a) }
}

</item>

= Compiled into a DAG of 120 operators, significant sharing.

@ Equivalent tree has =~ 2,000 operator nodes.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

591



Compiling FLWORs

Marc H. Scholl (DBIS, Uni KN) XML and Databases



Compiling FLWORs Resulting Relational Algebra Plans

Compiling conditional expressions

The compilation of conditional expressions if (e;) then es else e3 fits
nicely into the compilation framework.

Iterated evaluation of if (e;) then e, else €3

for $x in 1 to 4

return if ($x mod 2 = 0)
then "even"
else "odd"

@ Here, the if—then—else is evaluated in four iterations
iter € {1,2,3,4}.

@ The then branch is evaluated in iterations {2, 4}.

= Consequently, the else branch is evaluated in iterations

{1,2,3,4}\{2,4} = {1,3}.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 593



Resulting Relational Algebra Plans
Compiling conditional expressions

XQuery conditional expression

if ( e; ) then

U
(¢}]

e else e3

|2 |2
az as

Equivalent algebraic code

loops
—

gs3 -\
O with
a2 -/

N——
loop,

loop, =

loop; =

mT—-20
iter item AN

m—-20 —
iter neg

©)denotes the algebra’s Boolean negation operator.

(4]

e

S

neg:(item)

v

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06 594



Resulting Relational Algebra Plans
Compiling conditional expressions

Compiling if—then—else
[ loopt g1 = e

loopy = Titer (Titem(qr)) loops = 71'it.‘er(O'neg(e‘)neg:(item)(Cll)))
["; loops - ex = g [; loops - e3 = g3

[;looptif (e;) then e, else e3 b qu'qu,

Note:
@ Note that the then and else branches are compiled with different
loop relations.

@ g2.3 do not contribute to the overall result for those iterations
missing in loop, 3 respectively.

@ Operator U is guaranteed to union disjoint inputs.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 595



Compiling FLWORs Resulting Relational Algebra Plans

Evaluation of conditional expressions

XQuery conditional expression

for $x in 1 to 4

S1 [return if ($xmod 2 = 0) then "even" else "odd"
— ~—— e

€1 €2

€3

Evaluation

o . Iter pos item
i —_— II |/
ltem iter even

/oop2
loops
iter
S o= B
neg:(item) g ar

Marc H. Scholl (DBIS, Uni KN) XML and Databases

Winter 2005/06

596



Resulting Relational Algebra Plans
Compiling the FLWOR where clause

Normalized XQuery FLWOR block

for $x in 1 to 4 for $x in 1 to 4
where $x mod 2 = 0O = return if $xmod 2 = 0O
return "even" then "even" else ()
v
Evaluation
o —T= /ter pos /tem
Item iter even
/oop2
iter pos| _item)
L.J - "even"
4 | 1 |"even"
loops
iter €3
6 —o—m= - x g —
neg:(item) Wy 3

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

597



Compiling FLWORs Resulting Relational Algebra Plans

“Missing” iterations and ()

@ Note how the intermediate result on the previous slide encodes the
empty sequence in terms of missing iter values:

iter pos'  item = Evaluation in the first and third iterations
21 1 "even” yielded 0. e, = O,e=e.
4 | 1 ["even"

@ Clearly, encoding () by absence (of iter values) requires additional

information about all iterations which have been evaluated. This is
exactly what relation loop provides:

loop
iter
1 iter pos item iter
2 \ T 2 |1 "even") =
3 4 1 |["even" 3
4

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 598



Compiling FLWORs Resulting Relational Algebra Plans

“Missing” iterations and ()

Compiling fn:empty(e) with e = g

true
/oop
q 7r
iter \

\x m/
[ item S

false

Note: the § in this compilation rule is required because fn:empty (e)
yields a single item (of type xs:boolean) regardless of length of
sequence e.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

599



Resulting Relational Algebra Plans
“Missing” iterations and ()

Insert call to fn:empty () in loop body

for $x in (1 to 4)
return fn:empty(if ($x mod 2 = 0) then "even"
else ()

Evaluation of fn:empty(e) with e = g

|
ter true—
1 ...................... /OOp X

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 600



Resulting Relational Algebra Plans
Table of Contents |

1.1 Welcome .....oiiiiiiiiiii it ia st iesansansansnnsnnsnnns 4
1.2 OVEeIVIEW ....iiiiiiiiiennssnannsstannsssnnnsssnnsnsnnnnns 5
XML 5
XML and Databases ............ . 7
1.3 Organization ...........coiiiiriirnnrnnrennennrenrennennns 12
2.4 Markup Languages ...........ciiiiiininrraniiiaiaaaans 17
Early Markup ... ... 17
An Application of Markup: A Comic Strip Finder .............. 22
3.5 Formalizationof XML ........... ..ottt e 32
Elements .. ... . 33
Attributes . ... . 36
Entities ... 37
3.6 Well-Formedness ...........coviiiiiirnnrnnnnnrenrnnnennns 38
Context-free Properties ......... ... ... ... i 39
Context-dependent Properties .............. ... ... ... ....... 46
3.7 XML Text Declarations ............ccoviiiiinrinrennnnnennns 48
XML Documents and Character Encoding .................... 49

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 601



Resulting Relational Algebra Plans
Table of Contents I

Unicode ... o 50

XML and Unicode ... ... .. 56

3.8 The XML Processing Model ..............ccciiiiiiinnnns 57
The XML Information Set .......... ... ... ... ... ... ......... 59

More XML Node Types ..........iiiii . 65

49 DOMLevel 1 (Core) ...ovvviinninnnnennnerrsnnnnnnnnnnness 71
410 DOMExample Code ...........oiiiirmnnnnnrrnnnnnnnnnnnns 74
4.11 DOM—A Memory Bottleneck .....................ccioa.. 78
5.12 SAX EVENts .....cviiiiiiiiii ittt it it e e, 85
5,13 SAX Callbacks .......cciiriiinnrnnranrnnnraarnnnannennnnn 87
5.14 SAX and the XML Tree Structure ...............c..cccouan.. 89
515 SAX and Path Queries ..........cciiiiiiinnrnnrennrnnnnnns 95
Path Query Evaluation ......... ... ... ... ... . ... 96

5.16 Final Remarks on SAX ........ ...ttt iaie i 100
6.17 Valid XML .....ccuiiiiiiiii i iieiesrennassrnnnnnnnnnns 103
6.18 DTDs—Document Type Definitions ........................ 106
Element Declaration ............. .. .. . .. . ... ... 107
Attribute Declaration ....... .. ... ... .. . ... .. 113
Crossreferencing via ID and IDREF .....................cooou.. 116

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 602



Resulting Relational Algebra Plans
Table of Contents Il

6.19

6.20

7.21

7.22

Other DTD Features ...t 120
A “Real Life" DTD—GraphML .............. ... ..., 121
Concluding remarks on DTDs .......cooiiiiiiiiiiiiaan. 126
XML Schema .......ciiiiiiii it e it aernaneanrennnn 128
Some XML Schema Constructs ..................iiiio.. 129
Other XML Schema Concepts .............c.ciiiiiiiiiin... 133
Validating XML Documents Against DTDs ................. 134
Regular Expressions . ............ .. ... 136
Evaluating Regular Expressions (Matching) ................... 139
Plugging It All Together ......... ... ... i 152
Querying XML Documents ...........coiiiirennennnnnennns 155
OVEIVIEBW . et e 155
The XQuery DataModel .............cciiiiiiiiiiirinnnnnn. 158
The XQuery Type System . ... i 158
Node Properties ....... ... ... i 163
ltems and SequeNnces ........ ... 167
Atomic TYpPes ... 171
Automatic Type Assignment (Atomization) ................... 173
Node Types ... .o 174

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

603



Resulting Relational Algebra Plans
Table of Contents |V

Node Identity ....... .. ... . ... 176
Document Order ....... ... .. . 177
8.23 XPath—Navigational access to XML documents ............ 181
Context ... 181
Location steps ... ..o 184
Navigation axes ............iiuiiiii 185
Examples . ... . 190
8.24 XPath Semantics ..............iiiiiiiiiiii it iiiiiaan 193
Document order & duplicates .............. ... ... ... . ... ... 193
Predicates . ........ ... .. 200
Atomization ......... .. 204
Positional access ........ ... .. ... 208
9.25 XSLT—An XML Presentation Processor .................... 223
Separating content fromstyle ............. ... .. ... ... ... ... 224
XSL Stylesheets ... ... . . . 227
XSLT Templates . ... e 229
Examples . ... . 235
Conflict Resolution and Modes in XSLT ...................... 242
More on XSLT ... e 247

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 604



Resulting Relational Algebra Plans
Table of Contents V

10.26

10.27

11.28

11.29
12.30

XQuery—Declarative querying over XML documents ........ 250
Introduction . ... .. . 250
Preliminaries .......... .. 253
Iteration (FLWORS) .......ccoiiiiiiiiiiiinnniiennernnnnnnns 259
For loop ..o 259
Examples . ... 261
Variable bindings ....... ... ... ... 264
where Clause . ... ... 266
FLWOR Semantics ...... ... 271
Variable bindings ........ ... ... 278
Constructing XML Fragments .......... ... .. ... oviiinn.. 279
User-Defined Functions ........... ... .. ... .. i ... 297
Mapping Relational Databases to XML ..................... 309
Introduction . ... .. .. 309
Wrapping Tablesinto XML ....... ... ... ... ... ... ... ... ..... 311
Beyond Flat Relations .......... ... ... ... .. .. . ... ... 315
Generating XML from within SQL ............................ 318
Some XML Benchmarking Data Sets ....................... 320
Mapping XML to Databases .............ccoiiiiiinnnnnnnnns 326

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

605



Resulting Relational Algebra Plans
Table of Contents VI

12.31

12.32

12.33

13.34

Introduction . ... .. . 326
Relational Tree Encoding .............cciiiiiiiiiinrnnnnnnns 334
Dead Ends ... ..o 334
Node-Based Encoding ............. ... i 340
Working With Node-Based Encodings ........................ 345
XPath Accelerator Encoding .................cccoiiiiiinnn., 347
Tree Partitions and XPath Axes .............................. 347
Pre-Order and Post-Order Traversal Ranks ................... 350
Relational Evaluation of XPath Location Steps ................ 354
Path-Based Encodings .............c.cciiiiiiiiiiiininnnnnnns 362
Motivation ... ... .. 362
Data GUides ... ..o 363
Skeleton Extraction and Compression ........................ 364
Data Vectors . ... ..ot 371
Skeleton Compression and Semi-Structured Data .............. 373
Improving Skeleton Compression .................c.ccciueiinn.. 381
Index SUpport ........ciiiiiiii i i e i e 388
OVEIVIEW . et e 388
Hierarchical Node IDs and BT Trees ...............c.cooiui... 389

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06



Resulting Relational Algebra Plans
Table of Contents VII

14.35

14.36
14.37
15.38

15.39
15.40
16.41

16.42
16.43
17.44

Pre/Post Encoding and B Trees ............................ 390
Pre/Post Encoding and R Trees .............cccoiiiiiioin.. 393
More on Physical Design Issues ............. .. ... .. ... ..., 395
Scan Ranges ........coiiiiiiiiiii e i iaa i 405
descendant AXIS . ... 405
Streched Pre/Post Plane ...........oiiiiiiiinernnnnnnnnns 409
XPath Symmetries .........cciiiiiiiiii i 420
Updating XML Trees ........ccivriirnnrinnnnnranrnnnnnnnns 427
Update Specification ......... ... ... ... . . . . 427
XUpdate ... 429
Impact on XPath Accelerator Encoding ..................... 431
Impacts on Other Encoding Schemes ....................... 435
Serialization ............iiiiiiii i i 446
Problem ... 446
Serialization & Pre/Post Encoding ........................... 447
Shredding (£) «..vvviiiiiii e i iiiee i 460
Completing the Pre/Post Encoding Table Layout ........... 472

XPath Accelerator—Tree aware relational XML representation 481

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

607



Resulting Relational Algebra Plans
Table of Contents VIII

Enhancing Tree AWar€ness . .............ouiiiineiinnnennnnnn 481
17.45 Staircase Join .........ciiiiiiiiiiiiiii it 490
Tree AWArENESS . . ..ottt et 490
Context Sequence Pruning .............ccoiiiiiiiiinnniinan. 493
SHaIrCASES .« ottt 502
17.46 Injecting <] into PostgreSQL ...........cciiiiiiiiiiinnnnnnn 515
17.47 Outlook: More on Performance Tuning in MonetDB/XQuery 523
18.48 Where We Are .......ccciiiiirnnrinrnanranrransnnrnnsnnnns 528
18.49 XQuUery Core .....vviiiennranrnnennreasennreesennennsnnnns 529
Restricted XQuery Subset .......... ... . ... .. ... .. ... ... 529
Normalization ........ ... . . 531
18.50 TYPING . ooiiiiitii ittt et ta e ea e aa s taa e aa e 537
Type-Based Simplifications ............ .. ... i 545
18.51 XQuery Compilation .............cciiiiiiiiiiiiiiiiaranannns 550
Representing Sequences .............. . 551
Target Language ............ 553
18.52 Compiling FLWORS ...ttt i iieain s 566
Example ... . 566
Representation Issues ........... ... .. . i 569

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 608



Table of Contents IX

Relational Algebra for FLWOR Blocks ........................ 575
Nested Iterations ........ ... 579
Resulting Relational Algebra Plans ........................... 590

Marc H. Scholl (DBIS, Uni KN) XML and Databases



	Preliminaries
	Welcome
	Overview
	XML
	XML and Databases

	Organization

	XML Basics
	Markup Languages
	Early Markup
	An Application of Markup: A Comic Strip Finder


	Well-Formed XML
	Formalization of XML
	Elements
	Attributes
	Entities

	Well-Formedness
	Context-free Properties
	Context-dependent Properties

	XML Text Declarations
	XML Documents and Character Encoding
	Unicode
	XML and Unicode

	The XML Processing Model
	The XML Information Set
	More XML Node Types


	DOM
	DOM Level 1 (Core)
	DOM Example Code
	DOM---A Memory Bottleneck

	SAX
	SAX Events
	SAX Callbacks
	SAX and the XML Tree Structure
	SAX and Path Queries
	Path Query Evaluation

	Final Remarks on SAX

	DTD
	Valid XML
	DTDs---Document Type Definitions
	Element Declaration
	Attribute Declaration
	Crossreferencing via ID and IDREF
	Other DTD Features
	A ``Real Life'' DTD---GraphML
	Concluding remarks on DTDs

	XML Schema
	Some XML Schema Constructs
	Other XML Schema Concepts

	Validating XML Documents Against DTDs
	Regular Expressions
	Evaluating Regular Expressions (Matching)
	Plugging It All Together


	XQuery Data Model
	Querying XML Documents
	Overview

	The XQuery Data Model
	The XQuery Type System
	Node Properties
	Items and Sequences
	Atomic Types
	Automatic Type Assignment (Atomization)
	Node Types
	Node Identity
	Document Order


	XPath
	XPath---Navigational access to XML documents
	Context
	Location steps
	Navigation axes
	Examples

	XPath Semantics
	Document order & duplicates
	Predicates
	Atomization
	Positional access


	XSLT
	XSLT---An XML Presentation Processor
	Separating content from style
	XSL Stylesheets
	XSLT Templates
	Examples
	Conflict Resolution and Modes in XSLT
	More on XSLT


	XQuery
	XQuery---Declarative querying over XML documents
	Introduction
	Preliminaries

	Iteration (FLWORs)
	For loop
	Examples
	Variable bindings
	where clause
	FLWOR Semantics
	Variable bindings
	Constructing XML Fragments
	User-Defined Functions


	Mapping RDBs to XML
	Mapping Relational Databases to XML
	Introduction
	Wrapping Tables into XML
	Beyond Flat Relations
	Generating XML from within SQL

	Some XML Benchmarking Data Sets

	Mapping XML to Databases
	Mapping XML to Databases
	Introduction

	Relational Tree Encoding
	Dead Ends
	Node-Based Encoding
	Working With Node-Based Encodings

	XPath Accelerator Encoding
	Tree Partitions and XPath Axes
	Pre-Order and Post-Order Traversal Ranks
	Relational Evaluation of XPath Location Steps

	Path-Based Encodings
	Motivation
	Data Guides
	Skeleton Extraction and Compression
	Data Vectors
	Skeleton Compression and Semi-Structured Data
	Improving Skeleton Compression


	Index Support
	Index Support
	Overview
	Hierarchical Node IDs and B+ Trees
	Pre/Post Encoding and B+ Trees
	Pre/Post Encoding and R Trees
	More on Physical Design Issues


	Some Optimizations of the XPath Accelerator Representation
	Scan Ranges
	descendant Axis

	Streched Pre/Post Plane
	XPath Symmetries

	Updating XML Documents
	Updating XML Trees
	Update Specification
	XUpdate

	Impact on XPath Accelerator Encoding
	Impacts on Other Encoding Schemes

	Serialization, Shredding, and More on Pre/Post Encoding
	Serialization
	Problem
	Serialization & Pre/Post Encoding

	Shredding (E)
	Completing the Pre/Post Encoding Table Layout

	Staircase Join
	XPath Accelerator---Tree aware relational XML representation
	Enhancing Tree Awareness

	Staircase Join
	Tree Awareness
	Context Sequence Pruning
	Staircases

	Injecting  into PostgreSQL
	Outlook: More on Performance Tuning in MonetDB/XQuery

	Relational XQuery Compilation
	Where We Are
	XQuery Core
	Restricted XQuery Subset
	Normalization

	Typing
	Type-Based Simplifications

	XQuery Compilation
	Representing Sequences
	Target Language

	Compiling FLWORs
	Example
	Representation Issues
	Relational Algebra for FLWOR Blocks
	Nested Iterations
	Resulting Relational Algebra Plans





