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Chapter 1

Introduction

1.1 Documents, Schemas, and Schema Languages

XML is a data format for describing tree structures based on mark-up texts.
The tree structures are formed by inserting, between text fragments, open and
end tags that are balanced like parentheses. A whole data set thus obtained
is often called document. The appearance of XML documents resembles to the
well-known HTML used for the design of Web pages, but is different especially
in the fact that the set of tag names that are usable in documents are not fixed
a priori.

More precisely, the set of tag names is determined by schemas that can freely
be defined by users. A schema is a description of constraints on the structure
of documents and thus defines a “subset of XML.” In this sense, XML is often
said to be a “format for data formats.” This genericity is one of the strengths
of XML. By defining schemas, each application can define its own data format,
yet many applications can share generic software tools for manipulating XML
documents. As a result, we have seen an unprecedented speed and range in
the adoption of XML; as an evidence, an enormous number of schemas have
been defined and actually used in practice, e.g., XHTML (the XML version of
HTML), SOAP (an RPC message format), SVG (a vector graphics format), and
MathML (a format for mathematical formulas).

One would then naturally ask: what constraints can schemas describe? The
answer is that this is defined by a schema language. However, there is not a single
schema language but are many, each having different constraint mechanisms
and thus different expressivenesses. (To give only few examples, DTD (W3C),
XML Schema (W3C), and RELAX NG (OASYS/ISO) are actively used by
various applications.) This can confuse application programmers since they
would need to decide which schema language to choose, and it can trouble tool
implementators since they would need to deal with multiple schema languages.
This complicated situation can also, however, be seen as a natural consequence
of XML’s strength, since XML is so generic that many applications want to use
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8 CHAPTER 1. INTRODUCTION

it even though they have vastly different software requirements.

1.2 Brief History

The predecessor of XML was SGML (Standard Generalized Markup Language).
It was officially defined in 1986 (ISO), but had actually been used for a long
time from 60s. However, the range of users was rather limited mainly because
of its complexity. Nonetheless, several important data formats like HTML and
DocBook (which are now reformed as XML formats) were actually invented for
SGML in this period.

XML appeared as a drastic simplification of SGML, dropping a number of
features that had made the use of SGML difficult. XML was standardized in
W3C (World-Wide Web Consortium) in 1998. XML’s simplicity, together with
the high demand for standard, non-proprietary data formats, gained a wide,
rapid popularity among major commercial software vendors and open-source
software communities.

At first, XML adopted DTD (Document Type Definition) as a standard
schema language, which was a direct adaptation of the same schema language
DTD for SGML. This decision was from the consideration for the compatibility
with SGML, for which a number of software tools were already available and
exploiting these was urgently needed. However, the lack of certain expressive-
ness that was critical for some important applications had already been pointed
out by then.

Motivated for a new, highly expressive schema language, the standardiza-
tion activity for XML Schema started around 1998. However, it turned out
to be an extremely difficult task. One notable difficulty comes from the at-
tempt to mix two completely different notions, regular expressions and object-
orientation. Regular expressions are more traditional and had been used in
DTD for a long time. The use of regular expressions is quite natural since the
basis of XML (or SGML) documents is the text. On the other hand, the de-
mand for object-orientation arose from the coincident popularity of the Java
programming language. Java had a rich library support for network program-
ming and therefore developers naturally wanted an object serialization format
for exchanging them among applications on the Internet. These two concepts,
one based on automata theory and the other based on a hierarchical model,
are after all impossible to integrate smoothly and the result yielded from four
years’ efforts was inevitably a complex giant specification (2001). Nonetheless,
a number of software programmers nowadays try to cope with the complexity.

In parallel to the standardization of XML Schema, there were several other
efforts for expressive schema languages. Among others, RELAX (REgular LAn-
guage description for XML) aimed at yielding a simple and clean schema lan-
guage in the same tradition as DTD, but based on more expressive regular
tree languages rather than simpler regular string languages. The design was so
simple that the standardization went very rapidly (JIS/ISO, 2000) and became
a candidate for a quick substitution for DTD. Later, a refinement was done
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and publicized as RELAX NG (OASYS/ISO, 2001). Although these schema
languages are not yet widely used compared to DTD or XML Schema (mainly
due to the less influentiality of the standard organizations), the number of their
users indicates a gradual increase.

1.3 This Book’s Topics

This book is an introduction to the fundamental concepts in XML processing,
which have been developed and cultivated in academic communities. A partic-
ular focus is brought on research results related to schemas for XML. Let us
outline below the covered topics.

Schemas and tree automata As soon as the notion of schemas is intro-
duced, we should discuss what description mechanisms should be provided by
schemas and how these can be checked algorithmically. These two questions are
interrelated since, usually, the more expressive schemas are, the more difficult
the algorithmics becomes. Therefore, if we want to avoid a high time complexity
of an algorithm, then we should restrict the expressiveness. However, if there is
a way to deal with such complexity, then the design choice of allowing the full
expressiveness becomes sensible.

In Chapter 2, we give a basic definition of schema model and, using this, we
compare several schema languages, namely, DTD, XML Schema, and RELAX
NG. Then, in Chapter 3, we introduce a notion of tree automata, which are a
finite acceptor model for trees that has rich mathematical properties. Using
tree automata, we can not only efficiently check that a given document satisfies
a given schema, but can also solve other various problems mentioned below
that are strongly related to schemas. Note that schemas specify constraints on
documents and tree automata solve the corresponding algorithmics. In general,
whenever there is a specification language, there is a corresponding automata
formalism. The organization of this book loosely reflects such couplings.

Later in Chapter 7, a series of efficient algorithms are presented for dealing
with core problems related to tree automata (and marking tree automata men-
tioned below). All these algorithms are designed in a single paradigm called
on-the-fly technique, which explores only a part of a given state space of an
automaton that is needed to obtain the final result, and is extremely valuable
for constructing a practically usable system.

As more advanced schema techniques, we introduce, in Chapter 8, intersec-
tion types and their corresponding alternating tree automata. The latter is not
only useful for algorithmics but also helps clear formalization of certain theo-
retical analyses. In Chapter 12, we discuss ambiguity properties of schemas and
automata, which can be used for detecting typical mistakes made by users. In
Chapter 14, we turn our attention to a schema mechanism for describing un-
ordered document structure. Unorderedness is rather tricky since it does not fit
well in the framework of tree automata.
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Subtree extraction Once we know how to constrain documents, we are next
interested in how to process them, where the most important is to extract in-
formation out of an input XML tree. Chapter 4 introduces a notion of patterns,
which are a straightforward extension of the schema model that allows “variable
binders” to be associated with conditions on subtrees. Corresponding to pat-
terns are marking tree automata defined in Chapter 5, which not only accept a
tree but also put marks on some of its nodes. We will discuss in these chapters
various design choices in matching policies and representation techniques into
marking automata.

As different approaches to subtree extraction, we also present path expres-
sions and logics. Path expressions, given in Chapter 11, are a specification for
navigation to reach a target node and are widely used as the most popular no-
tation called XPath (standardized by W3C). In the same chapter, we describe
the corresponding automata framework called tree-walking automata (which also
navigate in a given tree by finite states) and compare their expressivenesses with
normal tree automata. Chapter 13 gives a logical approach to subtree extrac-
tion, where we explain how a first-order (predicate) logic and its extension called
monadic second-order logic (MSO) can be useful for the concise specification of
subtree extraction. Then, the same chapter details a relationship between the
latter MSO logic and tree automata—more precisely, MSO formulae can be
converted to equivalent marking tree automata and vice versa—and, thereby,
makes a tight link to the other approaches.

Tree transformation and typechecking Subtree extraction is about anal-
ysis and decomposition of an input tree, while tree transformation combines it
with production of an output tree. In this book, we do not, however, go into
details of a complex tree transformation language, but rather present several
tiny transformation languages with different expressivenesses. This is because
the primary purpose here is actually to introduce typechecking, the highlight of
this book.

Typechecking is adopted by many popular programming languages for stat-
ically analyzing a given program and guaranteeing certain kinds of type-related
errors never to occur. Since schemas for XML are just like types in such pro-
gramming languages, we can imagine performing a similar analysis on an XML
transformation. However, actual techniques are vastly different from conven-
tional ones since schemas are based on regular expressions, which are not stan-
dard in usual programming languages. Thus, completely new techniques have
been invented that are based on tree automata and set operations on them.

There are two separate approaches to XML typechecking, namely, approxi-
mate typechecking and exact typechecking. In approximate typechecking, we can
treat a general transformation language, i.e., as expressive as Turing-machines,
but may have a false-negative answer from the typechecker, i.e., may reject some
correct programs. In exact typechecking, on the other hand, we can signal an
error if and only a given program is incorrect, but can treat only a restricted
transformation language. This trade-off is a direct consequence of the fact that
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the behavior of a Turing machine cannot be predicted precisely. In Chapter 6,
we define a small but general transformation language µXDuce and describe
an approximate typechecking algorithm for this language. Later in Chapter 9,
we introduce a family of tree transducers, which are finite-state machine mod-
els for tree transformations. These models are restricted enough to perform
exact typechecking and Chapter 10 describes one such algorithm. The pre-
sented typechecking algorithm treats only the simplest model called top-down
tree transducers but already conveys important ideas in exact typechecking such
as backward inference.
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Basic Topics
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Chapter 2

Schemas

A community sharing and exchanging some kind of data naturally needs a de-
scription of constraints on the structure of those data for proper communica-
tions. Such structural constraints can formally be defined by means of schemas
and exploited for mechanical checks. A schema language is a “meta framework”
that defines what kind of schemas can be written.

In this chapter, we will study schema models that can accommodate most
of major schema languages. Though the expressivenesses of these schema lan-
guages are different in various ways, our schema models can serve as, so to
speak, the least common denominator of these schemas and, in particular, some
important differences can be formalized as simple restrictions defining classes
of schemas. We will see three such classes each roughly corresponding to DTD,
XML Schema, and RELAX NG.

2.1 Data Model

The whole structure of an XML document, if we ignore minor features, is a tree.
Each node is associated with a label (a.k.a. tag) and often called element in
XML jargon. The ordering among the children nodes is significant. The leaves
of the tree must be text strings. More detailed constrains are not defined in this
level, e.g., what label or how many children each node can have.

Let’s see an example of XML document representing a “family tree,” which
will repeatedly appear throughout this book.

<person>

<name>Taro</name>

<gender><male></male></gender>

<spouse>

<name>Hanako</name>

<gender><female></female></gender>

</spouse>

<children>
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Figure 2.1: A family tree

<person>

<name>Ichiro</name>

<gender><male></male></gender>

</person>

<person>

<name>Umeko</name>

<gender><female></female></gender>

</person>

</children>

</person>

Each pair of an open tag <tag> and its corresponding end tag </tag> forms
a tree node. Different nodes may have different numbers of children and, in
particular, some nodes have no children (namely, males and females). The tree
structure can be depicted more visually as in Figure 2.1.

For later formal studies, let us define the data model more precisely. We first
assume a finite set Σ of labels ranged over by a, b, and so on. We will fix these
sets throughout this book. Then, we mutually define values by the following
grammar.

value v ::= a1[v1], . . . , a1[tn] (n ≥ 0)

The form a[v] represents a node where v is called content. A value is a sequence
rather than a set, and therefore there is ordering among these trees. We write
() for the value in the case n = 0 (“empty sequence”) and write a label a[]
when the content is (). Text strings, though not directly handled in the data
model, can easily be encoded by representing each character c of a string as a
single label c[] with no content (e.g., "foo" is represented by f [], o[], o[]). There
are also other kinds of discrepancies between our data model and real XML
documents. We comment below on some of them that are worth mentioning.

Attributes Each element can be associated with a label-string mapping, e.g.:
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<person age="35" nationality="japanese">

...

</person>

Despite their apparent simplicity, treating attributes is rather tricky since
there is no ordering among the labels and the same label cannot be de-
clared in the same node, which makes attributes behave quite differently
from elements. We will specially consider attributes in Chapter 14.1.

Namespaces Each label of element (and attribute) is actually a pair of a name
space and a local name. This mechanism is provided for discriminating la-
bels used in different applications and purely a lexical matter. Throughout
this book, we ignore this feature (or regard each pair as a label).

Single root A whole XML document is actually a tree, that is, it has only
one root. In the formalization, however, we always consider a sequence of
trees for considering an arbitrary fragment of the document. We will soon
see that this way of formalizing is more convenient.

2.2 Schema Model

Let us first look at an example. The following schema describes a constraint
that we would naturally want to impose on family trees as in the last section.

Person = person[Name, Gender, Spouse?, Children?]

Name = name[String]

Gender = gender[Male | Female]

Male = male[]

Female = female[]

Spouse = spouse[Name, Gender]

Children = children[Person+]

The content of each label is described by the regular expression notation. A
person contains a sequence of a name (with a string content) and a gender

followed by a spouse and a children, where the name and the gender are
mandatory while the spouse and the children are optional. The content of a
gender is a male or a female that, in turn, contains the empty sequence. A
spouse contains a name and a gender, and a children contains one or more
persons.

To formalize, we first assume a set of type names, ranged over by X . A
schema is a pair (E,X) of a type definition and a “start” type name, where a
type definition is a mapping from type names to types, written as follows

E ::= {X1 = T1; . . . ;Xn = Tn}
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and types are regular expressions over label types and can be defined by the
following grammar.

T ::= () empty sequence
a[T ] label type
T |T choice
T, T concatenation
T ∗ repetition
X type name

The type T in a label type a[T ] is often called content model in XML terminology.
Other common regular expression notations can be defined by short-hands:

T ? ≡ T | ()
T+ ≡ T, T ∗

For encoding the String type used in examples, let {c1, . . . , cn} be the charac-
ters that can constitute strings and abbreviate:

String ≡ (c1 | . . . | cn)
∗

For a schema

({X1 = T1; . . . ;Xn = Tn}, X)

X must be one of the declared type names X1, . . . , Xn. Also, each Ti can freely
contain any of these declared type name; thus type names are useful for both
describing arbitrarily nested structures and defining type abbreviation as in the
example. However, there is a restriction: any recursive use of a type name must
be inside a label. As examples of this restriction, the following are disallowed

• { X = a[], X, b[] }

• { X = a[], Y, b[]; Y = X }

whereas the following is allowed.

• { X = a[], c[X ], b[] }

This requirement is for ensuring the “regularity” of schemas, that is, correspon-
dence with finite tree automata described later. Indeed, under no restriction,
arbitrary context-free grammars can be written, which is too powerful since
many useful operations on schemas like containment check (Section 3.4) be-
come undecidable. Also, checking if a given grammar is regular or not is also
undecidable and therefore we need to adopt a simple syntactic restriction that
ensures regularity.

The semantics of schemas can be described in terms of the conformance
relation E ` v ∈ T , read “under type definitions E, value v conforms to type
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T .” The relation is defined by the following set of inference rules.

E ` () ∈ ()
T-Eps

E ` v ∈ T

E ` a[v] ∈ a[T ]
T-Elm

E ` v ∈ T1

E ` v ∈ T1 |T2

T-Alt1

E ` v ∈ T2

E ` v ∈ T1 |T2
T-Alt2

E ` v1 ∈ T1 E ` v2 ∈ T2

E ` v1, v2 ∈ T1, T2
T-Cat

E ` vi ∈ T ∀i = 1..n n ≥ 0

E ` v1, . . . , vn ∈ T
∗ T-Rep

E ` v ∈ E(X)

E ` v ∈ X
T-Name

To check that a value conforms to a schema (E,X), we have only to test the
relation E ` v ∈ E(X).

2.3 Classes of Schemas

We are now ready to define classes of schemas and compare their expressive-
nesses. We consider here three classes, local, single, and regular, and show
that the expressiveness strictly increases in this order.

Given a schema (E,X), we define these three classes by the following con-
ditions.

Local For any label types a[T1] and a[T2] of the same label occurring in E, the
contents are syntactically identical: T1 = T2.

Single For any label types a[T1] and a[T2] of the same label occurring in parallel
in E, the contents are syntactically identical: T1 = T2.

Regular No restriction is imposed.

In the definition of the class single, we mean by “in parallel” that the label
types both occur in the top-level or both occur in the content of the same
labeled type. For example, consider the schema (E,X) where

{

X = a[T1], (a[T2] |Y )
Y = a[T3], b[a[X ]]

}

.
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Then, a[T1], a[T2], and a[T3] are in parallel each other, whereas a[X ] is not in
parallel to any other.

These classes directly represent the expressivenesses of real schema lan-
guages. In DTD, schemas define a mapping from labels to content types and
therefore obviously satisfy the requirement of the class local. XML Schema
has a restriction called “element consistency” that expresses exactly the same
requirement as the class single. RELAX NG has no restriction and therefore
corresponds to the class regular.

Let us next compare their expressivenesses. First, the class single is obvi-
ously more expressive than the class local. This inclusion is strict, however. It
is roughly because content types in single schemas can depend on the labels
of any ancestor nodes whereas, in local schemas, they can depend only on the
parent. As a concrete counterexample, consider the following schema.

Person = person[FullName, Gender, Spouse?, Children?, Pet*]

PersonName = name[first[String], last[String]]

Pet = pet[kind[String], PetName]

PetName = name[String]

...

This schema is similar to the one in Section 2.2 except that it additionally allows
pet elements. This schema is not local since two label types for name contain
different content types. However, this schema is single since these label types
do not occur in parallel. In other words, the content types of these label types
depend on their grandparents, person or pet.

The class regular is also obviously more expressive than the class single.
Again, this inclusion is strict. The reason is that, in regular, content types can
depend not only on their ancestors but also on other “relatives” such as siblings
of ancestors. For example, consider the following schema.

Person = MPerson | FPerson

MPerson = person[Name, gender[Male], FSpouse?, Children?]

FPerson = person[Name, gender[Female], MSpouse?, Children?]

Male = male[]

Female = female[]

FSpouse = spouse[Name, gender[Female]]

MSpouse = spouse[Name, gender[Male]]

Children = children[Person+]

This adds to the schema in Section 2.2 an extra constraint where each person’s
spouse must have the opposite gender. This constraint is expressed by first sepa-
rating male persons (represented by MPerson) and female persons (represented
by FPerson) and then requiring each male person to have a female spouse and
vice versa. This schema is not single since two label types for person appear
in parallel yet have different content types. On the other hand, the schema is
regular, of course. Note that the content type of a person’s gender depends
on the spouse’s gender type (the grand parent’s great grand child). Figure 2.2
depicts this “far dependency.”
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Figure 2.2: Far dependencies expressible by regular schemas

2.4 Bibliographic Notes

It is a classical topic to use tree grammars for describing structural constraints
on unranked trees. An old formalization can be found in [12], where a sequence
of unranked trees is called hedge and a grammar for hedges are called hedge
grammar. A hedge is also called forest in [75] and ordered forest in [34]. The
formalization and terminology in this book are taken from [51].

The specifications of various standards are available mostly on the Web: [10]
for XML and DTD, [33] for XML-Schema, and [22] for RELAX NG ([72] for its
predecessor RELAX). The comparison of their expressivenesses in this chapter
is due to Murata, Lee, and Mali [74].

Basic materials on regular string languages and language classes beyond can
be found in the classical book by Hopcroft and Ullman [44].





Chapter 3

Tree Automata

It is often that, for a specification framework, there is a corresponding automata
formalism, with which properties on specifications can clearly be understood
and efficient algorithms for relevant problems can easily be constructed. For
schemas, the corresponding framework is tree automata. Tree automata are
a finite-state machine model for accepting trees and are much like string au-
tomata. Indeed, they have quite similar properties such as closure properties
under basic set operations. However, they also have their own special proper-
ties. For example, there are two forms of deterministic automata and one of
them has a strictly weaker expressiveness than nondeterministic ones.

In this chapter, we will see the definition of tree automata, their correspon-
dence with schemas, and their basic properties.

3.1 Definitions

The formalism that we study here is tree automata that accept binary trees.
Since XML documents are unranked trees, where each node can have an ar-
bitrary number of children, one would naturally wonder why considering only
binary trees is enough. But, for now, we postpone this question to Section 3.2.
There are other styles of tree automata such as those accepting n-ary trees,
where the arity of each node (the number of its children) depends on its label,
and those directly accepting unranked trees (a.k.a. hedge automata). We will
not cover these in this book and refer interested readers to the bibliographic
notes (Section 3.5).

We define (binary) trees by the following grammar (where a ranges over
labels from the set Σ given in Chapter 2).

t ::= a(t, t) intermediate node
# leaf

The height of a tree t, written ht(t), is defined by ht(#) = 1 and ht(a(t1, t2)) =
1 + max(ht(t1),ht(t2)). In the sequel, we will often point to an intermediate

23
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node in a given tree. For this, first define positions π by sequences from {1, 2}∗,
and define as below the function subtreet for extracting a subtree locating at a
position π in a tree t.

subtreet(ε) = t
subtreea(t1,t2)(iπ) = labelti(π) (i = 1, 2)

Then, nodes(t) is the set of positions for which subtreet is defined, that is,
dom(subtreet). We also define labelt by

labelt(π) =

{

a (subtreet(π) = a(t1, t2))
# (subtreet(π) = #)

and leaves(t) by {π ∈ nodes(t) | labelt(π) = #}. Further, we define the self-
or-descendent relation π1 ≤ π2 when π2 = ππ1 for some π and the (strict)
descendent relation π1 < π2 by π1 ≤ π2 and π1 6= π2. Lastly, we define the
document order relation � by the lexicographic order on {1, 2}∗.

A (nondeterministic) tree automaton A is a quadruple (Q, I, F,∆) where

• Q is a finite set of states,

• I is a set of initial states (I ⊆ Q),

• F is a set of final states (F ⊆ Q),

• ∆ is a set of transition rules of the form

q → a(q1, q2)

where q, q1, q2 ∈ Q.

In a transition of the above form, we often call q the “source state” and q1 and
q2 the “destination states.”

The semantics of tree automata is described in terms of their runs. Given a
tree automaton A = (Q, I, F,∆) and a tree t, a mapping r from nodes(t) to Q
is a run of A on t if

• r(ε) ∈ I and

• r(π)→ a(r(1π), r(2π)) ∈ ∆ whenever labelt(π) = a.

A run r is successful if r(π) ∈ F for each π ∈ leaves(t). We say that an
automaton A accepts a tree t when there is a successful run of A on t. Further,
we define the language L(A) of A to be {t | A accepts t}. A language accepted
by some nondeterministic tree automata is called regular tree language; let ND
be the class of regular tree languages. The intuition behind a run is as follows.
First, we assign an initial state to the root. At each intermediate node a(t1, t2),
we pick up a transition rule q → a(q1, q2) such that q is assigned to the current
node and assign q1 and q2 to the subnodes t1 and t2, respectively. Finally, the
run is successful when each leaf is assigned a final state. Since, in this definition,
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a run (whether successful or not) goes from the root to the leaves, we call such
a run top-down run.

Conversely, we can also consider bottom-up runs. Given a tree t, a mapping
r from nodes(t) to Q is a bottom-up run of A on t if

• r(π) ∈ F for each π ∈ leaves(t), and

• r(π)→ a(r(1, π), r(2, π)) ∈ ∆ whenever labelt(π) = a.

A bottom-up run r is successful if r(ε) ∈ I. Bottom-up runs can be understood
as similarly to top-down ones. First, we first assign each leaf some final state.
Then, for each intermediate node a(t1, t2), we pick up a transition rule q →
a(q1, q2) such that t1 and t2 are assigned q1 and q2, respectively, and assign q
to the current node. Finally, such a run is successful when the root is assigned
an initial state. Obviously, the definitions of successful runs are identical for
top-down and bottom-up ones.

Bottom-up runs are convenient in particular when we consider an “interme-
diate success” for a subtree of the whole tree. That is, if a bottom-up run r of
an automaton A on a tree t, which could be a subtree of a bigger tree, maps the
root to a state q, then we say that A accepts t at q, or simply, when it is clear
which automaton we talk about, state q accepts t.

3.1.1 Example: Let A3.1.1 be ({q0, q1}, {q0}, {q1},∆) where

∆ =

{

q0 → a(q1, q1),
q1 → a(q0, q0)

}

.

Then, A3.1.1 accepts the set of trees whose every leaf is at the depth of an even
number. Indeed, in any top-down run, all the nodes at odd-number depths are
assigned q0 and those at even-number depths are assigned q1. Then, to make
this run successful, all the leaves need to be at even-number depths since q1 is
the only final state.

3.2 Relationship to the Schema Model

First of all, we need to resolve the discrepancy in the data models, binary vs
unranked trees. This can easily be done with by using the well-known binariza-
tion technique, much like Lisp’s way of forming list structures by cons and nil.
The following function bin formalizes translation from unranked trees to binary
trees.

bin(a[v1], v2) = a(bin(v1), bin(v2))
bin(()) = a(#, #)

That is, a value of the form a[v1], v2 in the unranked tree representation, i.e., a
sequence that has the first element with label a, corresponds to the binary tree
a(t1, t2) whose left child t1 corresponds to the content v1 of the first element
and whose right child t2 corresponds to the remainder sequence v2. The empty
sequence () in the unranked tree representation corresponds to the leaf #. For
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Figure 3.1: Binarization

example, Figure 3.1 shows an unranked tree (whose edges are solid lines) and
its corresponding binary tree (whose edges are dotted lines).

The correspondence between schemas and tree automata is analogous. The
following procedure translates a given schema to a tree automaton accepting
the set of trees that conform to the schema (modulo binarization).

1. In order to simplify the procedure, we first convert the given schema in the
canonical form. That is, a schema (E,X1) where dom(E) = {X1, . . . , Xn}
is canonical if E(X) is a canonical type for each X . Canonical types Tc
are defined by the following grammar:

Tc ::= ()
a[X ]
Tc |Tc
Tc, Tc
Tc

∗

That is, the content of a label is always a type name and, conversely, a
type name can appear only there. It is clear that an arbitrary schema can
be canonicalized.

2. For each i, regard E(Xi) as a regular expression whose each symbol has
the form “a[X ]” and construct a string automaton Ai = (Qi, Ii, Fi, δi)
from this regular expression. For this step, any construction algorithm
from regular expressions to string automata can be used, e.g., the most
well-known McNaughton-Yamada construction [44].

3. Merge all the string automata A1, . . . , An to form the tree automaton
(Q, I, F,∆) where

Q =
⋃n
i=1Qi

I = I1
F =

⋃n
i=1 Fi

∆ =
⋃n
i=1{q1 → a(q0, q2) | q1

a[Xj ]
−−−→ q2 ∈ ∆i, q0 ∈ Ij}.

That is, we start with A1’s initial states since the start type name is
X1. Each transition rule q1 → a(q0, q2) is constructed from a transition
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Figure 3.2: Tree automaton corresponding to the familty tree schema

rule q1
a[Xj ]
−−−→ q2 in some Ai where q0 is one of the initial states of the

automaton Aj corresponding to the content type Xj .

Note that, analogously to the tree binarization above, each transition rule
has the first and second destination states for examining the first child and the
next sibling, respectively. Thus, in drawing a diagram of an automaton, we use
the following notation for a transition rule q → a(q1, q2).

?>=<89:;q a //

��

?>=<89:;q2
?>=<89:;q1

As an example of translation from schemas to tree automata, consider the
first schema shown in Section 2.2. First, this schema can be canonicalized as
follows.

Person = person[PersonC]

PersonC = name[NameC], gender[GenderC],

spouse[SpouseC], children[ChildrenC]?

We here omit the definitions of NameC, GenderC, SpouseC, and ChildrenC. We
then construct the tree automaton for this schema as depicted in Figure 3.2.

3.2.1 Exercise: We have above seen a translation from schemas to tree au-
tomata. Construct the other direction assuming a conversion method from
string automata back to regular expressions (e.g., [44]).



28 CHAPTER 3. TREE AUTOMATA

3.3 Determinism

Just like for string automata, considering determinism is important for tree au-
tomata. For example, proof of closure under complementation critically relies
on a determinization procedure. However, one notable difference from string
automata is that there are two natural definitions of determinism—top-down
and bottom-up—and that bottom-up deterministic tree automata are as expres-
sive as nondeterministic ones whereas top-down deterministic ones are strictly
weaker.

3.3.1 Top-down Determinism

A tree automaton A = (Q, I, F,∆) is top-down deterministic when

• the set I of initial states is singleton, and

• for any pair q → a(q1, q2) and q → a(q′1, q
′
2) of transitions in ∆, we have

q1 = q′1 and q2 = q′2.

Intuitively, a top-down deterministic automaton has at most one top-down run
for any input tree. For example, the tree automaton in Example 3.1.1 is top-
down deterministic. Let TD be the class of languages accepted by top-down
deterministic tree automata.

3.3.1 Theorem: TD ( ND.

Proof: Since TD ⊆ ND is clear, it suffices to give an example of language
that is in ND but not in TD. Let A be (Q, I, F,∆) where

Q = {q0, q1, q2, q3}
I = {q0}
F = {q3}

∆ =















q0 → a(q1, q2)
q0 → a(q2, q1)
q1 → b(q3, q3)
q2 → c(q3, q3)















.

Then,

L(A) =



















a

b

# #

c

# #

,

a

c

# #

b

# #



















.

Suppose that a top-down deterministic tree automaton A′ = (Q′, I ′, F ′,∆′)
accepting this set. Then, I ′ must be a singleton set {q′0}. Also, since the set
contains a tree with the root labeled a, there is q′0 → a(q′1, q

′
2) ∈ ∆′ and no other
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transition from q′0 and a. Since A′ accepts the trees in L(A) at q′0, there must
be the following transitions

q′1 → b(q#, q#)

q′2 → c(q#, q#)

in ∆ and, similarly,

q′1 → c(q#, q#)

q′2 → b(q#, q#)

in ∆ with q# ∈ F ′. This implies that A′ must accept the following trees in
addition to L(A).

a

b

# #

b

# #

a

c

# #

c

# #

Hence, a contradiction is derived. �

Although the expressiveness is lower, top-down deterministic tree automata
have algorithmically a desirable property. In particular, linear-time acceptance
check can be done by a very simple algorithm (Section 7.1.1). For this rea-
son, some major schema languages adopt restrictions on schemas for ensuring
that they can easily be converted to top-down deterministic tree automata.
For example, XML Schema has two restrictions, the singleness of grammar (as
described in Section 2.3) and one-unambiguity; similarly, DTD takes the lo-
calness of grammar and one-unambiguity. (RELAX NG does not have either
restriction.) The one-unambiguity restriction is for ensuring that a determin-
istic string automaton can easily be constructed from each content model and
will be discussed in Chapter 12.

3.3.2 Exercise: Convince yourself that the construction algorithm in Section 3.2
yields a top-down deterministic tree automaton from a schema in the class sin-
gle if the second step always produces a deterministic string automaton.

3.3.2 Bottom-up Determinism

The definition of bottom-up deterministic tree automata is symmetric to top-
down deterministic ones. A tree automaton A = (Q, I, F,∆) is bottom-up de-
terministic when

• the set F of final states is singleton, and

• for any pair q → a(q1, q2) and q′ → a(q1, q2) of transitions in ∆, we have
q = q′.
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Again, intuitively, a bottom-up deterministic automaton has at most one bottom-
up run for any input tree. For example, the tree automaton in Example 3.1.1
is also bottom-up deterministic. Let BU be the class of languages accepted by
bottom-up deterministic tree automata.

3.3.3 Theorem: BU = ND.

Proof: Since BU ⊆ ND is clear, the result follows by showing that, given
a nondeterministic tree automaton A = (Q, I, F,∆), there is a bottom-up de-
terministic one A′ = (Q′, I ′, F ′,∆′) accepting the same language. The proof
proceeds by the classical “subset construction.” Let

Q′ = 2Q

I ′ = {s ∈ 2Q | s ∩ I 6= ∅}
F ′ = {F}
∆′ =

{

s→ a(s1, s2) | s1 ∈ Q′, s2 ∈ Q′, s = {q | q → a(q1, q2) ∈ ∆, q1 ∈ s1, q2 ∈ s2}
}

.

Then, in order to prove L(A) = L(A′), it suffices to show that, for any tree t
and any state s ∈ Q′,

A′ accepts t at s if and only if s = {q ∈ Q | A accepts t at q}.

In other words, each state s = {q1, . . . , qn} represents the set of trees that are
accepted by all of q1, . . . , qn and are not accepted by any other state. The proof
can be done by induction on the height of t. Details are left to Exercise 3.3.4.
�

3.3.4 Exercise: Finish the proof of Theorem 3.3.3.

3.4 Basic Set Operations

In this section, we first study how to compute basic set operations—union, inter-
section, and complementation, and emptiness test—and see their applications.

3.4.1 Union, Intersection, and Complementation

Standard closure properties under union, intersection, and complementation can
easily be proved in a similar way to the case of string automata. That is, we
can take union by merging given two tree automata, intersection by taking the
product of the automata, and complementation by using determinization used
in the proof of Theorem 3.3.3.

3.4.1 Proposition [Closure under Union]: Given tree automataA1 and A2,
a tree automaton B accepting L(A1) ∪ L(A2) can effectively be computed.

Proof: Let Ai = (Qi, Ii, Fi,∆i) for i = 1, 2. Then, the automaton B =
(Q1 ∪Q2, I1 ∪ I2, F1 ∪ F2,∆1 ∪∆2) clearly satisfies L(B) = L(A1) ∪ L(A2). �
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3.4.2 Proposition [Closure under Intersection]: Given tree automata A1

and A2, a tree automaton B accepting L(A1) ∩ L(A2) can effectively be com-
puted.

Proof: Let Ai = (Qi, Ii, Fi,∆i) for i = 1, 2. Then, define the automaton
B = (Q1 ∪Q2, I1 × I2, F1 × F2,∆

′) where

∆′ = {(q1, q2)→ a((r1, r2), (s1, s2)) | q1 → a(r1, s1) ∈ ∆1, q2 → a(r2, s2) ∈ ∆2}.

To show L(B) = L(A1)∩L(A2), it suffices to prove that, for any tree t and any
states q1 ∈ Q1, q2 ∈ Q2,

A1 accepts t at q1 and A2 accepts t at q2 iff B accepts t at (q1, q2).

The proof can be done by induction on the height of t. �

In order to show closure under complementation, we need to introduce com-
pletion. A tree automaton (Q, I, F,∆) is complete when, for any a ∈ Σ and
any q1, q2 ∈ Q, there is q ∈ Q such that q → a(q1, q2) ∈ ∆. Clearly, any tree
automaton can be made complete by adding a “sink” state and transitions for
assigning the sink state to the trees that had no state to assign before comple-
tion. Concretely, the completion of (Q, I, F,∆) is

(Q∪{qs}, I, F,∆∪{qs → a(q1, q2) | a ∈ Σ, q1, q2 ∈ Q∪{qs}, qs → a(q1, q2) 6∈ ∆}).

For a complete tree automaton, there is a bottom-up run on any tree. In
particular, for a complete, bottom-up deterministic tree automaton, there is a
unique bottom-up run on any tree.

3.4.3 Proposition [Closure under Complementation]: Given tree automata
A, a tree automaton B accepting L(A) can effectively be computed.

Proof: By Theorem 3.3.3, we can construct a bottom-up deterministic tree
automaton Ad accepting L(A). Further, we can complete it and obtain Ac =
(Qc, Ic, Fc,∆c) also accepting L(A). Then, define B = (Qc, Qc \ Ic, Fc,∆c).
Since B is also complete and bottom-up deterministic and has the same final
states and transitions as Ac, we know that both Ac and B have the same, unique
bottom-up run on any tree. Therefore, Ac accepts t iff B does not accept t, for
any tree t. �

Since we have already established equivalence of schemas and tree automata,
the above closure properties can directly be transferred to schemas.

3.4.4 Corollary: Schemas are closed under union, intersection, and comple-
mentation.
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3.4.2 Emptiness Test

Whether a tree automaton accepts some tree or not can be tested by a simple
procedure. However, unlike string automata, it is not sufficient to perform
a linear traversal to check whether initial states can reach final states. It is
because each transition branches to two destination states and, in order for
this transition to contribute to accepting some tree, both of the two destination
states must accept some tree.

The algorithm presented here, instead, examines states in a bottom-up
way—from final states to initial states. The following shows pseudo-code for
the algorithm:

1: function IsEmpty(Q, I, F,∆)
2: QNE ← F
3: repeat
4: for all q → a(q1, q2) ∈ ∆ s.t. q1, q2 ∈ QNE do
5: QNE ← QNE ∪ {q}
6: end for
7: until QNE does not change
8: return QNE ∩ I = ∅
9: end function

The variable QNE collects states that are known to be non-empty, i.e., ac-
cepting some tree. Initially, QNE is assigned the set of all final states since
they definitely accept the single-node-tree #. Then, we look for a transition
whose both destinations are non-empty states, and add its source state since
we now know that this state accepts some tree. We repeat this until no state
can be added. Finally, the obtained QNE contains the set of all non-empty
states. Thus, we conclude that the given automaton is empty if and only if
QNE contains no initial state.

3.4.5 Exercise: Design concrete data structures for states and transitions for
executing the above algorithm in linear time in the number of transitions.

3.4.3 Applications

In practice, the basic set operations studied above are quite important in main-
taining and manipulating schemas. Let us briefly look at rather straightforward
uses of these operations and, later, we will see their much heavier uses in XML
typechecking (Chapter 6).

Union is useful when a document comes from multiple possible sources. For
example, we can imagine a situation where a server program on the network
receives request packets from two types of client programs and these packets
conform to different schemas S1 and S2. In this case, the server can assume
that each received packet from whichever source conforms to the union S1 ∪S2.

Intersection is useful when requiring a document to conform to several con-
straints at the same time. The usefulness becomes even higher when these
constraints are defined independently. For example, we can imagine combining
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a schema S1 representing a standard format such as XHTML or MathML, and
another schema representing an orthogonal constraint S2 like “document with
height less than 6” or “document containing no element from a certain names-
pace.” Then, an application program exploiting both constraints can naturally
require input documents to conform to the intersection S1 ∩ S2. We can fur-
ther combine intersection and emptiness test for obtaining the disjointness test

S1 ∩S2
?
= ∅. This operation is useful, for example, when checking if one schema

contains some document that breaks a certain restriction represented by another
schema.

Complementation is most often used in conjunction with intersection, i.e.,
the difference test S1 \S2 (= S1 ∩S2). Difference is useful when we want to ex-
clude, from a “format” schema S1, the documents that break the restriction ex-
pressed by a “constraint” schema S2. Further, combining intersection, comple-

mentation, and emptiness test yields containment test S1

?
⊆ S2 (⇔ S1∩S2

?
= ∅).

One typical use of containment is, after modifying an existing schema S1 and
obtaining S2, to check whether S2 is “safely evolved” from S1, that is, any doc-
ument in the old format S1 also conforms to the new format S2. As we will
see in Chapter 6, containment test is extremely important in typechecking. For
example, when a value known to type S1 is given to a function expecting a
value of type S2, we can check the safety of this function application by exam-
ining S1 ⊆ S2. In other words, containment can be seen as a form “subtyping,”
often found in programming languages (e.g., Java). Despite the importance
of the containment check, it is known that this operation necessarily takes an
exponential time in the worst case.

3.4.6 Theorem [[82]]: The containment problem of tree automata is EXPTIME-
complete.

In Chapter 7, we will see an “on-the-fly” algorithm that deals with this high
complexity by targeting certain cases that often arise in practice.

3.4.4 Useless States Elimination

This is not a set operation, but it will later be useful several times and therefore
we present it here. A state is useful in two cases, first when it is an empty
state and, second when it is unreachable. Here, a state is empty when it accept
no tree. Also, a state is reachable when it is reachable state from an initial
state. More precisely, a state q is reachable from another state q′ when there is
a sequence q1, . . . , qn of states such that q1 = q′ and qn = q, and that, for each
i = 1, . . . , n − 1, there is a transition of either the form qi → a(qi+1, r) or the
form qi → a(r, qi+1) for some a and r.

As below, we can remove both kinds of states by easy procedures.

Removal of empty states We construct, from a given tree automaton A =
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(Q, I, F,∆), the automaton (Q′, I ′, F ′,∆′) where:

Q′ = {q ∈ Q | ∃t. A accepts t at q}
I ′ = I ∩Q′

F ′ = F ∩Q′

∆′ = {q → a(q1, q2) ∈ ∆ | q, q1, q2 ∈ Q′}

We can recognize the empty states by using the set QNE non-empty states
obtained from the emptiness test algorithm shown in Section 3.4.2.

Removal of unreachable states We construct, from a given tree automaton
A = (Q, I, F,∆), the automaton (Q′, I ′, F ′,∆′) where:

Q′ = {q ∈ Q | ∃q0 ∈ I. q is reachable from q0}
I ′ = I ∩Q′

F ′ = F ∩Q′

∆′ = {q → a(q1, q2) ∈ ∆ | q, q1, q2 ∈ Q′}

It is important that these two operations have to be done in this order and
cannot be swapped. As a counterexample, consider the following automaton.

// ?>=<89:;76540123q0 a //

��

?>=<89:;q2
?>=<89:;76540123q1

The state q2 is empty and therefore, after eliminating this (and the connected
transition), we can remove the unreachable state q1. But if we apply first re-
moval of unreachable states (which cannot eliminate any state at this moment),
then removal of empty states will eliminate q2 but still leave the useless state
q1.

3.4.7 Exercise: Of course, we could further remove unreachable states to get
rid of q1. But it is sufficient to apply the two procedures each only once in the
suggested order. Prove it.

3.5 Bibliographic Notes

A well-known, comprehensive reference to tree automata theory is Tree Au-
tomata Techniques and Applications available on-line [23]. This book manuscript
also covers various theoretical results and related frameworks that are not in
the scope of the present book.

An automata model that directly deals with unranked trees has been for-
malized in the name of hedge automata [12] and forest automata [75].



Chapter 4

Pattern Matching

So far, we have been interested mainly in how to accept documents, that is,
checking whether a given document is valid or not, and, for this, we have in-
troduced schemas and tree automata. The next question is how to process
documents, in particular, how to extract subtrees from an input tree with a
condition specified by the user. There are mainly three approaches to subtree
extraction: pattern matching, path expressions, and logic. Each has its own
way of specifying the extraction condition and its own advantages and disad-
vantages in terms of expressiveness and algorithmics. Since pattern matching
can be presented along the same line as previous sections, we concentrate on it
in this chapter. The other require introducing rather different formalisms and
therefore we postpone it to Chapters 11 and 13.

4.1 From Schemas to Patterns

Schemas validate documents by constraints such as tag names and positional
relationships between tree nodes. To these, pattern matching adds the func-
tionality of subtree extraction.

Syntactically, patterns have exactly the same form as schemas except that
“variable binders” of the form ... as x can be inserted in subexpressions. As
a simple example, we can write the following pattern.

person[Name as n,

gender[(male[]|female[]) as g],

Spouse?, Children?]

Given an input value, this pattern works as follows.

• It first checks that the input value has the following type.

person[Name, gender[male[]|female[]], Spouse?, Children?]

This type is obtained by removing all variable binders from the pattern.
If this check fails, the pattern matching itself fails.

35
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• If it succeeds, then the pattern binds the variables n and g to the subparts
of the input value that match Name and (male[]|female[]), respectively.

Although the semantics of patterns is fairly clear at a coarse level from the above
informal description, it becomes more complicated at a more detailed level. In
particular, it is not immediately clear what to do when a pattern can yield
several possible matches (“ambiguity”) or when it can bind a single variable to
more than one value (“non-linearity”). Indeed, these are the main sources from
which the design space of pattern matching becomes quite rich and this is the
primary interest of this chapter.

4.2 Ambiguity

In the subsequent two sections, we will informally overview ambiguity and lin-
earity. A formalization will follow after these.

Ambiguity refers to the property that, from some input, there are multiple
ways of matching. Since the basis of patterns is regular expressions, they can
be ambiguous. For example, the following is ambiguous.

children[Person*, (Person as p), Person*]

Indeed, this pattern matches any children containing one or more persons,
but can bind the variable p to a person in an arbitrary position.

What should be the semantics of ambiguous patterns? Various styles exist,
as summarized below.

Single match The result is only one of the possible matches. The following
sub-styles are common.

Prioritized match The system has its built-in priority rules for uniquely
determining which match to take.

Nondeterministic match The system chooses an arbitrary match from
all possibilities.

Unambiguous match The pattern is statically required to have at most
one match for any input.

All matches The result is the set of all possible matches.

Then, how should a language designer select one of these choices? The
criteria is usually a requirement from the whole language design or a balance
between the expressive power and the implementation effort. Let us review
more details below.

4.2.1 All-matches Semantics

In general, the single-match semantics is preferred by a programming language
since evaluation usually proceeds with a single binding of each variable. On the
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single match

prioritized match

greedy match

ungreedy match

nondeterministic match

unambiguous match

strong unambiguity

weak unambiguity

binding unambiguity

all matches

Figure 4.1: Matching policies

other hand, the all-matches semantics is more natural in a query language since
it usually returns a set of results that satisfy a specified condition.

The most interesting kind of examples using the all-matches semantics in-
volves retrieving data from deep places. Suppose that we want to extract, from
a family tree shown in Chapter 2, all the name elements under spouses. For
this, we can first write the following recursive definitions

PersonX = person[Name, Gender, SpouseX, Children?

| Name, Gender, Spouse?, ChildrenX]

SpouseX = spouse[Name as n, Gender]

ChildrenX = children[Person*, PersonX, Person*]

(we have not introduced “pattern definitions” yet, but it is surely writable since
patterns are schemas with variable binders, as mentioned) and then match an
input person value against PersonX. The first clause in the PersonX pattern
uses the SpouseX pattern, where we extract the name stored in the spouse of
the current person. The second clause uses the ChildrenX pattern, where we
choose one of the persons in the children element for searching for a name in
a deeper place.

4.2.2 Single-match Semantics

As mentioned, there are (at least) three styles of the single-match semantics,
namely, the prioritized match, the nondeterministic match, and the unambigu-
ous match.

The prioritized-match semantics can have various choices in the priority
rules, though a typical design is a greedy match, which roughly works as follows.

• For a choice pattern P1 |P2, the earlier matching pattern is taken.

• For a concatenation pattern P1, P2, the priority of the earlier pattern is
considered first.
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• For a repetition pattern P∗, as many elements as possible are matched by
the pattern P .

For example, in the pattern

children[Person*, (Person as p), Person*]

the first Person* captures all the persons but the last and therefore the variable
p is bound to the last person. We could also think of ungreedy match (the
opposite of greedy match) or providing two separate operators for both greedy
and ungreedy match.

While the prioritized match endows the user a full control in matching, the
nondeterministic match deprives all such control from the user but instead gives
a full freedom to the system. This means that there can be several implemen-
tations that behave differently and the user cannot complain for this difference.
This design choice actually has a couple of advantages. First, the semantics be-
comes vastly simpler since we have only to specify “some match” whereas, in the
prioritized match, we need a complicated description for the precise behavior.
We will see how it is complicated in Section 4.4. Second, the implementation
becomes much easier, in particular when we want to perform a static analysis on
patterns. For example, we will see a certain type inference method for patterns
in Section 6.3, where, if we take the prioritized match, we would also need to
take priorities into account in the analysis in order to retain its precision.

One would prefer the unambiguous-match semantics, where the justification
is that the ambiguity of a pattern is a sign of the user’s mistake. For example,
it is likely that the ambiguous pattern

children[Person*, (Person as p), Person*]

shown above is actually an error in whichever semantics of single-match. Indeed,
in the nondeterministic semantics, it wouldn’t make sense to extract an arbitrary
person from the sequence— the user should specify more precisely which person

(the first one or the one satisfying a certain condition); in the greedy match, a
more natural way of extracting the last person is to write

children[Person*, (Person as p)].

However, it occasionally happens that writing ambiguous patterns is reasonable.
One typical case is when the application program knows, from a certain implicit
assumptions, that there is only one possible match. For example, suppose that
we have a simple book database of type Book* where

type Book = book[key[String], title[String], author[String]].

Let us further make the (implicit) assumption that there is only one book entry
with the same key field value. Then, the following ambiguous pattern can
uniquely extract a book entry with a specified key from this database.
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Book*,

book[key["Hosoya2001"],

title[String as t],

author[String as a]],

Book*

Since writing an unambiguous pattern is sometimes much more complicated
than an ambiguous one, requiring disambiguation even in unnecessary situations
can be a heavy burden for the user. For this reason, it can be more user-friendly
to signal only a warning for ambiguity rather than an error.

4.3 Linearity

Linearity concerns the property that any match binds each variable exactly to
one value. All the example patterns shown above are thus linear. The linearity
constraint is in a sense natural when we consider adopting a pattern match
facility as a part of a programming or query language, which usually expects a
variable to be bound only to a single value. (To avoid confusion, note that a
query language usually considers a set of bindings, but each binding maps each
variable to a single value.)

If we do not impose a linearity restriction, then this gives a variable an
ability to obtain a list of subtrees. This could be useful in particular with a
single-match semantics. (The all-matches semantics already can collect a set of
subtrees, a sensible language design would be to require linearity for avoiding
complication.) To see this more clearly, let us try collecting subtrees with a
single-match, linear pattern. First, since we do not have a built-in “collection”
capability, let us accept the inconvenience that we need to combine pattern
matching with an iteration facility equipped in the underlying language (e.g.,
recursive functions or while loops). Then, as an example, consider processing
each person from a sequence of type Person*. For this, we can write the pattern

(Person as p), (Person* as r)

for extracting the first person and repeating the same pattern matching for the
remainder sequence. We can extend this for a deep extraction. For example,
consider again extracting spouse’s names as in the last section. We cannot use
the same pattern as before since, although we can obtain one name, we have no
way to find another after this. The best we could do is to write a function where
each call gets the name from the top spouse (if any) and recursively calls the
same function to traverse each person in the children. Note that, for this, we
only need shallow patterns that do not use recursive definitions. This suggests
that, under the linearity constraint, recursively defined patterns are not useful in
the single-match semantics. On the other hand, if we allow non-linear patterns,
then we can write a recursive pattern that gathers all spouses’ names:

PersonX = person[Name, Gender, SpouseX, ChildrenX]

SpouseX = spouse[Name as n, Gender]
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ChildrenX = children[PersonX+]

Despite the potential usefulness of non-linear patterns, these are rather tricky
to make use of since, as already mentioned, the underlying language usually
expects only one value to be bound while such a pattern yields a binding of
each variable to a list of values. However, there are a couple of proposals in the
literature for a special language support to bridge this gap:

Sequence-capturing semantics A pattern actually returns a binding of each
variable to the concatenation of the values that are matched with binder
patterns. For example, the following collects all the tel elements from a
list of tels and emails.

((tel[String] as t) | email[String])*

Note that this feature is useful when we know how each matched value
is separated in the resulting concatenation. In the above case, it is clear
since each matched value is a single element. However, if we write the
following pattern

((entry[String]* as s), separator[])*

to collect all the consecutive sequences of entrys, then the result of the
match loses the information of where these sequences are separated. Nev-
ertheless, this approach is handy and, in particular, implementation re-
quires not much difficulty relative to linear patterns. (We will discuss
more on implementation in Chapter 5)

Iterator support A variable bound to a list of values must be used with a
built-in iterator. For example, one can think of a language construct
iter x with e (where e is an expression in the language) that works as
follows. When x is bound to a list consisting of values v1, ..., vn, then the
result of the iter expression is the concatenation of e evaluated under the
binding of x to vi for each i = 1, . . . , n. For example, we can write the
following

((entry[String]* as s), separator[])*

-> iter e with chunk[s]

to generate a sequence of chunk elements each containing an extracted
sequence of consecutive entrys. This approach provides much more ex-
pressiveness than the previous approach, while a certain amount of extra
efforts would be needed for implementation.
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4.4 Formalization

Assume a set of pattern names, ranged over by Y , and a set X of variables,
ranged over by x. A pattern schema is a pair (F, Y ) where F is a pattern
definition, a mapping from pattern names to patterns, of the form

{Y1 = P1; . . . ;Yn = Pn},

and Y is one of the pattern names Y1, . . . , Yn. Patterns, ranged over by P , are
defined by the following grammar.

P ::= () empty sequence
a[P ] label pattern
P |P choice
P, P concatenation
P ∗ repetition
Y pattern name
P as x variable binder

As mentioned before, there are several styles for the semantics of patterns. In
order to explain these in one framework, let us first define the matching relation
F ` v ∈ P ⇒ V ; I, read “under pattern definitions F , value v matches pattern
P and yields binding V and priority id I.” Here, a binding V is a sequence
of pairs (x 7→ v) of variables and values, and a priority id I is a sequence
from {1, 2}∗. Here, bindings are allowed to contain multiple pairs for the same
variable for treating non-linear patterns; priority ids will be used for defining the
greedy or ungreedy semantics (details below). The matching relation is defined
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by the following set of inference rules.

F ` () ∈ ()⇒ (); ()
P-Eps

F ` v ∈ P ⇒ V ; I

F ` a[v] ∈ a[P ]⇒ V ; I
P-Elm

F ` v ∈ P1 ⇒ V ; I

F ` v ∈ P1 |P2 ⇒ V ; 1, I
P-Alt1

F ` v ∈ P2 ⇒ V ; I

F ` v ∈ P1 |P2 ⇒ V ; 2, I
P-Alt2

F ` v1 ∈ P1 ⇒ V1; I1 F ` v2 ∈ P2 ⇒ V2; I2

F ` v1, v2 ∈ P1, P2 ⇒ V1, V2; I1, I2
P-Cat

F ` vi ∈ P ⇒ Vi; Ii 0 ≤ i ≤ n

F ` v1, . . . , vn ∈ P
∗ ⇒ V1, . . . , Vn; 1, I1, . . . , 1, In, 2

P-Rep

F ` v ∈ F (X)⇒ V ; I

F ` v ∈ X ⇒ V ; I
P-Name

F ` v ∈ P ⇒ V ; I

F ` v ∈ P as x⇒ (x 7→ v), V ; I
P-As

In the semantics other than the greedy- or ungreedy-match semantics, we simply
ignore priority ids. For convenience, let us write F ` v ∈ P ⇒ V when F ` v ∈
P ⇒ V ; I for some I.

In the nondeterministic semantics, to match a value against a pattern schema
(F, Y ), we have only to find a binding V satisfying the relation F ` v ∈ F (Y )⇒
V . In the unambiguous semantics, patterns are guaranteed to have only one
binding V such that F ` v ∈ F (Y ) ⇒ V , and therefore we take this binding.
There are several definitions of ambiguity that ensure the uniqueness of bind-
ing. In Chapter 12, we will detail these definitions and corresponding checking
algorithms. In the all-matches semantics, we collect the set of all bindings V
such that F ` v ∈ F (Y )⇒ V .

In the greedy or the ungreedy match, we use priority ids. We first introduce
the lexicographic ordering among priority ids for comparing them. In the greedy
match, we take the smallest, that is, we find a binding V such that there is
the smallest priority id I satisfying F ` v ∈ F (Y ) ⇒ V ; I. In the ungreedy
match, we take the largest priority id instead. The treatment of priority ids in
the above matching rules implement the priority policy informally explained in
Section 4.2.2. That is, for a choice pattern P1 |P2, the resulting priority id has
the form 1, I when P1 is matched (P-Alt1) whereas it has the form 2, I for
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P2 (P-Alt2); therefore P1 has a higher priority. For a concatenation pattern
P1, P2, since the resulting priority id has the form I1, I2 (P-Cat), the first
pattern is considered first. For a repetition pattern P ∗, the resulting priority
id has the form 1, I1, . . . , 1, In, 2 (P-Rep) and therefore the priorities of earlier
matchings become higher. In effect, P ∗ uses P as many times as necessary. As
a special case where P matches only a sequence of fixed length, P behaves as a
“longest-match.”

4.4.1 Exercise: Find a pattern that does not behave as a longest-match even
in the greedy match.

4.4.2 Exercise: Find a pattern that does not have the smallest priority id (i.e.,
for any priority id yielded by the pattern, there is a strictly smaller priority id
yielded by the same pattern).

From a binding V yielded by a match, the actual binding visible to the rest of
the program depends on the treatment of linearity. Linearity is usually ensured
by a syntactic linearity constraint consisting of the following.

• For a concatenation pattern P1, P2, no common variable appears on both
sides.

• For an alternation pattern P1 |P2, the same set of variables appears on
both sides.

• For a binder pattern (P as x), there is no x appearing in P

• For a repetition pattern P ∗, there is no variable appearing in P .

If linearity is required on a pattern, then the yielded binding already assigns each
variable to exactly one value. Note that, by the syntactic linearity condition,

• for P1 |P2, the domains of the bindings yielded by P-Alt1 and P-Alt2

are the same;

• for P1, P2, the domains of the yielded bindings V1 and V2 in P-Cat are
disjoint;

• for P as x, the domain of the binding V in P-As does not contain x.

• for P ∗, the domain of the binding V in P-Rep is empty.

In case non-linear patterns are allowed, suppose that the bindings (x 7→ v1),
. . . , (x 7→ vn) of x occur in V in this order. If we use the sequence-capturing
semantics, then we yield the combined binding (x 7→ (v1, . . . , vn)) where v1
through vn are concatenated. If we use some iterator construct, we directly use
V , though details would depend on a concrete language design.
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4.5 Bibliographic Notes

The style of formalization of patterns here (originally called “regular expression
patterns”) appeared first in [50, 49] as a part of the design of the XDuce lan-
guage, where the greedy-match semantics was adopted at that moment. Later,
the nondeterministic and the unambiguous semantics have been investigated
in [45]. A reformulation of patterns with the greedy and sequence-capturing
semantics is found in the design of the CDuce language [39, 5]. It has been
observed by [89] that the greedy-match does not necessarily coincide so-called
“longest-match.” As extensions of regular expression patterns with iterator sup-
ports, regular expression filters are introduced in [46] and CDuce’s iterators are
described in [5]. Also, a kind of non-linear patterns that bind a variable to a
list of values are adopted in the design of a bidirectional XML transformation
language biXid [57].



Chapter 5

Marking Tree Automata

In Chapter 4, we have learned pattern matching as an approach to specifying
conditions for subtree extraction. The next question is how to execute such
a subtree extraction. This chapter introduces marking tree automata, which
work just like tree automata except that they specify how to put marks on each
node. We will see several variations of marking tree automata and how each
corresponds to pattern matching. However, efficient algorithms for executing
such automata will be discussed later in Section 7.2. Beyond pattern matching,
a variant of marking tree automata can actually be used for other subtree ex-
traction specifications, and we will see such an example in the evaluation of the
MSO (monadic second-order) logic in Chapter 13.

5.1 Definitions

Assume that the set X of variables (introduced in the last chapter) is finite. A
marking tree automaton A is a quadruple (Q, I, F,∆) where Q and I are the
same as in tree automata,

• F is a set of pairs of the form (q,X) where q ∈ Q and X ∈ 2X , and

• ∆ is a set of transition rules of the form

q → X : a(q1, q2)

where q, q1, q2 ∈ Q and X ∈ 2X .

Note that each transition or final state is associated with a set of variables
rather than a single variable. This is because we sometimes want to bind several
variables to the same tree. Indeed, such situation occurs when representing, e.g.,
the pattern ((P as x) as y).

For defining the semantics, we introduce marking. Given a tree t, a marking
m is mapping from nodes(t) to 2X . In analogy to patterns, a sensible marking
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is such that each variable is used exactly once. Formally, a marking m is linear
if, for each x ∈ X , there is a unique node π ∈ nodes(t) such that x ∈ m(π).

A pair (r,m) of a mapping from nodes(t) to Q and a marking is a top-down
marking run of A on t if

• r(ε) ∈ I, and

• r(π)→ m(π) : a(r(1π), r(2π)) ∈ ∆ whenever labelt(π) = a.

A top-down marking run (r,m) is successful when (r(π),m(π)) ∈ F for each π ∈
leaves(t). Bottom-up marking runs can also be defined similarly. Concretely, a
pair (r,m) is a bottom-up marking run of A on t if

• r(π)→ m(π) : a(r(1π), r(2π)) ∈ ∆ whenever labelt(π) = a, and

• (r(π),m(π)) ∈ F for each π ∈ leaves(t).

A bottom-up marking run (r,m) is successful when r is successful, i.e., r(ε) ∈ I.
Note that the definitions of successful top-down and bottom-up marking runs
coincide. A marking automaton is linear if the marking m is linear for any
successful marking run (r,m) of A on any tree t. The binding for a markingm on
t is a mapping from each x to a node π (or to a subtree t′ with subtreet(π) = t′)
where x ∈ m(π).

5.1.1 Example: Let A5.1.1 be ({q0, q1, q2, q3}, {q0}, F,∆) where

∆ =















q0 → ∅ : a(q1, q0)
q0 → ∅ : a(q2, q3)
q2 → {x} : b(q1, q1)
q3 → ∅ : a(q1, q3)















F = {(q1, ∅), (q3, ∅)}

This automaton matches a tree of the form

a

��

· · · // a //

��

a //

��

a
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· · · // a //

��

#

# # b //

��

# # #

#

and binds x to the node with label b. Indeed, the following marking on the
above tree allows a successful run.

a∅

��

· · · // a∅ //

��

a∅ //

��

a∅

��

· · · // a∅ //

��

#∅

#∅ #∅ b{x} //

��

#∅ #∅ #∅

#∅
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5.1.2 Exercise: Convince yourself that the automaton A5.1.1 is linear.

Linearity of a marking tree automaton can actually be checked syntactically.
We write Var(q) for the union of all the sets of variables associated with the
states reachable from q.

5.1.3 Lemma: Let a marking tree automaton (Q, I, F,∆) have all the useless
states already removed (Section 3.4.4). The automaton is linear if and only if

• for each q → X : a(q1, q2) ∈ ∆,

– X , Var(q1), and Var(q2) are disjoint each other and

– X ∪Var(q1) ∪Var(q2) = Var(q), and

• for each (q,X) ∈ F , we have X = Var(q).

Note that the last line in the above lemma implies that a linear marking tree
automaton has at most one pair (q,X) in F for each q.

5.1.4 Exercise: Prove Lemma 5.1.3.

5.2 Construction

Let us turn our attention to how to construct a marking tree automaton from
a pattern. First of all, note that a marking automaton by itself can only mark
a variable on a node in the binary tree representation. In the unranked tree
representation, such a node corresponds to a tail sequence, i.e., a sequence that
ends at the tail. However, a variable in a pattern can capture an arbitrary
intermediate sequence, possibly a non-tail one. For example, the pattern

(a[]*,a[b[]]) as x, a[]*

matches a value whose binary tree representation is the tree shown in Exam-
ple 5.1.1 and binds x to the sequence from the beginning up to the a element
that contains b.

In order to handle a variable that captures non-tail sequences, a standard
trick is to introduce two variables xb (“beginning variable”) and xe (“ending
variable”) for each variable x appearing in the given pattern. The variable
xb captures the tail-sequence starting from the beginning of x’s range, while xe
captures the tail-sequence starting right after the end of x’s range. For example,
the above pattern can be transformed to:

(a[]*,a[b[]], (a[]* as xe)) as xb

Let vb and ve be the values to which xb and xe are bound, respectively. Then,
since ve is always a suffix of vb, calculating v such that vb = v, ve gives us
the intermediate sequence that we originally wanted. Let us call tail variable a
variable binder that captures only tail sequences.
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Given a pattern with only tail variables, we can construct a marking tree
automaton in three steps similarly to the construction from schemas to tree au-
tomata given in Section 3.2 except that the second step is adjusted for handling
variables.

1. Canonicalize the given schema. This yields a pattern schema (F, Y1) where
F maps pattern names {Y1, . . . , Yn} to canonical patterns, where canonical
patterns Pc are defined by the following.

Pc ::= ()
a[Y ]
Pc |Pc
Pc, Pc
Pc

∗

Pc as x

2. For each Yi, regarding F (Yi) as a regular expression where each symbol
has the form “a[Y ]” and variable binders may occur as subexpressions,
construct a “marking string automaton” (Qi, Ii, Fi, δi) with ε-transitions.
Here, the string automaton associates a set of variables on each transition
and each final state, just as marking tree automata. The basis of the
construction algorithm is McNaughton-Yamada’s [44], which builds an
automaton for each subexpression in a bottom-up way. Except for variable
binders, we use same the building rules as the basis algorithm where each
transition and final state is associated with an empty set of variable. For
a binder pattern (Pc as x), we modify the automaton (QPc

, IPc
, FPc

, δPc
)

built for Pc as follows. We add a newly created state q1 to the automaton.
For each state q reachable from any state in IPc

by ε-path,

• whenever there is a transition q
X:a[Y ]
−−−−→ q′ in δPc

, we add q1
(X∪{x}):a[Y ]
−−−−−−−−−→

q′, and

• whenever (q,X) is in FPc
, we add (q1, X ∪ {x}).

Then, we let the set of the initial states be {q1}. Finally, we apply the
standard ε-elimination.

3. Merge all the resulting marking string automata into a marking tree au-
tomaton (Q, I, F,∆) such that

Q =
⋃n
i=1Qi

I = I1
F =

⋃n
i=1 Fi

∆ =
⋃n
i=1{q1 → X : a(q0, q2) | q1

X:a[Yj ]
−−−−−→ q2 ∈ δi, q0 ∈ Ij}.

5.2.1 Exercise: Apply the above construction algorithm to the pattern:

(a[]*,a[b[]], (a[]* as xe)) as xb

5.2.2 Exercise: Define a form of marking automata in a greedy-match seman-
tics and give construction of such automata from greedy-match patterns.
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5.3 Variations

So far, we introduced a formalism of marking tree automata that are most
commonly found in the literature. However, other variations are possible and
sometimes more convenient.

5.3.1 Marking on States

In this variation, marks are associated with states rather than transitions. This
formalism slightly simplifies the syntax and semantics while complicates con-
struction.

A state-marking tree automaton A is a 5-tuple (Q, I, F,∆,Ξ) where Q, I,
F , and ∆ are the same as in tree automata and Ξ is a mapping from Q to 2X .
Given a tree t, a pair (r,m) of a mapping from nodes(t) to Q and a marking is
a (top-down) marking run of A on t if

• r(ε) ∈ I,

• r(π)→ a(r(1π), r(2π)) ∈ ∆ whenever labelt(π) = a, and

• m(π) = Ξ(r(π)) for each π ∈ nodes(t).

A marking run (r,m) is successful if the run r is successful, i.e., r(π) ∈ F for
each π ∈ leaves(t). A state-marking tree automaton is linear if the marking
m is linear for any successful top-down marking run (r,m) of A on any tree t.
Bottom-up marking runs can be defined similarly.

Construction of a state-marking tree automaton from a pattern is similar
to the one presented in the last section except that a rather involved form of
ε-elimination is needed. Let a canonicalized pattern schema (F, Y1) given. At
this point, patterns here may have non-tail variable binders. Then, for each
Yi, we construct from F (Yi) a string automaton Ai = (Qi, Ii, Fi, δi) where each
state has the form (q,X) with q being a “unique id” and X being a variable set.
This step has two sub-steps.

1. Just as before, convert F (Yi) to a string automaton with ε-transitions
using the usual automaton construction algorithm. Except for variable
binders, we use same the building rules as the basis algorithm where each
newly created state has the form (q, ∅) where q is a fresh id. For a variable
binder (Pc as x), we build the following automaton

� � � �� �

� �
� � 	 
 � � � 


where we add, to the automaton built for Pc, a new initial state (q1, {xb})
and a new final state (q2, {xe}).
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2. Eliminate ε-transitions. We use an algorithm that slightly modifies the
standard one for reflecting the fact that different sets of variables may
occur depending on which ε-path the automaton may take. First, define
the ε-closure of (q1, X1) as the set of pairs of a state qn reachable from
(q1, X1) with ε-transitions and the union of variable sets appearing along
the path from q1 to qn:

ε-closure((q1, X1)) = {(qn, X1∪. . .∪Xn) | (q1, X1)
ε
−→ (q2, X2), . . . ,

(qn−1, Xn−1)
ε
−→ (qn, Xn) ∈ δ}

Then, for each string automaton (Qi, Ii, Fi, δi) with ε-transitions, we com-
pute its ε-elimination, that is, the ε-free automaton (Q′

i, I
′
i, F

′
i , δ

′
i) where

Q′
i =

⋃

{ε-closure(q,X) | (q,X) ∈ Q}

I ′i =
⋃

{ε-closure(q,X) | (q,X) ∈ I}

F ′
i = {(q,X) ∈ Q′ | (q,X) ∈ F}

δ′i = {(q,X)
a[Y ]
−−−→ (q′, X ′) | (q,X) ∈ Q′

i, (q,X)
a[Y ]
−−−→ (q′′, X ′′) ∈ δ′i,

(q′, X ′) ∈ ε-closure((q′′, X ′′))}.

For example,

//ONMLHIJKq0,
∅

a[Y ] //ONMLHIJKq1,
∅

ε

""
ε //WVUTPQRSq2,
{y}

ε //WVUTPQRSONMLHIJKq3,
{x}

is transformed to:

// _^]\XYZ[q0,
∅

a[Y ]

����
��

��
��

��
�

a[Y ]

��

a[Y ] //

a[Y ]

��@
@@

@@
@@

@@
@@

_^]\XYZ[q1,
∅

gfed`abcq2,
{y}

gfed`abc_^]\XYZ[q3,
{x}

gfed`abc_^]\XYZ[q3,

{x, y}

Finally, we merge all the resulting string automata into a marking tree automa-
ton (Q, I, F,∆,Ξ) where

Q =
⋃n
i=1Qi

I = I1
F =

⋃n
i=1 Fi

∆ =
⋃n
i=1{ (q1, X1)→ a((q0, X0), (q2, X2)) |

(q1, X1)
a[Yj ]
−−−→ (q2, X2) ∈ ∆i, (q0, X0) ∈ Ij}

Ξ((q,X)) = X.
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5.3.2 Sequence Marking

In the second variation, multiple nodes can be marked with the same variable
if they are in the same sequence level. The intention is that the result is a
mapping from each variable to the concatenation of the nodes marked with the
variable. One advantage of this formalism is that it is easy to encode a form of
non-linear patterns in the sequence-capturing semantics (Section 4.3).

A sequence-marking tree automaton A has the same syntax as a marking
tree automaton and uses the same notion of marking runs. A marking m is
sequence-linear if, for any x, we can find {π1, . . . , πn} = {π | x ∈ m(π)} such
that πi+1 = 2 · · · 2πi for each i = 1, . . . , n− 1. Intuitively, the nodes π1, . . . , πn
appear in the same sequence. Then, the binding for a sequence-linear marking
m on t is a mapping from each variable x to the tree

a1(t1, a2(t2, . . . , an(tn,#) . . .)

where π1, . . . , πn are those in the definition of sequence-linearity. Note that,
in the case n = 0 (that is, no mark of x is present anywhere), x is bound
simply to #. A sequence-marking tree automaton is linear if the marking m is
sequence-linear for any successful marking run (r,m) on any tree.

Construction of a sequence-marking tree automaton is quite simple. We only
change the second step from the procedure in Section 5.2 as follows.

In the construction of a string automaton, for each binder pattern
(Pc as x), we modify the automaton built for Pc by adding x to the
variable set of every label transition. We can apply the standard
ε-elimination on the result of the whole construction.

Note that this construction already allows us to encode non-linear patterns
with the sequence-capturing semantics, though the result can possibly be non-
sequence-linear. However, the construction yields a sequence-linear automaton
from a non-linear pattern where each variable captures only elements that ap-
pear in the same sequence. For example, the following non-linear pattern for
collecting all as in a given sequence

((a[] as x), b[])*

can be represented by the following marking automaton (eliding the content
states for brevity).

///.-,()*+
{x}:a

�� ∅:b ///.-,()*+��������
ε

QQ

5.3.1 Exercise: Design a form of marking automata that can encode non-linear
patterns that bind each variable to a list of values (without concatenating them).
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5.4 Bibliographic Notes

It is quite a common idea to give marks on states of automata for identifying
target nodes, e.g., [71, 61, 77] for extracting a set of nodes and [6, 81, 35,
52] for a set of tuples of nodes. A different presentation of encoding regular
expression patterns by marking tree automata can be found in [49]. There are
also researches on efficient compilation from marking tree automata to lower-
level code [62, 63].



Chapter 6

Typechecking

Typechecking refers to static analysis on programs to detect possible dynamic
type errors and is already standard in the area of programming languages.
Since schemas in XML are analogous to data types in programming languages,
we would naturally like to use this technique for verifying that XML process-
ing programs properly manipulate and produce documents according to given
schemas. However, a concrete analysis algorithm must entirely be renewed since
schemas have a mathematical structure completely different from conventional
data types (lists, records, object-oriented classes, and so on). In this chapter,
we first overview various typechecking techniques arising from research com-
munities and then see, as a case study, a core of the XDuce type system in
detail.

6.1 Overview

Since typechecking aims at rejecting possibly incorrect programs, it is a language
feature clearly visible to the user. Therefore we must construct a typechecker,
considering not only the internal analysis algorithm but also the external spec-
ification, which further influences the design of the whole language.

The first design consideration is on what kind of type error to detect. That
is, what type error may be raised from a program in the target language? The
most typical kind of error is the final result being not conforming to the specified
“output type.” However, some languages also check intermediate results against
types. For example, the XDuce language has a pattern match facility where, on
failure, a match error occurs, which can be seen as a form of conformance test
on an intermediate result.

The second consideration is on the precision of typechecking. From theory
of computation, it is well known, that there is no algorithm that can exactly
predict the behavior of a program written in a general language, that is, one
equivalent to a Turing machine. From this fact, there are two approaches to
obtaining a usable typechecker: (1) exact typechecking for a restricted language,

53
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and (2) approximate typechecking (for either a general or a restricted language).

6.1.1 Exact typechecking

In this approach, the principal question is how much we need to restrict the
language in order to make typechecking exact yet decidable. In general, the
more expressive the language is, the more difficult the typechecking algorithm
becomes. There is a stream of theoretical research for discovering the limit, in
the name of “XML typechecking problem.” Typechecking here is formulated as,
given a program P , an input type τI , and an output type τO, decide whether

P (τI) ⊆ τO

where P (τI) is the set of results from applying P to inputs of type τI . As types,
regular tree languages or their subclasses are usually used.

There are two major approaches to exact typechecking, forward inference
and backward inference. Forward inference is one that solves the typechecking
problem directly. That is,

1. compute τ ′O = {P (t) | t ∈ τI} from P and τI , and

2. test τ ′O ⊆ τO.

It is well known, however, that, once the target language has a certain level
of expressiveness, forward inference does not work since the computed output
type τ ′O does not fit in the class of regular tree languages; it can even go beyond
so-called context-free tree languages, in which case the test τ ′O ⊆ τO becomes
undecidable. The backward inference, instead, works as follows.

1. compute τ ′I = {t | P (t) ∈ τO} from P and τO (the set of inputs from which
P results in outputs of type τO), and

2. test τI ⊆ τ ′I .

Some researchers have found that, in certain target languages even where the
forward inference does not work, the computed input type τ ′I becomes regular
and thus typechecking can be decided. We will come back to the backward
inference and see a concrete algorithm in Chapter 10.

6.1.2 Approximate typechecking

While exact typechecking is theoretically interesting, a more realistic approach
is to conservatively estimate run-time type errors. That is, programs that went
through typechecking is guaranteed to be correct, whereas those that are actu-
ally innocent can possibly be refuted. However, the user has the right to ask why
her program got rejected and what program would have been accepted. Here,
the clearer the explanation is, the more user-friendly the language is. Thus, the
main challenge in this approach is to obtain a typechecker whose error-detection
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ability is high yet whose specification—called type system—is well understand-
able. Note that, in exact typechecking, no issue on specification arises since “no
run-time type error” is the specification.

A typical conservative type system uses typing rules to assign a type to
each subexpression of the program. In this, we usually exploit type annota-
tions on variable declarations given by the user, based on which we calculate
the types of subexpressions in a bottom-up way. This way of constructing a
type system makes both the specification and the algorithmics quite simple.
However, the amount of type annotations that the user needs to supply tends
to be large. Therefore some form of automatic inference of those type anno-
tations is desirable. In Section 6.2, we will see an instructive example in this
approach—µXDuce type system. This type system uses quite conventional and
simple typing rules for the basic part, but makes a non-trivial effort for the in-
ference of type annotations on variables in patterns, where computed types are
guaranteed to be exact in a similar sense to the exact typechecking described in
Section 6.1.1.

Since type annotations are usually tedious for the user to write, it would
be nice if the type system infers them completely. Since inferred types cannot
be exact in a general-purpose language, they must be approximate. Then, the
challenge is, again, to obtain a specification easy to understand. One approach
is, rather than to make an absolute guarantee, to show empirical evidences that
“false negative” seldom happen. Though theoreticians may not be satisfied,
practitioners will find it valuable. Another approach is to find a reasonable
“abstraction” of an original program and perform a exact typecheck. This
has not yet been pursued extensively, but is potentially a promising approach.
Chapter 10 gives relevant discussions.

6.2 Case study: µXDuce type system

XDuce is a functional programming language specialized to XML processing.
The full language contains a number of features, each of which is of interest
by itself. However, in this section, we study only its tiny subset µXDuce as an
illustrative example of how to build a simple yet powerful type system using
operations on schemas. We also see an algorithm for type inference on patterns,
which is also a good example showing how to construct an exact inference based
on tree automata techniques.

6.2.1 Syntax and Semantics

We reuse the definitions of values (v), types (T ), type definitions (E), and the
conformance relation (E ` T ∈ T ) from Section 2.2. Also, we incorporate
the definitions of patterns (P ), pattern definitions (F ), bindings (V ), and the
matching relation (F ` v ∈ P ⇒ V ) from Section 4.4. Note here that we take
the nondeterministic semantics (of course, with an additional static check, this
can also be the unambiguous semantics).
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Assume a set of function names, ranged over by f . Expressions e are defined
by the following grammar.

e ::= x variable
f(e) function call
l[e] labeling
() empty sequence
e, e concatenation
match e with P1 → e1 | . . . |Pn → en pattern match

That is, we have, in addition to usual variable references and function calls,
value constructors (i.e., labeling, empty sequence, and concatenation), and value
deconstructors (i.e., pattern match). A function definition has the following
form.

fun f(x : T1) : T2 = e

For brevity, we treat only one-argument functions here; the extension to multi-
arguments is routine. Note that both the argument type and the result type
must be specified explicitly. Then, a program is a triple (E,G, emain) of a set
E of type definitions, a set G of function definitions, and an expression emain

for starting evaluation. We regard type definitions also as pattern definitions.
(Note that this means that no variable binders are allowed in defined patterns;
in practice, this causes little problem. See Section 4.2.) We assume that all
patterns appearing in a given program are linear. From here on, let us fix a
program (E,G, emain).

The operational semantics of µXDuce is described by the evaluation relation
V ` e ⇓ v, read “under binding V , expression e evaluates to value v.” The
relation is defined by the following set of rules.

V ` x ⇓ V (x)
EE-Var

V ` () ⇓ ()
EE-Emp

V ` e ⇓ v

V ` l[e] ⇓ l[v]
EE-Lab

V ` e1 ⇓ v1 V ` e2 ⇓ v2

V ` e1, e2 ⇓ v1, v2
EE-Cat

V ` e1 ⇓ v fun f(x : T1) : T2 = e2 ∈ G x 7→ v ` e2 ⇓ w

V ` f(e1) ⇓ w
EE-App

V ` e ⇓ v
v 6∈ P1 . . . v 6∈ Pi−1 E ` v ∈ Pi ⇒W V,W ` ei ⇓ w

V `match e with P1 → e1 | . . . |Pn → en ⇓ w
EE-Match
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Most of the rules are straightforward except for EE-Match. A pattern match
tries the input value against the patterns P1 through Pn from top to bottom.
Each clause matches the input with the pattern Pi in the nondeterministic se-
mantics (Section 4.2.2) and evaluates the corresponding body expression ei if the
match succeeds. The semantics of the whole program is given by a value v such
that ∅ ` emain ⇓ v (there can be multiple such values due to nondeterministic
pattern matching).

6.2.2 Typing Rules

The type system is described by using the following two important relations

• the subtyping relation S ≤ T , and

• the typing relation Γ ` e : T

where Γ is a type environment, i.e., a mapping from variables to types.

The subtyping relation S ≤ T , read “S is subtype of T ,” is for reinterpreting
a value of type S as having type T and thus making functions able to accept
multiple types of values. This feature often shows up in various programming
languages. In object-oriented languages, the subtyping relation is determined
by the class hierarchy specified by the user. In some functional languages,
the subtyping relation is defined by induction on the structure of types using
inference rules. In our setting, we define the subtyping relation in terms of the
semantics of types

S ≤ T if and only if E ` v ∈ S implies E ` v ∈ T for all v.

directly formulating our intuition. In conventional definitions, the “only if”
direction usually holds (derived as a property), whereas the “if” direction is
not expected since decidability is far from clear in the presence of objects or
higher-order functions. The situation is different for us: we have only types
denoting regular tree languages and therefore our subtyping problem is equiv-
alent to the containment problem for tree automata, as already discussed in
Section 3.4.3. Though solving this problem takes an exponential time in the
worst case, empirically efficient algorithms exist (Section 7.3).

The typing relation Γ ` e : T , read “under Γ, expression e has type T ,”
is in contrast defined by induction on the structure of expressions and works
roughly as follows. Using the type of the parameter variable declared at the
function header, we compute the type of each expression from the types of its
subexpressions. The typing rules are mostly straightforward except for pattern
matches, where we perform an automatic type inference for pattern variables.

Let us see the typing rules one by one. The rule for variables is obvious:

Γ(x) = T

Γ ` x : T
TE-Var
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The rules for value constructors are also straightforward, where the structure of
each computed type parallels with that of the expression.

Γ ` () : ()
TE-Emp

Γ ` e : T

Γ ` l[e] : l[T ]
TE-Lab

Γ ` e1 : T1 Γ ` e2 : T2

Γ ` e1, e2 : T1, T2

TE-Cat

For a function call, we check, as usual, subtyping between the argument type
and the declared type.

fun f(x : T1) : T2 = e2 ∈ G Γ ` e1 : U U ≤ T1

Γ ` f(e1) : T2
TE-App

For a pattern match, we perform three non-trivial operations as explained below.
Suppose that a pattern match

match e with P1 → e1 | . . . |Pn → en

is given and e has type R.

Exhaustiveness This checks that any value from R is matched by (at least)
one of the patterns P1, . . . , Pn. This can be formulated as

R ≤ tyof (P1) | . . . | tyof (Pn)

where tyof (P ) stands for the type obtained after eliminating all variable
binders from P (i.e., every occurrence of (P ′ as x) is replaced by P ′).

Irredundancy This checks that each pattern is matched by some value that
belongs to R but does not matched by any of the preceding patterns.
Here, we take the top-to-bottom matching policy into account. This can
be done by testing

R ∩ tyof (Pi) 6≤ tyof (P1)| . . . |tyof (Pi−1)

for each i = 1, . . . , n. In this, we make use of the intersection operation
discussed in Section 3.4.3.

Type inference for pattern variables This computes the best type for each
variable with respect to the input type R. To specify more precisely, let
us consider inference on the i-th case and write

Ri = R \ (tyof (P1)| . . . |tyof (Pi−1)),

that is, Ri represents the set of values from R that are not matched by
the preceding patterns. Then, what we infer is a type environment Γ
satisfying that, for each variable x and value v
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v ∈ Γ(x) if and only if there exists a value u ∈ Ri such that
u ∈ P ⇒ V for some V with V (x) = v.

Let us write Ri ` P ⇒ Γ when the above condition is satisfied. A concrete
algorithm for obtaining such Γ from Ri and P will be shown in Section 6.3.
The “if” direction means that any value to which x may be bound is
predicted in Γ(x) and therefore is necessary to construct a sound type
system. The “only if” direction, on the other hand, means that x may be
bound to any predicted value in Γ(x). This property makes the inference
precise and thus provides the best flexibility to the user, avoiding false
negative as much as possible.

Summarizing the above discussion, the typing rule for pattern matches can be
formulated as follows.

Γ ` e : R R ≤ tyof (P1) | . . . | tyof (Pn)

∀i.





R ∩ tyof (Pi) 6≤ tyof (P1)| . . . |tyof (Pi−1)
R \ (tyof (P1)| . . . |tyof (Pi−1)) ` Pi =⇒ Γi
Γ,Γi ` ei : Ti





Γ `match e with P1 → e1 | . . . |Pn → en : T1 | . . . |Tn
TE-Match

Here, the type of the whole match expression is simply the union of the types
T1, . . . , Tn of the body expressions.

Having defined the subtyping and typing relations, we can now define the
well-typedness of programs. We say that a program (E,G, emain) is well-typed
when all the function definitions in G are well-typed and emain is well-typed
under the empty type environment. The well-typedness of a function definition,
written ` fun f(x : T1) : T2 = e, is defined by the following rule.

x : T1 ` e : S S ≤ T2

` fun f(x : T1) : T2 = e
TF

Here, we check, as usual, subtyping between the type S of the body expression
and the declared result type T2.

Now, recall that our goal is to prove that a well-typed program never raises
a run-time type error. This property consists of two parts: (1) if a well-typed
program returns a final result, then the value is conformant, and (2) a well-typed
program never raises a match error during evaluation.

The first part can precisely be stated as

For a well-typed program (E,G, emain), if ∅ ` emain ⇓ v, then E `
v : T .

However, since we need to talk about bindings and type environments in the
proof, we generalize the above statement: given a well-typed program, if an
expression e has type T under a type environment Γ and evaluates to a value
v under a binding V conforming to Γ, then v has type T . Here, a binding V
conforms to a type environment Γ, written Γ ` V , if dom(Γ) = dom(V ) and
V (x) ∈ Γ(x) for each x ∈ dom(Γ).
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6.2.1 Theorem [Type Preservation]: Suppose that ` G and Γ ` e : T with
Γ ` V . Then, V ` e ⇓ v implies E ` v : T .

6.2.2 Exercise: Prove Theorem 6.2.1 by induction on the derivation of the
evaluation relation V ` e ⇓ v.

To prove the second part, we need to slightly expand the formalization since
we need to talk about intermediate states where a match error may occur.
A usual way is first to extend the evaluation relation so that it returns an
error when a match error is raised somewhere and then to prove that a well-
typed program never returns an error. Note that it is not sufficient to say “not
V ` e ⇓ v” to mean that a match error occurs since it could also mean that e
goes into an infinite loop yielding no result.

6.2.3 Exercise: Redefine the evaluation relation such that an expression may
return an error and then prove that a well-type expression never returns it.

It is important to note that the above theorem does not guarantee precision.
Indeed, it is false to claim that an expression always evaluating to a value of
type T can be given the type T . That is, the following does not hold.

Under ` G, if V ` e ⇓ v and E ` v ∈ T for all V with Γ ` V , then
Γ ` e : T .

As a counterexample, consider the expression e = (x, x) and the type environ-
ment Γ = x 7→ (a[] | b[]). Then, under a binding V satisfying Γ ` V , the result
value of the expression always conforms to

(a[], a[]) | (b[], b[]).

However, according to the typing rules, the type we can give to e is

(a[] | b[]), (a[] | b[])

which is larger than the first one. In general, our typing rule for concatenation is
not exact since it typechecks each operand independently. However, non-trivial
efforts are needed for improve this imprecision. Chapter 10 will treat a relevant
issue.

6.2.4 Exercise: Find examples of imprecisions caused by our rules for (1) sub-
typing and (2) pattern matches.

6.2.5 Exercise: Verify that the following program typechecks.

type Person = person[(Name,Tel?,Email*)]

type Result = person[(Name,Tel,Email*)]

fun filterTelbook (ps : Person*) : Result* =

match ps with
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person[Name,Email*], (Any as rest) ->

filterTelbook(rest)

| person[Any] as hd, (Any as rest) ->

hd, filterTelbook(rest)

| () -> ()

Here, assume that the type names Name, Tel, and Email are defined somewhere.
Assume also that the type Any denotes the set of all values.

Convince yourself in particular that the exhaustiveness and subtyping checks
pass and the type inference on the pattern match gives appropriate types.

6.2.6 Exercise: Using each answer to Exercise 6.2.4, write a program that
never raises an error but cannot be typechecked

6.3 Type Inference for Patterns

In the last section, we have seen the type system of µXDuce. Based on its
definition, it is almost clear how to construct a typechecking algorithm for this
language. The only remaining is type inference for patterns, for which we have
only given the specification. This section shows a concrete algorithm that em-
bodies this.

Since the algorithm works with tree automata, let us first rephrase the spec-
ification as follows: given a tree automaton A (“input type”) and a marking
automaton B (“pattern”) containing variables X = {x1, . . . , xn}, obtain a map-
ping Γ from X to tree automata such that

Γ(xi) accepts u if and only if there exists t such that A accepts t
and B matches t with some binding V where V (xi) = u for some t
and V .

In fact, this specification and the algorithm shown in the next section that
implements it do not work for a pattern with non-tail variables. We will see
how to solve this problem in Section 6.3.2. Also, we assume that the marking
automaton is linear (which is guaranteed if the automaton is converted from a
linear pattern).

6.3.1 Algorithm

Let A = (QA, IA, FA,∆A) and B = (QB, IB, FB ,∆B). Then, the following
algorithm obtains Γ satisfying our specification.

1. Take the product C of A and B, that is, (QC , IC , FC ,∆C) where:

QC = QA ×QB
IC = IA × IB
FC = {((q, r), X) | q ∈ FA, (r,X) ∈ FB}
∆C = {(q, r)→ X : a((q1, r1), (q2, r2)) | q → a(q1, q2) ∈ ∆A,

r→ X : a(r1, r2) ∈ ∆B}
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2. Eliminate useless states from C by using the two steps (removal of empty
states and removal of unreachable states) shown in Section 3.4.4. Let D
be the resulting automaton.

3. Return Γ such that Γ(xj) = (Qj , Ij , Fj ,∆j) where

Qj = {qs} ∪QD
Ij = {qs} ∪ {q | (q,X) ∈ FD, xj ∈ X}
Fj = {q | (q,X) ∈ FD}
∆j = {qs → a(q1, q2) | q → X : a(q1, q2) ∈ ∆D, xj ∈ X}

∪{q → a(q1, q2) | q → X : a(q1, q2) ∈ ∆D}

(qs is a fresh state).

Let us illustrate the algorithm by using the following example. Consider the
tree automaton

A = ///.-,()*+ a

��

/.-,()*+��������
/.-,()*+�������� b

��

/.-,()*+��������
/.-,()*+��������

representing the type a[b[] | ()] and the marking tree automaton

B = ///.-,()*+ a

@A
a //

��

/.-,()*+��������
/.-,()*+ {x}:b

��

/.-,()*+��������
/.-,()*+��������

��

/.-,()*+ c

��

/.-,()*+��������
/.-,()*+��������{x} /.-,()*+��������

representing the pattern a[b[] as x] | a[() as x], c[]. The first step is to take the
product of A and B, resulting in the following.

C = ///.-,()*+ a

@A
a //

��

/.-,()*+��������
/.-,()*+ {x}:b

��

/.-,()*+��������
/.-,()*+��������

��

/.-,()*+
/.-,()*+��������{x}

The intuition behind this product construction is to obtain a marking automaton
that behaves exactly the same as B except that the accepted trees are restricted
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to those of A. In the second step, we first remove the empty states

///.-,()*+ a

��

/.-,()*+��������
/.-,()*+ {x}:b

��

/.-,()*+��������
/.-,()*+��������

/.-,()*+��������{x}

and then the unreachable states.

D = ///.-,()*+ a

��

/.-,()*+��������
/.-,()*+ {x}:b

��

/.-,()*+��������
/.-,()*+��������

In the final step, we add a new state qs and copy each transition with x so that
it emanates from qs; we retain other transitions and final states. The result is
the tree automaton

Γ(x) = ///.-,()*+ b

��

/.-,()*+��������
/.-,()*+��������

which represents the type a[b[]]. (We show only reachable states here.)
What if we skipped this step at all? Then, the result is that the type

inference becomes inexact. In the above example, the final result would contain
an additional initial state as in

Γ(x) = ///.-,()*+ b

��

/.-,()*+��������
/.-,()*+��������

///.-,()*+��������
which is incorrect since x is never bound to the empty sequence () as a result of
matching any tree from A against B. In general, useless states carry effects that
actually never happen and therefore eliminating them is essential. The same
technique is used in other analyses and we will see such examples in ambiguity
checks in Chapter 12.

6.3.1 Exercise: Prove that the algorithm implements the specification. This
can be done in the following steps.

1. Show that C matches t yielding binding V if and only if A accepts t and
B matches t yielding binding V .
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2. Show, for any q ∈ QD, that D matches t at q yielding binding V if and
only if C matches t at q yielding binding V .

3. Show that Γ(xi) accepts u if and only if D matches t yielding binding V
with V (xi) = u.

6.3.2 Non-tail Variables

The algorithm shown above in Section 6.3.1 does not work once non-tail variables
are considered. For example, see the following type and pattern

T = S, S?
P = S as x, S?

for some type S. From the specification of type inference, the type we would like
for x is obviously S. Now, what would we get from our algorithm shown before?
First, we need to transform P to a pattern P ′ with only the tail variables xb
and xe.

P ′ = (S, (S? as xb)) as xe

Then, our inference algorithm would yield

Γ(xb) = S?
Γ(xe) = S, S?.

But it is not immediately clear how to obtain the desired type S from these
two types. Naively, it seems that we want to compute a type in which each
inhabitant t is obtained by taking some tree tb from (S, S?) and some tree te
from S? and then cutting off the suffix te from tb. But the type we get by this
calculation is

(S, S) |S | ()

which is bigger than we want.
Fortunately, by slightly modifying our inference algorithm, we can deal with

non-tail variables. We keep the first two steps of our previous algorithm and
change the third step as follows.

3. Return Γ such that Γ(xj) = (Qj , Ij , Fj ,∆j) where

Qj = {qs} ∪QE
Ij = {qs} ∪ {q | (q,X) ∈ FE , xjb ∈ X}
Fj = {q | q → X : a(q1, q2) ∈ ∆E , xje ∈ X}
∆j = {qs → a(q1, q2) | q → X : a(q1, q2) ∈ ∆E , xjb ∈ X}

∪{q → a(q1, q2) | q → X : a(q1, q2) ∈ ∆E , xje 6∈ X}

with a new state qs.

That is, the resulting automaton Γ(xj) starts from states yielding transitions
with xjb and ends with states yielding transitions with xje; transitions are just
like in E except that we stop going further from states with xje.

6.3.2 Exercise: Make an example for this algorithm and convince yourself that
it works.
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6.3.3 Matching Policies and Linearity

A type inference algorithm for patterns is sensitive to which matching policy
is taken and whether linearity is imposed. The algorithm given is designed
for (marking automata converted from) the nondeterministic semantics with
the linearity requirement. It also works with the all-matches semantics (with
linearity) since the specification tells that the inference result Γ(x) for a variable
x contains a value u whenever any match yields a binding of x to this value.
Obviously, the algorithm works also with the unambiguous semantics since there
is only one match.

Treating the greedy match is trickier since each subpattern has “less chance”
to match a value than the nondeterministic match since the priority rules may
force the value to be matched with some other subpattern. Thus, the presented
algorithm needs to be modified so that each state of the inferred automaton
represents the values that can be matched by a pattern but not matched by
other patterns with higher priorities.

6.3.3 Exercise: Construct a type inference algorithm for the greedy match.
Hint: use an answer to Exercise 5.2.2; change the first “product construction”
step in the above-presented inference algorithm so that each state has the form
(q, r, {r1, . . . , rn}) where q represents a “type” of value, r a “pattern,” and
r1, . . . , rn “patterns with high priorities”.

Treating non-linear patterns is also possible by using a form of marking
automata that properly encode such patterns. However, for sequence-capturing
patterns, the sequence-linear requirement is essential since otherwise types that
we would like to infer can go beyond regular tree languages.

6.3.4 Exercise: Construct a type inference algorithm for sequence-linear sequence-
marking automata.

6.3.5 Exercise: Find a non-sequence-linear sequence-marking automaton where
the set of values that a variable can be bound to goes beyond regularity.

6.3.6 Exercise: Construct a type inference algorithm for marking automata
that encode non-linear patterns that bind each variable to a list of values. Use
an answer to Exercise 5.3.1.

6.4 Bibliographic Notes

The XDuce language was a pioneer for approximate but realistic typechecking
for XML [50]. An algorithm of type inference for patterns has been presented
in [49] based on the greedy-match semantics and then in [45] based on the
nondeterministic match. The design of XDuce has further been extended in
CDuce [39, 5], where the main addition was higher-order functions. Integration
of an XML processing language with a popular programming language has been
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pursued in the projects of XHaskell [64] (with Haskell), Xtatic [41] (with C#),
XJ [42] (with Java), and OCamlDuce [38] (with O’Caml).

As mentioned in the end of Section 6.1.2, there is an approach of approximate
typechecking requiring no type annotations. In particular, JWig [19] and its
descendent XAct [59] perform flow analysis on a Java program with an extension
for XML processing constructs; XSLT Validator [69] does a similar analysis on
XSLT style sheets.

For exact typechecking, we will review a detailed bibliography in Chapter 10.
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Chapter 7

On-the-fly Algorithms

This chapter aims at showing efficient algorithms for some important problems
related to XML processing, namely, (1) membership for tree automata (to test
whether a given tree is accepted by a given tree automaton), (2) evaluation of
marking tree automata (to collect the set of bindings that are yielded by match-
ing a given tree against a given marking tree automaton), and (3) containment
for tree automata (to test whether the languages of given two tree automata
are in the subset relation). For these problems, we present several “on-the-fly”
algorithms, where we explore only a part of the whole state space that needs
to see in order to obtain the final result. In such algorithms, there are two
basic approaches, top-down and bottom-up. The top-down approach explores
the state space from the initial states, whereas the bottom-up does this from
the final states. In general, the bottom-up approach tends to have a better
worst-case complexity, whereas the top-down often gives a higher efficiency in
practical cases. We will also consider a further improvement by combining both
ideas.

7.1 Membership Algorithms

In this section, we will see three algorithms for testing whether a given tree is
accepted by a given tree automaton. The first, top-down algorithm is the one
that can be obtained most naively from the semantics of tree automata but takes
an exponential time in the size of the input tree in the worst case. The second,
bottom-up algorithm, on the other hand, works in linear time. In this algorithm,
we construct the bottom-up deterministic tree automaton on the fly where we
generate only the states that are needed for deciding the acceptance of the input
tree. The third, bottom-up algorithm with top-down preprocessing improves the
second one by considering only the states that appear to be potentially useful
from the top-to-bottom, left-to-right traversal. In practice, this improvement
substantially decreases the number of states to carry around.

69
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7.1.1 Top-down Algorithm

In the top-down algorithm, we recursively visit each node with a state and
examine if this state accepts the node. If this fails, then we backtrack to the
previous point, and examine another state. The following shows pseudo-code
for the algorithm.

1: function Accept(t, (Q, I, F,∆))
2: for all q ∈ I do
3: if AcceptAt(t, q) then return true
4: end for
5: return false
6:

7: function AcceptAt(t, q)
8: switch t do
9: case #:

10: if q ∈ F then return true else return false
11: case a(t1, t2):
12: for all q → a(q1, q2) ∈ ∆ do
13: if AcceptAt(t1, q1) and AcceptAt(t2, q2) then return true
14: end for
15: return false
16: end switch
17: end function
18: end function

The internal function AcceptAt takes a node t and a state q and answers
whether q accepts t. By using this function, the main function Accept examines
whether one of the initial states accepts the root. The body of the AcceptAt

function is a simple rephrasing of the semantics of tree automata. That is,
for a leaf #, we check that the given state q is final; for an intermediate node
a(t1, t2), we try each transition of the form q → a(q1, q2), making a recursive call
to AcceptAt with each child node t1 or t2 and the corresponding destination
state q1 or q2.

Note that, when either of the two conditions in line 13 fails, we retry the
same child node with another transition. Therefore, in an unfortunate case, we
end up with traversing the same subtree multiple times. In general, the worst-
case time complexity of the top-down algorithm is exponential in the size of the
input tree.

7.1.1 Example: Consider the tree automatonA7.1.1 = ({q1, q2}, {q1}, {q1}, ∆)
where ∆ consists of:

q1 → a(q2, q1)

q1 → a(q1, q1)

q2 → a(q2, q1)
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Then, this automaton accepts trees of the form

n















































a

a

...

a

# #

#

#

for any n. Suppose that the algorithm tries the transitions in ∆ in the order
written above. Then, the first transition always fails since we then have no choice
other than reaching the left-most leaf with the non-final state q2. Therefore we
will always need to backtrack and try the second transition. Since we repeat
this trial and error at each node, the whole acceptance check takes O(2n).

It should be noted, however, that, if the given tree automaton is top-down
deterministic, then no backtrack arises and therefore the complexity becomes
linear. Many schemas used in practice can in fact be converted to a top-down
deterministic tree automaton (see Section 3.3.1), and therefore, in this case, the
above most naive algorithm suffices.

7.1.2 Bottom-up Algorithm

The next two algorithms are linear-time since they traverse each node exactly
once. Of course, the most straightforward approach for linear-time acceptance
check would be to determinize the given automaton. However, determinization
is an exponential procedure (in the size of the automaton) and often preferred
to be avoided.

The bottom-up algorithm traverses the input tree from the leaves to the root,
creating, at each node, the state of the bottom-up deterministic tree automaton
that is assigned to this node. The following pseudo-code gives the algorithm.

1: function Accept(t, (Q, I, F,∆))
2: if Accepting(t)∩I 6= ∅ then return true else return false
3:

4: function Accepting(t)
5: switch t do
6: case #:
7: return F
8: case a(t1, t2):
9: let s1 = Accepting(t1)

10: let s2 = Accepting(t2)
11: let s = {q | q → a(q1, q2) ∈ ∆, q1 ∈ s1, q2 ∈ s2}
12: return s
13: end switch
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14: end function
15: end function

The internal Accepting function takes a node t and returns the set of the
states (of the nondeterministic tree automaton) that accept this node, which
is the state of the bottom-up deterministic automaton that accepts the node.
By using this function, the main Accept function validates the input tree by
seeing that the set resulting from Accepting for the root contains an initial
state. In the body of Accepting, if the given tree is a leaf, then we return the
set of final states since these are exactly the states that accept the leaf. For an
intermediate node, we first collect the sets s1 and s2 of states that accept the
children nodes t1 and t2 (respectively) by recursive calls to Accepting, and
then calculate the set s of states that accept the present node t, which can be
obtained by collecting the states that can transit to q1 and q2 with label a, where
q1 is in s1 and q2 is in s2. Note that exactly the same calculation appears in
the determinization procedure (each transition constructed in determinization
has the form s→ a(s1, s2)).

7.1.2 Exercise: Consider again the automaton A7.1.1 in Example 7.1.1 and
the input tree there. Confirm that the bottom-up algorithm can validate the
membership in a linear time.

Since this algorithm visits each node only once, we can avoid a potential
catastrophic behavior as in the top-down algorithm. However, we in return
need to perform a rather complicated set manipulation in line 11. The com-
plexity of this operation depends on the representation of sets, but, if we use
standard sorted lists, then each takes O(|Q|3) in the worst case (the factor |Q|2

for looping on s1 and s2 and the factor |Q| for inserting an element to a sorted
list). Although the worst case would rarely happen, it would still be better to
keep low the number of states to be manipulated at each tree node.

7.1.3 Exercise: Let A7.1.3 = ({q1, q2, q3}, {q1}, {q1, q3}, ∆) where ∆ con-
sists of:

q1 → a(q2, q1)

q1 → a(q1, q1)

q1 → b(q3, q1)

q2 → a(q2, q1)

q3 → a(q3, q1)

(A7.1.3 contains two additional transitions compared to A7.1.2.) Apply the
bottom-up algorithm to A7.1.3 with the same input tree. Observe that q3
is always contained in the set of states returned by each recursive call but is
discarded in the end.



7.1. MEMBERSHIP ALGORITHMS 73

7.1.3 Bottom-up Algorithm with Top-down Preprocessing

The third algorithm—called bottom-up with top-down preprocessing—can be
regarded as a combination of the two algorithms described above. Thus, the
following views on the first two are quite useful for understanding the third.

• In the top-down algorithm, we essentially generate a top-down run one
after another and, during this generation, check the run’s failure at each
leaf.

• In the bottom-up algorithm, we essentially generate all bottom-up runs
and, in the end, check that a successful one is contained.

An important observation is that, among bottom-up runs collected in the second
algorithm, there are not so many that are top-down runs. Therefore, in the
third algorithm, we visit each node with the set of states that can be assigned to
the node by a top-down run. We then use this set for filtering the set of states
that are collected in a bottom-up manner. Let us see the following pseudo-code
for the algorithm.

1: function Accept(t, (Q, I, F,∆))
2: if Accepting(t, I)6= ∅ then return true else return false
3:

4: function AcceptingAmong(t, r)
5: switch t do
6: case #:
7: return F ∩ r
8: case a(t1, t2):
9: let s1 = AcceptingAmong(t1, {q1 | q → a(q1, q2) ∈ ∆, q ∈ r})

10: let s2 = AcceptingAmong(t2, {q2 | q → a(q1, q2) ∈ ∆, q ∈
r, q1 ∈ s1})

11: let s = {q | q → a(q1, q2) ∈ ∆, q ∈ r, q1 ∈ s1, q2 ∈ s2}
12: return s
13: end switch
14: end function
15: end function

The internal function AcceptingAmong takes a tree node t and a set r of
states and returns the set of states that accept this node and are in r. Thus, the
main function Accept can check the whole acceptance by passing the root and
the set of initial states to AcceptingAmong and examining if the resulting set
is non-empty. The body of AcceptingAmong has a similar structure to that
of the Accepting function of the bottom-up algorithm. If the given tree node
t is a leaf #, then we return the set F of final states restricted to the passed set
r. If t is an intermediate node a(t1, t2), then we first call AcceptingAmong

recursively for the first child t1. Here, we also pass the set of possible states for
t1, which is the set of all first destinations q1 of transitions q → a(q1, q2) with
q ∈ r. (We ignore q2 at this moment.) Next, we call AcceptingAmong for the
second child t2. The set of possible states for t2 is computed similarly except
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that we can now use the result s1 from the first call, which gives the possible
states for q1; thus we obtain the set of all second destinations q2 of transitions
of the form q → a(q1, q2) with q ∈ r and q1 ∈ s1. Finally, we calculate the result
of the original call in a similar way to Accepting in the last section except
that the source state q can be constrained by r.

This algorithm does not improve the worst-case complexity of the bottom-
up algorithm. However, experience tells that the size of the set of states passed
around is usually small—typically 1 or 2—and therefore the improvement in
practical cases is considerable.

7.1.4 Exercise: Apply the bottom-up algorithm with top-down preprocessing
to the automaton A7.1.3 in Exercise 7.1.3 with the same input tree. Confirm
that the set of states returned by each recursive call never contains q3.

7.2 Marking Algorithms

Let us next consider executing marking tree automata, that is, computing the
set of all possible bindings for a given input tree. Like in the last section,
we first see a naive, potentially exponential-time top-down algorithm and then
a cleverer, linear-time bottom-up algorithm. More precisely, the bottom-up
algorithm here works in time O(|t| + |Γ|) where |t| and |Γ| are the input and
the output sizes, respectively. The idea behind the linear time in the input
size is similar to the case of membership. However, a simplistic adaptation of
the bottom-up membership algorithm to the marking problem incurs the cost
O(|t|k) where k is the number of variables. This is unavoidable in case the
output set itself already has size O(|t|k). However, the simplistic algorithm may
have such cost even when the output is actually not so large. The presented
algorithm improves this by a technique called partially lazy set operations.

In this section, we assume that a given marking tree automaton (Q, I, F,∆)
has no useless state and is linear. Recall by Lemma 5.1.3 that the following
holds in this case:

• for each q → X : a(q1, q2) ∈ ∆,

– X , Var(q1), and Var(q2) are pairwise disjoint and

– X ∪Var(q1) ∪Var(q2) = Var(q), and

• for each (q,X) ∈ F , we have X = Var(q).

We introduce some notations for convenience. The form {X 7→ t} stands
for the mapping {x 7→ t | x ∈ X}. For a set of mappings, define its domain as
the union of the domains of all the mappings. The “product” on sets Γ1, Γ2 of
mappings with disjoint domains is defined such that

Γ1 × Γ2 = {γ1 ∪ γ2 | γ1 ∈ Γ1, γ2 ∈ Γ2}.
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7.2.1 Top-down Algorithm

The top-down marking algorithm works exactly in the same way as the top-down
membership algorithm except that we additionally construct a set of bindings
at each node. The following shows pseudo-code for the algorithm.

1: function Match(t, (Q, I, F,∆))

2: return
⋃

q∈I

MatchAt(t, q)

3:

4: function MatchAt(t, q)
5: switch t do
6: case #:
7: return {{X 7→ t} | (q,X) ∈ F}
8: case a(t1, t2):

9: return
⋃

(q→X:a(q1,q2))∈∆

{{X 7→ t}} ×MatchAt(t1, q1)
×MatchAt(t2, q2)

10: end switch
11: end function
12: end function

The internal function MatchAt takes a tree node t and a state q, and
returns a set of all bindings that can be yielded by matching t against q. (Note
that, in case the matching fails, the function returns the empty set.) Thus, the
main function Match returns the set of bindings from matching the input tree
t against any initial state.

The body of MatchAt works as follows. When t is a leaf, we return the
set of bindings {X 7→ t} for each variable set X associated with q according to
the set F . Linearity implies that F can actually associate at most one variable
set for each state. Therefore we return here either an empty or a singleton set.
When t is an intermediate node a(t1, t2), we collect and union together the sets
of bindings obtained for all the transitions q → X : a(q1, q2) emanating from q.
Here, each set of bindings is computed by recursively calling MatchAt with
each child t1 or t2 and the corresponding destination state q1 or q2, respectively,
and then combining, by product, the results with the binding {X 7→ t} for the
current node. Linearity ensures that the domains of sets of mappings that we
combine here are pairwise disjoint.

Note that an obvious optimization is possible (analogously to the top-down
membership algorithm): when computing the clause

{{X 7→ t}} ×MatchAt(t2, q2)×MatchAt(t2, q2),

if the first call to MatchAt returns ∅, then we can skip this second call since the
whole clause will return ∅ whatever the second call would return. Nevertheless,
by exactly the same argument as in the top-down membership algorithm, the
worst-case time complexity is exponential to the size of the input.
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7.2.2 Bottom-up Algorithm

We can construct a bottom-up marking algorithm using the same idea in the
bottom-up membership algorithm, where rather than trying to match each node
with a single state, we have collected the set of all states that match each node,
thus achieving the goal by only a single scan of the whole tree. In marking, we
additionally associate a set of bindings to each collected state. The following
shows the pseudo-code for the algorithm. Here, regard the operators ] and ⊗
as the same as ∪ and × for the moment.

1: function Match(t, (Q, I, F,∆))
2: let m = Matching(t)

3: return
⊎

q∈I

m(q)

4:

5: function Matching(t)
6: switch t do
7: case #:

8: return
{

q 7→ {{X 7→ t} | (q,X) ∈ F}
∣

∣

∣ q ∈ Q
}

9: case a(t1, t2):
10: let m1 = Matching(t1)
11: let m2 = Matching(t2)

12: return







q 7→
⊎

(q→X:a(q1,q2))∈∆

{{X 7→ t}} ⊗m1(q1)
⊗m2(q2)

∣

∣

∣

∣

∣

q ∈ Q







13: end switch
14: end function
15: end function

The internal function Matching takes a tree node t and returns a mapping
from each state q to a set of bindings that can be yielded by matching t against
q (where a non-matching state maps to an empty set). Thus, the main function
Match first calculates such a mapping for the root node and then collects all
bindings given by the resulting mapping at the initial states. The body of
Matching is remarkably similar to the function MatchAt in the top-down
algorithm. The only difference is essentially “currification” (in the λ-calculus
terminology), that is, MatchAt takes both a node t and a state q as arguments,
whereas Matching takes only a node t but returns a mapping from states.
Though, in MatchAt, the case of an intermediate node a(t1, t2) moves out the
recursive calls to MatchAt from the construction of the mapping since these
calls do not depend on q—in this way, we can make the algorithm perform only
a linear scan.

However, a linear scan does not necessarily mean a linear time in the input
size. In fact, it can take O(|t|k) in the worst case where |t| is the size of the
input tree t and k is the number of all variables. For example, consider the
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marking automaton ({q0, q1, q2}, {q0}, F,∆) where ∆ consists of

q0 → ∅ : a(q1, q2)

q1 → {x} : a(q3, q3)

q1 → ∅ : a(q1, q3)

q1 → ∅ : a(q3, q1)

q2 → {y} : a(q3, q3)

q2 → ∅ : a(q3, q2)

q2 → ∅ : a(q2, q3)

q3 → ∅ : a(q3, q3)

and
F = {(q3, ∅)}.

That is, the state q3 accepts any tree with label a and yields no binding. Based
on this, the state q1 accepts any tree but binds x to any node in the tree and the
state q2 is similar except that it binds y. Thus, the state q0 binds x to any node
in the left subtree and y to any node in the right subtree. Hence, for an input
tree t of the form a(t1, t1), the size of the output, i.e., the cardinality of the
result set of bindings, is |t1|2 ≈ O(|t|2). This example can easily be generalized
to k variables.

Unfortunately, this non-linear complexity is intrinsic to the problem itself
since, in the worst case, the output size is already O(|t|k) and therefore just
enumerating it necessarily takes so. However, there are cases where the output
size is not so big but a naive implementation of the above algorithm takes
non-linear time. Consider the automaton ({qA, q0, q1, q2}, {qA}, F,∆′) where ∆′

contains the following in addition to ∆ in the previous automaton.

qA → ∅ : b(q0, q3)

qA → {x, y} : a(q3, q3)

What happens for an input tree t where all nodes have label a? The output
set contains only {x 7→ t, y 7→ t} since the second transition above yields this
mapping while the first one does not match when the root has label a. However,
in the bottom-up algorithm, we compute exactly the same set up to the state
q0 as in the previous automaton, but discard it entirely at the root node since
there is no transition that leads to q0 from qA via label a. Consider another
example: ({qA, qB, q0, q1, q2}, {qA}, F,∆′′) where ∆′′ contains the following in
addition to ∆ in the first automaton.

qA → ∅ : a(q0, qB)

qB → ∅ : b(q3, q3)

qA → {x, y} : a(q3, q3)

Again, what happens for an input tree t with all nodes labeled a? The output
set contains only {x 7→ t, y 7→ t} for a different reason. This time, there is a
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transition that leads to q0 from qA via a. But the right subtree of the root does
match the state qB (which has only a transition with b) and therefore returns
the empty set; the product of some set and the empty set is also empty. Thus,
the computation up to the state q0 is, again, completely discarded.

In summary, we have seen two sources of wasted computation:

• computation at an unreachable state and

• computation that will be combined to an unmatched state.

Fortunately, these are the only waste and both can be eliminated by using
partially lazy set operation, explained next. This technique achieves linear-time
complexity in the size of the output set. The idea behind is as follows.

• We delay the computations of ] and ⊗ up to the root node where we
perform only the computations that are relevant to the initial states. This
eliminate wasted computations at unreachable states.

• We eagerly compute, however, the ] and ⊗ operations when one of the
arguments is the empty set. This eliminates, in particular, wasted com-
putations that are combined with the empty set by ⊗.

Concretely, we use the following data structures to symbolically represent set
operations. We define possibly empty sets s∅ and non-empty sets s by the
following grammar.

s∅ ::= ∅ | s

s ::= union(s) | prod(s) | {{X 7→ t}}

Then, in the bottom-up algorithm, we interpret the operations ] and ⊗ so that
they construct symbolic set operations for possibly empty sets.

∅ ] s∅ = s∅

s∅ ] ∅ = s∅

s1 ] s2 = union(s1, s2)

∅ ⊗ s∅ = ∅

s∅ ⊗ ∅ = ∅

s1 ⊗ s2 = prod(s1, s2)

Here, we carry out the actual computation if one of the arguments is empty but
otherwise delay it. Finally, we force the delayed set operations returned by the
algorithm by using the following function eval:

eval(∅) = ∅

eval(union(s1, s2)) = eval(s1) ∪ eval(s2)

eval(prod(s1, s2)) = eval(s1)× eval(s2)

eval({{X 7→ t}}) = {{X 7→ t}}
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7.2.1 Lemma: Let a marking tree automaton fixed. With partially lazy set
operations, the function Matching, given a tree t, returns a mapping m from
states to symbolic sets in O(|t|) time such that computing Γ = eval(m(q)) takes
in O(|Γ|) time for each q.

Proof: By induction on the structure of t. �

7.2.2 Exercise: Finish the proof of Lemma 7.2.1.

7.2.3 Corollary: For a fixed marking tree automaton, the bottom-up algo-
rithm with partially lazy set operations takes in O(|t|+ |Γ|) time where |t| and
|Γ| are the input and the output sizes, respectively.

7.2.4 Exercise: Combine with the present algorithm the idea used in the
bottom-up membership algorithm with top-down preprocessing.

7.3 Containment

Let us now turn our attention to the problem of checking whether the languages
of given two tree automata are in the containment relation. This operation is
known to be EXPTIME-complete despite their importance in XML processing
(Sections 3.4.3 and 6.2). We give two on-the-fly algorithms for the containment
problem, first a bottom-up one and then a top-down one.

7.3.1 Bottom-up Algorithm

It is certainly possible to check the containment between two tree automata A
and B by combining basic set operations presented in Section 3.4. That is, we
first take the complement of B, then take its intersection with A, and finally
check the emptiness of the resulting automaton. Disadvantages of this approach
are that each intermediate step generates a whole big tree automaton and that
the state space of the automaton after the second step may not entirely be
explored by the emptiness test in the final step, thus the rest states becoming
waste.

The bottom-up algorithm eliminates these disadvantages by combining all
the three steps. Let two automata A = (Q, I, F,∆) and B = (Q′, I ′, F ′,∆′)
given as inputs. For readability, let us first combine the first two steps, which
yields the following automaton (Q′′, I ′′, F ′′,∆′′) representing the difference L(A)∩
L(B):

Q′′ = Q× 2Q
′

I ′′ = {(q, p) | q ∈ I, p ∩ I ′ = ∅}

F ′′ = {(q, F ′) | q ∈ F}

∆′′ = {(q, p)→ a((q1, p1), (q2, p2)) | p1, p2 ⊆ Q′, q → a(q1, q2) ∈ ∆,
p = {q′ | q′ → a(q′1, q

′
2) ∈ ∆′, q′1 ∈ p1, q

′
2 ∈ p2}}
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Combining this with the emptiness check given in Section 3.4.2, we obtain the
following algorithm.

1: function IsSubset((Q, I, F,∆), (Q′, I ′, F ′,∆′))
2: Q 6⊆ ← {(q, F ′) | q ∈ F}
3: repeat
4: for all p1, p2 ⊆ Q′, q → a(q1, q2) ∈ ∆ s.t. (q1, p1), (q2, p2) ∈ Q 6⊆ do
5: let p = {q′ | q′ → a(q′1, q

′
2) ∈ ∆′, q′1 ∈ p1, q

′
2 ∈ p2}

6: Q 6⊆ ← Q 6⊆ ∪ {(q, p)}
7: end for
8: until Q 6⊆ does not change
9: return Q 6⊆ ∩ {(q, p) | q ∈ I, p ∩ I ′ = ∅} = ∅

10: end function

7.3.2 Top-down Algorithm

Next, we design a top-down algorithm that explores the state space from the ini-
tial states. This algorithm can be viewed as the combination of computation of
a difference automaton and emptiness test just like in the bottom-up algorithm.
However, we need to take different ways of taking the difference and testing
the emptiness since the emptiness algorithm and the difference computation
that the last section’s algorithm is based on are both intrinsically bottom-up
and therefore combining them naturally yields a bottom-up algorithm, not a
top-down one. In particular, it is rather difficult to explore the difference au-
tomaton in a top-down way since the initial states can be many from the first
place and, moreover, the definition of ∆′′ above can yield a huge number of
transitions from each state—how can we compute p1 and p2 from a given p such
that p = {q′ | q′ → a(q′1, q

′
2) ∈ ∆′, q′1 ∈ p1, q

′
2 ∈ p2}? We would end up looping

over all sets of states for p1 and p2.

Thus, we use a difference automaton that is easier to explore from the initial
states with a top-down emptiness check algorithm.

Difference automaton The idea here is to compute a difference automaton
without going through determinization. Let two automata A = (Q, I, F,∆)
and B = (Q′, I ′, F ′,∆′) given. We aim at computing an automaton with the
state space Q × 2Q

′

where each state (q, p) denotes the set of trees accepted
by the state q in A but by no state from p in B. Based on this intention, the
initial states should each have the form (q, I ′) for q ∈ I since we want the result
automaton to accept the set of trees accepted by an initial state of A but by no
initial state of B. Also, the final states should each have the form (q, p) with
q ∈ F and p ∩ F ′ = ∅ since, in order for a leaf to be accepted by this state, it
must be accepted by a final state of A but by no final state of B.

Now, what transitions should we have from each state (p, q)? For this, let us
consider a necessary and sufficient condition for a tree a(t′, t′′) to be accepted
by (p, q). By our intended meaning of (p, q), this holds if and only if
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(A) there is q → a(q′, q′′) ∈ ∆ such that t′ and t′′ are each accepted by q′ and
q′′, and

(B1) there is no q → a(q′, q′′) ∈ ∆′ such that t′ and t′′ are each accepted by q′

and q′′.

The condition (B1) is equivalent to:

(B2) for all q → a(q′, q′′) ∈ ∆′, either t′ is not accepted by q′ or t′′ is not
accepted by q′′.

Let us write

∆′(p, a) = {(q′, q′′) | q ∈ p, q → a(q′, q′′) ∈ ∆}.

Then, the condition (B2) can be transformed to:

(B3) for all i = 1, . . . , n, either t′ is not accepted by q′i or t′′ is not accepted by
q′′i

where ∆′(p, a) = {(q′1, q
′′
1 ), . . . , (q′n, q

′′
n)}, which is the same as

(B4) for some J ⊆ {1, . . . , n}, we have that t′ is accepted by no state from
{q′i | i ∈ J} and t′′ is accepted by no state from {q′′i | i ∈ J}.

(The notation J stands for {1, . . . , n} \ J .) This exchange between conjunction
and disjunction (i.e., “for all” becomes “for some” and “or” becomes “and”)
can intuitively be understood by seeing the following table.

1 2 3 4 5 6

q′i × × × J

q′′i × × × J

That is, the column-wise reading corresponds to the condition (B3) and the
row-wise reading (B4). Now, combining (A) and (B4) yields the condition that

for some (q → a(q′, q′′)) ∈ ∆ and some J ⊆ {1, . . . , n}, the subtree
t′ is accepted by q′ but by no state from {q′i | i ∈ J} and the subtree
t′′ is accepted by q′′ but by no state from {q′′i | i ∈ J}.

By recalling our intended meaning of each state in the result automaton, we see
that the transitions that we want from the state (q, p) has the form

(q, p)→ a((q′, {q′i | i ∈ J}), (q
′′, {q′′i | i ∈ J}))

for each q → a(q′, q′′) ∈ ∆ and J ⊆ {1, . . . , n}.
In summary, from the given automata, we compute the difference automaton

C = (Q′′, I ′′, F ′′,∆′′) such that:

Q′′ = Q× 2Q
′

I ′′ = {(q, I ′) | q ∈ I}
F ′′ = {(q, p) | q ∈ F, p ∩ F ′ = ∅}
∆′′ = {(q, p)→ a((q′, {q′i | i ∈ J}), (q

′′, {q′′i | i ∈ J})) | q → a(q′, q′′) ∈ ∆,
∆′(p, a) = {(q′1, q

′′
1 ), . . . , (q′n, q

′′
n)}, J ⊆ {1, . . . , n} }
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7.3.1 Lemma: The automaton C accepts a tree t iff A accepts t but B does
not.

Proof: By induction on the structure of t. �

7.3.2 Exercise: Finish the proof of Lemma 7.3.1. Use the intuitive explanation
given above.

Top-down emptiness How can we check emptiness in a top-down way? The
first observation is that, in order for a state q to be empty, a necessary and
sufficient condition is that

• q is not final, and

• for all transitions q → a(q1, q2), either q1 or q2 is empty.

Thus, we might write the following recursive “algorithm.”

1: function IsEmptyAt(q)
2: if q ∈ F then return false
3: for all q → a(q1, q2) ∈ ∆ do
4: if not IsEmptyAt(q1) and not IsEmptyAt(q2) then return false
5: end for
6: return true
7: end function

Unfortunately, this function may not terminate when the automaton has a loop.
A standard solution is to stop when we see a state for the second time.

Concretely, we maintain a set of already encountered states, which we assume to
be empty; we call the set assumption set, written Qasm. In the algorithm, before
examining a state q, we check whether q is already in the assumption set Qasm

and, if so, we immediate return true. Otherwise, we first assume q to be empty
(putting it to Qasm) and proceed to checking with its finalness and transitions.
Note, however, that, in case the first recursive call (IsEmptyAt(q1)) fails, we
need to revert the assumption set as it used to be before the call since the
assumptions that were made during this call may be incorrect. Thus, we obtain
the following pseudo-code for the top-down emptiness checking algorithm.

1: function IsEmptyTop(Q, I, F,∆)
2: Qasm ← ∅
3: for all q ∈ I do
4: if not IsEmptyAt(q) then return false
5: end for
6: return true
7:

8: function IsEmptyAt(q)
9: if q ∈ Qasm then return true

10: Qasm ← Qasm ∪ {q}
11: if q ∈ F then return false
12: for all q → a(q1, q2) ∈ ∆ do
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13: let Q′ = Qasm

14: if not IsEmptyAt(q1) then
15: Qasm ← Q′

16: if not IsEmptyAt(q2) then return false
17: end if
18: end for
19: return true
20: end function
21: end function

Since the algorithm is a little subtle, we give a formal correctness proof.
First, it is easy to see termination.

7.3.3 Lemma: The top-down emptiness test algorithm terminates for any in-
put.

Proof: At each call to the internal function IsEmptyAt, we add a state q to
Qasm whenever q 6∈ Qasm and never remove an element until it returns. Since
Qasm never gets elements other than those in Q and since Q is finite, the function
terminates with call depth less than |Q|. �

Then, we prove that the algorithm detects exactly whether a given automa-
ton is empty or not.

7.3.4 Lemma: The top-down emptiness test algorithm returns true for an au-
tomaton if it accepts no tree and returns false otherwise.

Proof: From Lemma 7.3.3, the result follows by proving that

• if IsEmptyAt(q) with Qasm returns true with Qasm
′, then the emptiness

of all states in Qasm implies the emptiness of all states in Qasm
′∪{q}, and

• if IsEmptyAt(q) with Qasm returns false, then q is not empty.

The proof can be done by induction on the call depth. �

7.3.5 Exercise: Finish the proof of Lemma 7.3.4.

7.3.6 Exercise: Note that the proof sketch tells that when the IsEmptyAt

function returns false for a state, this state is definitely non-empty regardless to
the assumption set. This suggests that our algorithm can be modified so that
it maintains a global “false set” that holds all the detected non-empty states.
Do it.

Top-down containment Combining the difference automaton construction
and the top-down emptiness check presented above, we obtain our top-down
containment algorithm.

1: function IsSubsetTop((Q, I, F,∆), (Q′, I ′, F ′,∆′))
2: Qasm ← ∅
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3: for all q ∈ I do
4: if not IsSubsetAt(q, I ′) then return false
5: end for
6: return true
7:

8: function IsSubsetAt(q, p)
9: if (q, p) ∈ Qasm then return true

10: Qasm ← Qasm ∪ {(q, p)}
11: if q ∈ F and p ∩ F ′ = ∅ then return false
12: for all q → a(q′, q′′) ∈ ∆ do
13: let {(q′1, q

′′
1 ), . . . , (q′n, q

′′
n)} = ∆′(p, a)

14: for all J ⊆ {1, . . . , n} do
15: let Q′ = Qasm

16: if not IsSubsetAt(q1, {q′i | i ∈ J}) then
17: Qasm ← Q′

18: if not IsSubsetAt(q2, {q′′i | i ∈ J}) then return false
19: end if
20: end for
21: end for
22: return true
23: end function
24: end function

State sharing We have made a rather intricate construction of our top-down
containment algorithm. Then, what is an advantage of it? One answer is that
it enables a powerful state sharing technique.

Before showing the technique, let us motivate it by the following example.
Suppose we want to use our containment algorithm for checking the following
relation between types:

Person? ⊆ Person*

where Person itself is defined as follows.

Person = person[...]

Here, the content of person label is not shown. Observe, however, that, what-
ever the content is, the containment should hold. Thus, we would wish that our
containment algorithm decides this without looking at person’s content—this
would indeed be a big advantage when the content type is a large expression.

Here is how our top-down algorithm can achieve this by a slight modifica-
tion. First of all, in practical situations, it is often possible to made two input
automata (Q, I, F,∆) and (Q′, I ′, F ′,∆′) share their states such that Q = Q′,
F = F ′, and ∆ = ∆′ (but possibly I 6= I ′). In particular, this can easily be
done when the automata come from schemas as in the last paragraph: in the
example, we can share the states that correspond to the content of person label.

When the top-down algorithm receives two automata that share their states,
an argument (q, p) passed to the internal function IsSubsetAt may satisfy
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q ∈ p, in which case we can immediately return true since it is obvious that any
tree accepted by q is accepted by any state from p.

7.3.7 Exercise: Indeed, in the example comparing Person? and Person*, we
will encounter the pair (q, {q}) where q represents the content of person. Con-
firm this.

Notice that the bottom-up algorithm cannot use the same technique since
this explores the state space from final states, which means that, by the time
when we encounter a pair (q, p) with q ∈ p, we have already seen all states below
and therefore it is too late to take any action.

7.4 Bibliographic Notes

Variants of the three algorithms for the membership checking are described in
[74], which presents algorithms directly dealing with schemas instead of tree
automata.

A number of efforts have been made for finding a fast marking algorithm.
Early work by Neven has given a linear-time, two-pass algorithm for the unary
case (marking with a single variable) based on boolean attribute grammars [76].
Then, Flum, Frick, and Grohe have found a linear-time (both in the sizes of
the input and the output), three-pass algorithm for the general case [35]. The
bottom-up, single-pass algorithm shown in this chapter is a refinement of the
last algorithm with partially lazy set operations; this was given in [52] with a
slightly different presentation. Meanwhile, several other algorithms have also
been found that either have higher complexity or have linear-time complexity
for more restricted cases [61, 6, 81], though each of these has made orthogonal
efforts in either implementation or theory. The cited papers above refer to the
marking problem by the name “MSO querying” since marking tree automata
are equivalent to the MSO (Monadic Second-order) logic (Chapter 13).

The first presentation of an on-the-fly, top-down algorithm for checking tree
automata containment is in [51]. Several improvements for its backtracking
behavior have also been proposed: [84] based on containment dependencies
and [37] based on a local constraint solver. A completely different, bottom-up
algorithm based on binary decision diagrams is described in [88].





Chapter 8

Alternating Tree Automata

In Chapter 3, we have established that nondeterministic tree automata are
closed under intersection and that this closure property can be useful in certain
applications. However, one clumsiness there is that when we want an intersec-
tion of given automata, we need to calculate another automaton by means of
product construction. In this chapter, we introduce alternating tree automata, a
formalism that directly incorporates intersection into tree automata. While or-
dinary tree automata support disjunction via nondeterminism, alternating tree
automata additionally support conjunction. This framework does not solve any
difficult problem in the complexity-theoretic sense. However, thanks to explicit
intersection operations, this makes it much shorter to represent some automata
and thus much easier to understand them. This is extremely useful in particular
when we need to construct an automaton that satisfies a certain complicated
condition and we will see such examples in Chapters 10 and 11.

8.1 Definitions

An alternating tree automaton A is a quadruple (Q, I, F,Φ) where Q is a finite
set of states, I ⊆ Q is a set of initial states, F ⊆ Q is a set of final states, and
Φ is a function that maps each pair (q, a) of a state and a label to a formula,
where formulas are defined by the following grammar.

φ ::= ↓i q | φ ∨ φ | φ ∧ φ | > | ⊥

(with i = 1, 2). In particular, note that a formula with no occurrences of
↓i q evaluates naturally to a Boolean. Given an alternating tree automaton
A = (Q, I, F,Φ), we define acceptance of a tree by a state: A accepts a leaf #
by a state q when q ∈ F ; also, A accepts an intermediate node a(t1, t2) by a
state q when (t1, t2) ` Φ(q, a) holds, where the judgment (t1, t2) ` φ is defined
inductively as follows:

• (t1, t2) ` φ1 ∧ φ2 if (t1, t2) ` φ1 and (t1, t2) ` φ2.

87
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• (t1, t2) ` φ1 ∨ φ2 if (t1, t2) ` φ1 or (t1, t2) ` φ2.

• (t1, t2) ` >.

• (t1, t2) `↓i q if A accepts ti by q.

Then, A accepts a tree t if A accepts t by some initial state q0 ∈ I. We define the
language L(A) of A by the set of trees accepted by A; a tree language accepted
by some alternating tree automaton is called alternating tree language; let ATL
be the class of alternating tree languages.

8.1.1 Exercise: Let A8.1.1 = ({q0, q1, q2, q3}, {q0}, {q1, q2, q3},Φ) where

Φ(q0, b) = ↓1 q1∧ ↓1 q2
Φ(q1, a) = ↓1 q1∧ ↓2 q3
Φ(q2, a) = ↓1 q3∧ ↓2 q2

and the other cases are set to ⊥. Find all trees accepted by this automaton.

Since we have added built-in conjunction in the automata framework, it
would also be sensible to add “intersection types” in the schema syntax. Let
us write T1&T2 to denote the intersection of the sets denoted by T1 and T2.
Converting a type containing intersections to an alternating tree automaton is
entirely straightforward since, basically, the only additional work is to translate
each intersection type to a conjunction. However, a care is needed in case an
intersection type is concatenated to some other type, e.g., (T1&T2), T3. In such
a case, we might want to first combine sub-automata corresponding to T1 and T2

by conjunction and then somehow connect the result to another sub-automaton
corresponding to T3. However, this does not work since the sub-automata for
T1 and T2 need to “synchronize” just before continuing to the sub-automaton
for T3—there is no such mechanism in alternating tree automata. What if we
naively rewrite the expression (T1&T2), T3 to ((T1, T3)&(T2, T3)), thus avoiding
such issue of synchronization. Unfortunately, this changes the meaning. For
example, the following

(a[] & (a[],b[])), (b[]?)

denotes the empty set since the intersection of a[] and a[],b[] is empty,
whereas the above-suggested rewriting yields the following

((a[],b[]?) & (a[],b[],b[]?))

which is not empty: it contains a[],b[]. For these reasons, an intersection type
that is concatenated to another type needs to be expanded to an automaton
without using conjunction (i.e., by using product construction).
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8.2 Relationship with Tree Automata

Clearly, alternating tree languages include regular tree languages since alter-
nating tree automata have both disjunction and conjunction whereas ordinary
tree automata have only disjunction. To see the converse, we need to convert
an alternating tree automaton to a regular tree automaton. There are two
algorithms that achieve this, one that yields a possibly nondeterministic tree
automaton and one that yields a bottom-up deterministic tree automaton. It is
certainly possible to obtain a bottom-up deterministic one by first using the for-
mer algorithm and then applying the determinization procedure (Section 3.3.2).
However, this approach takes a double exponential time. The latter algorithm,
on the other hand, directly determinizes a given alternating tree automaton and
takes only exponential time.

8.2.1 Algorithm [ATL-to-ND]: Given an alternating tree automaton A =
(Q, I, F,Φ), we construct a nondeterministic tree automatonM = (S, I ′, F ′,∆)
by a subset construction:

S = 2Q

I ′ = {{q0} | q0 ∈ I}
F ′ = {s | s ⊆ F}
∆ = {s→ a(s1, s2) | q ∈ s, (s1, s2) ∈ DNF(Φ(q, a))}

Intuitively, each state {q1, . . . , qn} in the resulting automaton M denotes the
intersection of all the states q1, . . . , qn in the original automaton A. In the
above, DNF(φ) computes φ’s disjunctive normal form by pushing intersections
under unions and regrouping atoms of the form ↓i q for a fixed i; the result is
formatted as a set of pairs of state sets:

DNF(>) = {(∅, ∅)}
DNF(⊥) = ∅
DNF(φ1 ∧ φ2) = {(s1 ∪ s′1, s2 ∪ s

′
2) | (s1, s2) ∈ DNF(φ1), (s′1, s

′
2) ∈ DNF(φ2)}

DNF(φ1 ∨ φ2) = DNF(φ1) ∪DNF(φ2)
DNF(↓1 q) = {({q}, ∅)}
DNF(↓2 q) = {(∅, {q})}

For example, if this function yields {({s1, s2}, {s3}), ({s4}, ∅)} then this denotes
(↓1 s1∧ ↓1 s2∧ ↓2 s3)∨ ↓1 s4.

8.2.2 Theorem: L(M) = L(A)

Proof: To prove the result, it suffices to show the following for any tree t and
any state s from M.

M accepts t at s if and only if A accepts t at all q ∈ s.

The proof can be done by induction on the height of the tree t. �

8.2.3 Exercise: Finish the proof of Theorem 8.2.2.



90 CHAPTER 8. ALTERNATING TREE AUTOMATA

8.2.4 Exercise: Construct a nondeterministic tree automaton from the alter-
nating tree automaton A8.1.1 in Exercise 8.1.1 by the conversion algorithm
ATL-to-ND. Remove all states unreachable from the initial states.

8.2.5 Corollary: ATL = ND.

Proof: Clearly, ND ⊆ ATL. Indeed, a nondeterministic tree automaton
M = (S, I, F,∆) can be seen as an equivalent alternating tree automaton with
the same set of states, the same set of initial states, and the same set of final
states by defining the function Φ as Φ(s, a) =

∨

(s→a(s1,s2))∈∆

∧

i=1,..,n ↓i si.
The converse ATL ⊆ ND is already proved by Theorem 8.2.2. �

8.2.6 Algorithm [ATL-to-BU]: Given an alternating tree automaton A =
(Q, I, F,Φ), we construct a bottom-up tree deterministic automaton M′ =
(S, I ′, F ′,∆) by another subset construction:

S = 2Q

I ′ = {s ⊆ S | s ∩ I 6= ∅}
F ′ = {F}
∆ = {s← a(s1, s2) | s = {q ∈ Q | (s1, s2) ` Φ(q, a)}}

The intuition behind is the same as in determinization for nondeterministic tree
automata (Section 3.3.2), that is, each state s = {q1, . . . , qn} denotes the set of
trees that are accepted by all of q1, . . . , qn and are not accepted by any other
state. In the above, the judgment (s1, s2) ` φ is defined inductively as follows.

• (s1, s2) ` φ1 ∧ φ2 if (s1, s2) ` φ1 and (s1, s2) ` φ2.

• (s1, s2) ` φ1 ∨ φ2 if (s1, s2) ` φ1 or (s1, s2) ` φ2.

• (s1, s2) ` >.

• (s1, s2) `↓i q if q ∈ si.

That is, (s1, s2) ` φ means that φ holds by interpreting each ↓i q as “q is a
member of the set si.” Clearly, the whole procedure takes at most exponential
time and the resulting automatonM′ is bottom-up deterministic.

A critical observation for understanding this procedure is the following rela-
tionship between the judgments (t1, t2) ` φ and (s1, s2) ` φ. That is, when we
set each si as the set of states that accept ti, the judgment (t1, t2) ` φ holds if
and only if (s1, s2) ` φ holds.

8.2.7 Lemma: (t1, t2) ` φ iff (s1, s2) ` φ where si = {q ∈ Q | ti is accepted at q}
for i = 1, 2.

Proof: By induction on the structure of φ. �

8.2.8 Theorem: L(A) = L(M′).
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Proof: To prove the result, it suffices to show the following for any tree t and
any state s from M.

M accepts t at s if and only if s = {q ∈ Q | A accepts t at q}.

The proof can be done by induction on the height of the tree t. Note that we
have seen exactly the same statement in the proof of Theorem 3.3.3. �

8.2.9 Exercise: Finish the proof of Theorem 8.2.8. (Note that the inductive
case uses Lemma 8.2.7.)

Now, one may wonder why we should care about the first algorithm (ATL-
to-ND) since the second algorithm has the same complexity yet yields a bottom-
up deterministic automaton. One answer is that the first one often yields a
smaller automaton than the second one, for purposes that do not need deter-
minism such as emptiness test, it is enough. We can see an instance from the
following exercise.

8.2.10 Exercise: Construct a deterministic tree automaton from the alternat-
ing tree automaton A8.1.1 by using the conversion algorithm ATL-to-BU. Re-
move all states unreachable from the final states. Then, compare the resulting
automaton with the one from Exercise 8.2.4.

8.3 Basic Set Operations

Since union and intersection are already built in, we only consider here member-
ship test, emptiness test, and complementation. These can certainly be achieved
by going through ordinary tree automata. However, algorithms would be more
useful and possibly more efficient if they directly manipulate alternating tree
automata.

8.3.1 Membership

We can obtain a “top-down algorithm” in the same style as in Section 7.1.1
directly from the semantics defined in Section 8.1. However, this has a potential
blow-up by traversing the same node many times. This is caused not only by
disjunction but also by conjunction. That is, to test whether a node is accepted
by a disjunction A∨B, we need to examine whether it is accepted by A and, if
it fails, then by B, just as we did in Section 7.1.1; in addition, for a conjunction
A∧B, we need to test whether a node is accepted by A and, if it succeeds, then
by B.

We can also construct a linear-time “bottom-up algorithm” in a similar way
to Section 7.1.2. In this, we create some states of a bottom-up deterministic
tree automaton that are needed for deciding whether a given tree is accepted.
The following shows pseudo-code for the algorithm.

8.3.1 Algorithm [ATL-mem-bottom-up]:
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1: function Accept(t, (Q, I, F,Φ))
2: if Accepting(t)∩I 6= ∅ then return true else return false
3:

4: function Accepting(t)
5: switch t do
6: case #:
7: return F
8: case a(t1, t2):
9: let s1 = Accepting(t1)

10: let s2 = Accepting(t2)
11: let s = {q | (s1, s2) ` Φ(q, a)}
12: return s
13: end switch
14: end function
15: end function

That is, Accepting(t) returns the set of states that accept t. Thus, for a
leaf #, we return the set of final states; for a node a(t1, t2), we first compute s1
and s2 as the set of states that accept t1 and t2, respectively, and then collect
the set of states s accepting a(t1, t2) from s1 and s2, which can be obtained by
finding all s whose Φ(s, a) holds under (s1, s2) (Lemma 8.2.7). Note also that
line 11 uses the same computation done in the algorithm ATL-to-BU.

8.3.2 Exercise: Construct a “bottom-up membership algorithm with top-down
preprocessing” for alternating tree automata in the same way as Section 7.1.3.

8.3.2 Complementation

For nondeterministic tree automata, complementation requires an exponential-
time computation (Theorem 3.4.3). It is not the case, however, for alternating
tree automata: complementation is linear time thanks to the fact that they have
both disjunction and conjunction. This implies that, if we need to frequently
perform complementation, alternating tree automata are the right representa-
tion.

8.3.3 Algorithm [ATL-compl]: Let an alternating tree automatonA = (Q, I, F,Φ)
be given. Without loss of generality, we can assume that I is a singleton set {q0}
(otherwise, we can combine all initial states, taking the union of all their transi-
tions). Then, we construct the alternating tree automaton A′ = (Q, I,Q\F,Φ′)
such that Φ′(q, a) = flip(Φ(q, a)) where flip(φ) is defined as follows.

flip(>) = ⊥
flip(⊥) = >
flip(φ1 ∧ φ2) = flip(φ1) ∨ flip(φ2)
flip(φ1 ∨ φ2) = flip(φ1) ∧ flip(φ2)
flip(↓i q) = ↓i q
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That is, we modify the given alternating automaton so that each state q becomes
to denote the complement of the original meaning. For this, we negate each
formula in the transition by flipping between ∧ and ∨, between > and ⊥, and
between final and non-final states.

8.3.4 Theorem: Complementing an alternating tree automaton can be done
in linear time.

Proof: To show the result, it suffices to prove that A accepts a tree t at q if
and only A′ does not accept t at q, for any t and q. The proof can be done by
induction on the height of t. �

8.3.5 Exercise: Extend alternating tree automata for directly supporting com-
plementation operations (thus complementation becomes a constant-time oper-
ation). Modify the algorithms ATL-to-ND, ATL-to-BU, and ATL-mem so
as to work on such automata.

8.3.3 Emptiness

First, it is easy to prove that checking emptiness of an alternating tree au-
tomaton takes an exponential time at worst. This implies that switching from
ordinary tree automata to alternating ones does not solve a difficult problem
but simply moves it. Nevertheless, experience tells that a practically efficient
algorithm can be constructed by dealing with alternating automata.

8.3.6 Theorem: The emptiness problem for alternating tree automata is EXPTIME-
complete.

Proof: The problem is in EXPTIME since an alternating tree automaton
can be converted to an ordinary tree automaton in exponential time (Theo-
rem 8.2.2 and then checking emptiness of the resulting automaton can be done
in polynomial time (Section 3.4.2). The problem is EXPTIME-hard since the
containment problem for tree automaton, which is EXPTIME-complete (Theo-
rem 3.4.6), can be reduced by polynomial time to the present problem, where
the reduction uses linear-time complementation (Section 8.3.2). �

8.3.7 Exercise: Based on the conversion algorithm ATL-to-ND, derive a top-
down algorithm for checking emptiness in a similar fashion to Section 7.3.2.

8.3.8 Exercise: Based on the determinization algorithm ATL-to-BU, derive
a bottom-up algorithm for checking emptiness in a similar fashion to Sec-
tion 7.3.1. Discuss advantages and disadvantages between the top-down (Exer-
cise 8.3.7) and the bottom-up algorithms.
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8.4 Bibliographic Notes

Alternating tree automata have first been introduced and investigated in [83].
This notion has been exploited in the area of XML typechecking. For example,
the implementation of CDuce [39, 5] extensively uses alternating tree automata
(with negation operation) as an internal representation of types for XML. A
top-down algorithm for emptiness check can be found in [37].



Chapter 9

Tree Transducers

Tree transducers are finite-machine models for tree transformation. In Chap-
ter 3, we have introduced tree automata for accepting trees; tree transducers
add the capability to produce trees. On the other hand, in Chapter 6, we have
described the simple tree transformation language µXDuce; this language is
in fact quite powerful—as expressive as Turing machines; tree transducers are
more restricted because states that they can work with are only finite.

An important implication from the restriction is that tree transducers can
only inspect the input tree and can never look at a part of the output tree that
they are producing. This might seem quite restrictive since no intermediate data
structure can be used (other than their finite states themselves). Nevertheless,
this restriction is not too unrealistic. Indeed, the XSLT language—the currently
most popular language for XML transformation—has this property. In addition,
thanks to this restriction, we have nice properties that otherwise hardly hold,
among which the most important is the exact typechecking property, that is,
a typechecking algorithm exists such that it signals if and only if the given
program raises an error for some input; recall that µXDuce has only the “if”
direction. We will go into details in this topic in Chapter 10.

Tree transducers have a quite long history where the most basic ones date
back to early 70’s. By now, so many kinds have been defined and investigated
that it is hopeless to cover all of them. In this book, we will consider a few
simplest ones, namely, top-down tree transducers and some of their extensions,
and see their basic properties.

9.1 Top-down Tree Transducers

Top-down tree transducers express a form of transformation that traverses a
given tree from the root to the leaves where, at each node, we produce a fragment
of the output tree determined by the label of the current node and the current
state. Since a state can then be seen as a rule from a label to a tree fragment,
we call a state procedure from now on.

95
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When considering the tree transducer family, we often consider nondeter-
minism just like in automata. When a transducer is nondeterministic, it may
have a choice of multiple rules at a single procedure and thus may produce mul-
tiple results. There are several reasons why we consider nondeterminism. For
one thing, as we will see, this actually changes the expressiveness. For another
thing, nondeterminism can be used as a means of “abstracting” more complex
computation so as to make it easier to perform static analysis on it. For ex-
ample, if we consider a higher-level language that has an if-then-else expression
whose boolean condition may be too complicated to analyze. In such a case,
we can abstract such a conditional by regarding that both branches can non-
deterministically happen. Exact typechecking on such an abstract program can
be seen as a form of approximate typechecking that is different from what has
been presented in Chapter 6 and can even be better in some cases. We will see
more details in Chapter 10.

Formally, a top-down tree transducer T is a triple (P, P0,Π) where P is a
finite set of procedures, P0 ⊆ P is a set of initial procedures, and Π is a set of
(transformation) rules each having either of the following forms

p(a(x1, x2))→ e (node rule)

p(#)→ e (leaf rule)

where p ∈ P . Expressions e are defined by

e ::= a(e1, e2) | # | p(xh)

where the form p(xh) with h = 1, 2 can appear only in node rules. The seman-
tics of the top-down tree transducer is defined by the denotation function [[·]]
given below. First, a procedure p takes a tree t and returns the set of trees
resulted from evaluating any of p’s rules. In the evaluation, we first match and
deconstruct the input tree with the head of the rule and give the subordinate
values to the rule, that is, we pass the pair of t’s children to a node rule and a
dummy (written ) to a leaf rule. We jointly write ρ to mean either a pair of
trees or a dummy.

[[p]](a(t1, t2)) =
⋃

(p(a(x1,x2))→e)∈Π [[e]](t1, t2)

[[p]](#) =
⋃

(p(#)→e)∈Π [[e]]

Then, an expression e takes a pair of trees or dummy and returns the set of
trees resulted from evaluating e:

[[a(e1, e2)]]ρ = {a(u1, u2) | ui ∈ [[ei]](ρ) for i = 1, 2}
[[#]]ρ = {#}
[[p(xh)]](t1, t2) = [[p]](th)

A constructor expression a(e1, e2) evaluates each subexpression ei and recon-
structs a tree node with the label a and the results of these subexpressions.
A leaf expression # evaluates to itself. A procedure call p(xh) evaluates the
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procedure p with the h-th subtree. (Recall that a procedure call can appear in
a node rule to which a pair of trees is always passed.) The whole semantics of
the transducer with respect to a given input tree t is defined by the evaluation
of any of the initial procedures: T (t) =

⋃

p0∈P0
[[p0]](t).

A transducer T is deterministic when it has at most one rule p(a(x1, x2))→ e
for each procedure p and label a and at most one rule p(#) → e for each
procedure p. For such a transducer, T (t) has at most one element for any t. A
transducer T is total when it has at least one rule p(a(x1, x2)) → e for each p
and a.

9.1.1 Example: Let T9.1.1 = ({p0, p1}, {p0},Π) where Π consists of:

p0(a(x1, x2)) → a(p1(x1), p0(x2))
p0(b(x1, x2)) → c(p0(x1), p0(x2))
p0(#) → #
p1(a(x1, x2)) → a(p1(x1), p0(x2))
p1(b(x1, x2)) → p0(x2)
p1(#) → #

This transducer replaces every b node with its right subtree if the node appears
as the left child of an a node. Otherwise, the b node is renamed c. Indeed, each
procedure works as follows. The procedure p1 is called when the current node
appears as the left child of an a node; p0 is called in any other context. Then,
for an a node, both p0 and p1 retain it and call p1 for the left child and p0 for
the right child. For a b node, on the other hand, p0 renames its label with c,
while p1 only calls p0 with its right child (thus removing the current b node and
its entire left subtree).

Determinism indeed changes the expressive power. The following example
shows that, for a nondeterministic transducer, even when it cannot decide ex-
actly which tree fragment to produce only from the current node and state, it
can produce several possibilities for the moment and later discard some of them
after looking at a descendant node.

9.1.2 Example: Let T9.1.2 = ({p0, p1, p2, p3}, {p0},Π) where Π consists of:

p0(a(x1, x2)) → a(p1(x1), p3(x2))
p0(a(x1, x2)) → b(p2(x1), p3(x2))
p1(c(x1, x2)) → c(p3(x1), p3(x2))
p2(d(x1, x2)) → d(p3(x1), p3(x2))
p3(#) → #

This translates a(c(#,#),#) to itself and a(d(#,#),#) to b(d(#,#),#). This
translation cannot be expressed by a deterministic top-down transducer since
we need to decide whether to change the top a label to b after looking at the
left child.
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9.2 Height Property

A natural question that would arise here is what transformation a top-down
tree transducer cannot express. As an example, consider the transformation
that deletes each b label from the input in such a way that the right-most leaf
of the left tree is replaced with the right tree. This kind of transfomation often
happens in XML processing: for instance, we may want to delete a div tag from
a value like

div[p[...], img[...]], p[...]

while retaining the content of the div:

p[...], img[...], p[...]

Now, the question is: is this transformation expressible by a top-down tree
transducer? The answer is “no.” But how can we prove this?

A powerful technique for characterizing tree transformations is a height prop-
erty, which tells how much taller an output tree can be with respect to an input
tree for a given transformation. As we will see below, we can bound the height
increase for any top-down transducer (or of some other kind). By using this, we
can show that a particular transformation is not expressible by a top-down (or
some other kind of) tree transducer or even for comparing different formalisms
of tree transducers.

For example, the above delete-b transformation can exponentially increase
the height of the tree. To see this, take the following full binary tree of height
n (leaves # are omitted).
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Then, from this tree, the delete-b transformation will produce a right-biased
tree of height 2n−1.
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However, we can prove that any output tree produced by a top-down tree trans-
ducer has only a linear height increase from the input tree.
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9.2.1 Theorem: Let T be a top-down tree transducer and t be a tree. Then,
there exists c > 0 such that ht(u) ≤ c · ht(t) for any u ∈ T (t).

Proof: Define c as the maximum height of the expressions appearing in all
rules. Then, the result can be proved by induction on the height of t. �

This result concludes that the delete-b transformation is not expressible by a
top-down tranducer. The next question is: what form of tree transducer can
express this? This will be answered in the next section.

9.3 Macro Tree Transducers

In this section, we introduce an extension of top-down tree transducers with
parameters. Since, historically, this extension has been invented for studying
“macro expansion” in programming languages, it is called macro tree transduc-
ers. Like in a top-down one, each procedure of a macro tree transducer takes an
implicit parameter that points to a node in the input tree. However, it can also
take extra parameters that point to not nodes in the input but tree fragments
that will potentially become a part of the output tree. We will see below that
this additional functionality provides a substantial increase in expressiveness.

Formally, a macro tree transducer T is a triple (P, P0,Π) where P and P0

are the same as before and Π is a set of rules each either of the following forms:

p(k)(a(x1, x2), y1, . . . , yk)→ e (node rule)

p(k)(#, y1, . . . , yk)→ e (leaf rule)

Each yi is called (accumulating) parameter. We will abbreviate the tuples
(y1, . . . , yk) to ~y. Note that each procedure is now associated with its arity,
i.e., the number of parameters; we write p(k) to denote a procedure p with arity
k. Expressions e are defined by the following grammar

e ::= a(e1, e2) | # | p(l)(xh, e1, . . . , el) | yj

where only yj with 1 ≤ j ≤ k can appear in a rule of a k-arity procedure and
p(xh, . . .) with h = 1, 2 can appear only in a node rule. We assume that each
initial procedure has arity zero. The semantics of the macro tree transducer
is again defined by a denotation function [[·]]. First, a procedure p(k) takes a
current tree as well as a k-tuple of parameters ~w and returns the set of trees
resulted from evaluating any of p’s rules.

[[p(k)]](a(t1, t2), ~w) =
⋃

(p(k)(a(x1,x2),~y)→e)∈Π [[e]]((t1, t2), ~w)

[[p(k)]](#, ~w) =
⋃

(p(k)(#,~y)→e)∈Π [[e]]( , ~w)

Then, an expression e takes a pair of trees or a dummy as well as parameters
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~w = (w1, . . . , wk), and returns the set of trees resulted from the evaluation:

[[a(e1, . . . , em)]](ρ, ~w) = {a(u1, u2) | ui ∈ [[ei]](ρ, ~w) for i = 1, 2}
[[#]](ρ, ~w) = {#}
[[p(l)(xh, e1, . . . , el)]]((t1, t2), ~w) =

{[[p(l)]](th, (w
′
1, . . . , w

′
l)) | w

′
j ∈ [[ej ]]((t1, t2), ~w) for j = 1, . . . , l}

[[yj ]](ρ, ~w) = {wj}

The difference from top-down transducers is that a procedure call p(xh, e1, . . . , el)
passes the results of e1, . . . , el as parameters when evaluating the procedure p
with the h-th subtree th. Also, a rule for a variable expression yj is added,
where we simply return the corresponding parameter’s value wj . The whole
semantics of the macro tree transducer with respect to a given input tree t is
defined by T (t) =

⋃

p0∈P0
[[p0]](t). (Recall that an initial procedure takes no

parameter since it has arity zero.) Deterministic and total transducers can be
defined similarly.

9.3.1 Example: Let us express the delete-b transformation used in Section 9.2
by a macro tree transducer. Define Σ = {a, b} and T9.3.1 = ({p0, p1}, {p0},Π)
where Π consists of:

p0(a(x1, x2)) → a(p1(x1,#), p1(x2,#))
p0(b(x1, x2)) → p1(x1, p1(x2,#))
p0(#) → #
p1(a(x1, x2), y) → a(p1(x1,#), p1(x2, y))
p1(b(x1, x2), y) → p1(x1, p1(x2, y))
p1(#, y) → y

That is, the procedure p1 takes an accumulating parameter y that will be ap-
pended after the “current sequence.” Thus, when we encounter a leaf, we emit
y. When we encounter an a label, we first copy the a and then make a recursive
call to p1 for each child node, where we pass y for the right child since we are
still in the same sequence, while we pass # for the left child since we go into a
new sequence. When we encouter a b label, we do not copy the b but make two
recursive calls, where we pass y for the right child while, for the left child, we
pass the result from the right child; in this way, we can append the result for
the left child to the result for the right child. Now, we would like to start up
the transducer with an initial parameter #. However, we cannot simply write

p0(x)→ p1(x,#)

since a macro tree transducer, as it is defined, needs to go down by one label for
each procedure call. (We could extend tranducers with direct procedure calls,
which we will mention later on.) Therefore we instead define the procedure
p0 to be exactly the same as p1 except that it does not take an accumulating
parameter but uses # whenever p1 would use y.
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9.3.2 Example: Let us write a more serious macro tree transducer that, given
an XHTML document, puts the list of all img elements to the end of the body

element: T9.3.2 = ({main, getimgs, putimgs, putimgs2, copy}, {main},Π) where Π
consists of the followings rules.

main(html(x1, x2)) → html(putimgs(x1, getimgs(x1,#)), copy(x2))

getimgs(img(x1, x2), y) → img(copy(x1), getimgs(x2, y))
getimgs(∗(x1, x2), y) → getimgs(x1, getimgs(x2, y))
getimgs(#, y) → y

putimgs(body(x1, x2), y) → body(putimgs2(x1, y), copy(x2))
putimgs(∗(x1, x2), y) → ∗(putimgs(x1, y), putimgs(x2, y))
putimgs(#, y) → #

putimgs2(∗(x1, x2), y) → ∗(copy(x1), putimgs2(x2, y))
putimgs2(#, y) → y

copy(∗(x1, x2)) → ∗(copy(x1), copy(x2))
copy(#) → #

Here, each rule with a * pattern should be read as the set of rules where the *

label and all * constructors in the body are replaced by each label not matched
by the preceding rules of the same procedure.

The initial main procedure first collects the list of all img elements from the
given tree by using getimgs, and then puts it to the content of the body element
by using putimgs. The putimgs procedure, when it finds the body element, uses
putimgs2 to append the img list in the end of the content sequence. The auxiliary
copy procedure simply copies the whole subtree.

In Example 9.3.1, we have seen a macro tree transducer that expresses the
delete-b transformation, which can have an exponential increase in the tree
height (Section 9.2). In fact, we can assert that this is the maximum increase
for this transducer since, in general, any macro tree transducer can grow the
tree height at most exponentially, as stated by the following theorem.

9.3.3 Theorem: Let T be a macro tree transducer and t be a tree. Then,
there exists c > 0 such that ht(u) ≤ cht(t) for any u ∈ T (t).

Proof: Define c as the maximum height of the expressions appearing in all
rules. Then, the result follows by proving the following.

(A) u ∈ [[p(k)]](t, ~w) implies ht(u) ≤ cht(t)+max(0,ht(w1), . . . ,ht(wk)).

The proof proceeds by induction on t. The above statement (A) immediately
follows if the following statement (B) holds.

(B) u ∈ [[e]](ρ, ~w) implies ht(u) ≤ ht(e)cht(ρ)+max(0,ht(w1), . . . ,ht(wk)).
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Here, ht(ρ) is defined as 0 when ρ = and as max(ht(t1),ht(t2)) when ρ =
(t1, t2). The condition (B) can in turn be proved by induction on the structure
of e. Let d = max(0,ht(w1), . . . ,ht(wk)).

• When e = # or e = yj , the condition (B) trivially holds.

• When e = a(e1, e2), note that u = a(u1, u2) where ui ∈ [[ei]](ρ, ~w) for
i = 1, 2. Thus, we can derive (B) as below.

ht(u) = 1 + max(ht(u1),ht(u2))

≤ 1 + max(ht(e1)c
ht(ρ) + d,ht(e2)c

ht(ρ) + d) by I.H. for (B)
≤ (1 + max(ht(e1),ht(e2)))c

ht(ρ) + d

= ht(e)cht(ρ) + d

• When e = p(xh, e1, . . . , el), note that ρ has the form (t1, t2) and u ∈

[[p]](th, ~w′) where w′
j ∈ [[ej ]](ρ, ~w) for j = 1, . . . , l. Thus, we can derive (B)

as below.

ht(u) ≤ cht(th) + max(0,ht(w′
1), . . . ,ht(w′

l)) by I.H. for (A)

≤ cht(th) + max(0,ht(e1)c
ht(ρ) + d, . . . ,ht(el)c

ht(ρ) + d)
by I.H. for (B)

≤ (1 + max(0,ht(e1), . . . ,ht(el)))c
ht(ρ) + d

= ht(e)cht(ρ) + d

�

9.3.4 Exercise: Consider the following transformation. Given an XHTML
tree, whenever there is a div element, e.g.,

div[h3[...], a[...], ...]

we collect the list of all img elements appearing in the whole subtree of the div

and prepend the list to the div’s content:

div[img[...], img[...], img[...], h3[...], a[...], ...]

Using Theorem 9.3.3, prove that this transformation is not expressible by a
macro tree transducer. (Note that, in XHTML, div elements can be nested.)

9.4 Bibliographic Notes

Various variations of top-down and macro tree transducers have been studied
[26, 27, 31]. One of the simplest extensions is to allow a stay rule of the form

p(x, y1, . . . , yk)→ e

in which we can pass the current node itself to another procedure (without going
down). Another extension is to allow regular look ahead. In this, we assume an
automaton for the input tree and associate each rule with a state like:

p(a(x1, x2), y1, . . . , yk)@q → e
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Each rule is fired when the input can be accepted by the associated state. It is
known that both extensions do not increase the expressive power of top-down
nor macro tree transducers. Macro tree transducers presented in this chapter
take the call-by-value semantics, where a procedure call evaluates its (accumu-
lating) parameters before executing the procedure itself. We can also think of
the call-by-name semantics, where parameters are evaluated when their values
are used. These evaluation strategies change the actual behavior of the transfor-
mation for nondeterministic transducers. Forest transducers extend top-down
tree transducers with a built-in concatenation operator, thus directly supporting
XML-like unranked trees. Analogously, macro forest transducers are an exten-
sion of macro tree transducers with concatenation [80]. Their expressive power
actually changes by the addition of the concatenation operator; in particular,
macro forest transducers have a double-exponential height property. Finally
(but not lastly), macro tree transducers extended with higher-order functions
are called high-level tree transducers [32].

In general, when there is an acceptor model, we can think of its corresponding
transducer model. In this sense, top-down tree transducers correspond to top-
down tree automata. Similarly, we can consider bottom-up tree transducers
corresponding to bottom-up tree automata [26]. In bottom-up tree transducers,
we process each node of the input tree from the leaves to the root where, at each
node, we use the states assigned to the child nodes and the current node label
for deciding how to trasform the node and which state to transit. A difference in
expressiveness between top-down and bottom-up transducers is that bottom-up
ones can “process a node and then copy the result n times” but cannot “copy
a node n times and then process each,” whereas the opposite is the case for
top-down transducers. However, the special ability of bottom-up transducers
seems rather useless in practice and this is perhaps why they are relatively less
studied.

Chapter 11 will present tree-walking automata, which can move not only
down but also up in the input tree. A transducer model closely related to this
is k-pebble tree transducers [68], which allow moving up and down k pointers to
nodes in the input tree and are thereby capable of representing various realistic
XML transformations. Chapter 13 will present the MSO logic for describing
constraints among tree nodes. MSO-definable tree transducers lift this ability
to relate tree nodes in the input and in the output [24].

Theoretical properties of these transducer models have actively been inves-
tigated, such as expressive powers, exact typechecking, and composability (e.g.,
can the transformation of a top-down transducer composed with another al-
ways be realized by a single top-down transducer?). Besides exact typechecking
(which will be covered in Chapter 10), further details are out of scope in this
book; interested readers should consult the literature, e.g., [31, 29]





Chapter 10

Exact Typechecking

In Chapter 6, we have previewed the exact typechecking approach to the static
verification of XML transformations. In this approach, rather than considering
a general, Turing-complete language on which only an approximate analysis can
be made, we take a restricted language for which a precise analysis is decidable.
Various XML transformation languages and typechecking algorithms for them
have been investigated. Generally, the more expressive the language is, the more
complicated the typechecking algorithm becomes. In this chapter, we study
exact typechecking for one of the simplest tree transformation formalisms as
our target language, namely, top-down tree transducers introduced in Chapter 9.
Although this formalism is so simple that many interesting transformations are
not expressible, we can explain many technical ideas behind exact typechecking
that are applicable to other formalisms. In particular, we will see in detail where
forward inference fails and backward inference is needed, how nondeterminism
influences on the typechecking algorithm, how alternating tree automata are
useful for building the algorithm, and so on.

10.1 Motivation

One may wonder why exact typechecking would be important from the first
place. Let us give an instructive example, which is an identity function written
in the µXDuce language presented in Chapter 6. This is such a trivial example,
but still cannot be validated by the approximate typechecking given there. Let
us first assume that there are only three labels, a, b, and c in the input. Then,
an identity function can be written as follows:

fun id(x : T) : T =

match x with

() -> ()

| a[y],z -> a[id(y)],id(z)

| b[y],z -> b[id(y)],id(z)

| c[y],z -> c[id(y)],id(z)

105
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Here, we did not define the type T. Indeed, the function should typecheck what-
ever T is defined to be (as long as it uses only a, b, and c labels) since the
function translates any tree in T to itself and therefore the result also has type
T. However, whether the function goes through the µXDuce typechecker or not
actually depends on how T is defined. For example, if we define

type T = (a[T] | b[T] | c[T])*

then the function typechecks since, in each case of the match expression, both
variables y and z are given the type T and thus the body can be validated.
Indeed, in the second case, pattern type inference (Section 6.3) gives both y

and z the type T = (a[T]|b[T]|c[T])* since it describes exactly the set of
values coming inside or after a and similarly for the other cases. However, if we
instead define

type T = a[T]*,b[T]*,c[T]*

then typechecking fails. To see why, let us focus on the third case. First,
pattern type inference gives the variable z (b[T]*,c[T]*) since this describes
what can follow after a b label; therefore typechecker asserts that the argument
type is valid at the function call id(z). However, typechecker gives T as the
return type of the function call since it is declared so (and similarly for the
other call id(y)) and, as a result, the body of the present case is given the
type b[T],T (= b[T],a[T]*,b[T]*,c[T]*), which is not a subtype of T (=
a[T]*,b[T]*,c[T]*) since a b label can come before an a label.

Why does this false-negative happen? It is because the µXDuce typechecker
does not consider context-dependency of the function’s type. That is, the func-
tion produces, from an input of type a[T]*,b[T]*,c[T]*, an output of type
a[T]*,b[T]*,c[T]*, but, from an input of type b[T]*,c[T]*, an output of
type b[T]*,c[T]*, and so on. If the typechecker used the fact that the output
type can be more specific depending on the input type, it would be able to
validate the above function. However, it monolithically gives each expression
a single type independently from the context and thus fails to typecheck the
identity function.

In this sense, the exact typechecking algorithm presented in this chapter
can be seen as a context-sensitive analysis. However, as we will see, a naive
attempt to extend the µXDuce-like typechecker in a context-sensitive way fails
to achieve exactness. That is, the µXDuce typechecker infers an “output type”
of a function body from its declared input type; such a forward inference cannot
give a type precisely describing the set of output values since this set can in
general go beyond regular tree languages. Instead, we need to consider an
output type as a context and infer an input type from it; this approach is called
backward inference.

Before going into technicality, a remark is in order on the usability of the
exact typechecking approach. One may argue that this approach can be too
limited since, once a transformation slightly goes beyond the target language,
this method immediately becomes unapplicable. On the contrary, this is exactly
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where nondeterminism becomes useful. That is, even if a given transformation
is not exactly expressible, its “approximation” could be if some complicated
computations are abstracted as “anything may happen” by means of nondeter-
minism. For example, if a given transformation has an if-then-else expression
whose conditional is not expressible by a transducer, we can replace it with a
nondeterministic choice of the two branches. This approach gives rise to another
kind of approximate typechecking that can be more precise than a more naive
µXDuce-like method, yet has a clear specification—“first abstraction and then
exact typechecking”—which is important for explaining to the user the reason
for a raised error.

10.2 Where Forward Type Inference Fails

Given a transformation T , an input type τI , and an output type τO, the forward
inference approach first computes the image τ ′O = T (τI) of τI by the transfor-
mation T (we write T (τI) =

⋃

t∈τI
T (t)) and then checks the inclusion between

τ ′O and τO.
To see the limitation of this approach, let us consider the following top-down

transducer T with the initial procedure p0:

p0(a(x1, x2))→ a(p1(x1), p1(x1))

p1(a(x1, x2))→ a(p1(x1), p1(x2))

p1(#)→ #

The procedure p1 simply copies the whole given tree and thus the procedure
p0 duplicates the left subtree, i.e., translates any tree of the form a(t1, t2) to
a(t1, t1). So, for the input type T = {a(t,#) | t is any tree}, we can easily
see that the image is T (T ) = {a(t, t) | t is any tree}, which is well known to
go beyond regular tree languages. (This set is in fact within so-called context-
free tree languages and therefore could be checked against a given output type
since inclusion between a context-free tree language and a regular language is
decidable, cf. [27, 30, 28]). However, it is easy to further extend the above
example so as to obtain an image {a(t, a(t, t)) | t is any tree}, which is even
beyond context-free tree languages.)

In a special case, however, forward type inference works for top-down tree
transducers. For example, when a transducer is linear, that is, each right hand
side of its rules uses at most once for each variable, then the set of output values
actually fits in regular tree language.

10.2.1 Exercise: Construct an algorithm of forward type inference for linear
top-down tree transducers.

10.3 Backward Type Inference

The back inference approach does the opposite direction. In principle, this
approach first computes a type τ ′I representing {t | T (t) ⊆ τO} and then checks
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the inclusion τI ⊆ τ ′I . However, it is rather complicated to directly compute such

type τ ′I . Instead, we below show a method that computes τ ′I (the complement
of τ ′I), which equals to the preimage T −1(τO) of τO, that is, the set {t | ∃t′ ∈

τO. t
′ ∈ T (t)}. By using this, we can complete typechecking by testing τ ′I ∩τI =

∅. (However, we also see later that, for deterministic transducer, the direct
approach is equally easy.)

Let T be a top-down transducer (P, P0,Π) and M be a (nondeterministic)
tree automaton (Q, I, F,∆) (which represents the type τO above). We construct
an alternating automaton A = (R,R0, RF ,Φ) (which represents the preimage
τ ′I) in the following way.

R = {〈p, q〉 | p ∈ P, q ∈ Q}
R0 = {〈p0, q0〉 | p0 ∈ P0, q ∈ I}
RF = {〈p, q〉 | `

∨

(p(#)→e)∈Π Inf(e, q)}

Φ(〈p, q〉, a) =
∨

(p(a(x1,x2))→e)∈Π

Inf(e, q)

Here, the function Inf is defined inductively as follows.

Inf(a(e1, e2), q) =
∨

(q→a(q1,q2))∈∆

Inf(e1, q1) ∧ Inf(e2, q2)

Inf(p(xh), q) = ↓h 〈p, q〉

Inf(#, q) =

{

> (q ∈ F )
⊥ (q 6∈ F )

Informally, each state 〈p, q〉 represents the set of input trees that can be
translated by the procedure p to an output tree in the state q. Thus, the initial
states for the inferred automaton can be obtained by collecting all pairs 〈p0, q0〉
of an initial procedure p0 and an initial state q0. The function Inf takes an
expression e and an “output type” q and returns a formula. If the expression
e appears in a node rule, then the formula represents the set of pairs of trees
that can be translated to a tree in the state q. If e appears in a leaf rule, then
the formula represents whether or not a leaf node can be translated to a tree in
the state q. Recall that no procedure call appears in a leaf rule, which means
that a formula φ returned by Inf never contains the form ↓i 〈p, q〉 and therefore
is naturally evaluated to a Boolean; we write ` φ when φ is evaluated to true.
By using this, we collect, as A’s final states, 〈p, q〉 such that a leaf rule of p
translates a leaf node to a tree in the state q.

Each case for the function Inf can be explained as follows.

• In order for a leaf expression # to produce a tree conforming to the state
q, a sufficient and necessary condition is that q is final. That is, if the
state q is final, whatever the input is, the expression # will produce a tree
that conforms to q (namely, a leaf tree #). Conversely, if q is not final,
then the output will not conform to q whatever the input is.

• In order for a label expression a(e1, e2) to produce a tree conforming to the
state q, a sufficient and necessary condition is that there exists a transition
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q → a(q1, q2) (with the same label) such that each ei produces a tree that
conforms to the corresponding state qi. This condition can be obtained by
recursively calling Inf with e1 and q1 and with e2 and q2 for each transition
q → a(q1, q2) and combine all the results by a union.

• In order for a procedure call p(xh) to produce a tree conforming to the state
q, a sufficient and necessary condition is that the procedure p produces
such a tree from the h-th subtree. This condition can be rephrased that
the h-th subtree is in the set of trees from which the procedure p translates
to a tree in the state q. This set can directly be obtained from the state
〈p, q〉.

10.3.1 Theorem: L(A) = T −1(L(M)).

Proof: To show the result, it suffices to prove that, for any t,

(A) t ∈ [[〈p, q〉]] iff [[p]](t) ∩ [[q]] 6= ∅.

The proof proceeds by induction on the height of t. The statement (A) follows
by showing the following two:

(B1) (t1, t2) ∈ [[Inf(e, q)]] iff [[e]](t1, t2) ∩ [[q]] 6= ∅ for any t1, t2

for an expression e appearing in a node rule, and

(B2) ` Inf(e, q) iff [[e]] ∩ [[q]] 6= ∅

for an expression e appearing in a leaf rule. We show only (B1) since (B2) is
similar. The proof is done by induction on the structure of e.

• When e = #, we have:

(t1, t2) ∈ [[Inf(e, q)]] ⇐⇒ q ∈ F

⇐⇒ [[e]](t1, t2) ∩ [[q]] 6= ∅.

• When e = a(e1, e2), we have:

(t1, t2) ∈ [[Inf(e, q)]]

⇐⇒ ∃(q → a(q1, q2) ∈ ∆). (t1, t2) ∈ [[Inf(e1, q1)]] ∧ (t1, t2) ∈ [[Inf(e2, q2)]]

⇐⇒ ∃(q → a(q1, q2) ∈ ∆). [[e1]](t1, t2) ∩ [[q1]] 6= ∅ ∧ [[e2]](t1, t2) ∩ [[q2]] 6= ∅
(by I.H. for (B1))

⇐⇒ [[e]](t1, t2) ∩ [[q]] 6= ∅

• When e = p(xh), we have:

(t1, t2) ∈ [[Inf(e, q)]]

⇐⇒ th ∈ [[〈p, q〉]]

⇐⇒ [[p]](th) ∩ [[q]] 6= ∅ (by I.H. for (A))

⇐⇒ [[e]](t1, t2) ∩ [[q]] 6= ∅
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10.3.2 Example: Consider the following top-down tree transducer: ({p0}, {p0},Π)
where Π consists of:

p0(a(x1, x2))→ a(p0(x1), p0(x2))

p0(b(x1, x2))→ a(p0(x1), p0(x2))

p0(b(x1, x2))→ b(p0(x1), p0(x2))

p0(#)→ #

This transducer produces a tree with a and b labels from an input tree with a
and b labels. However, from a tree with all a labels, it produces only a tree with
all a labels. Let us check the latter.

Both the input and the output types are the automaton ({q}, {q}, {q}, {q→
a(q, q)}) representing the set of trees with all a labels. What we do first is to
take the complement of the output automaton. We obtain, for example, the
automaton ({q0, q1}, {q0}, {q1},∆) where ∆ consists of the following.

q0 → a(q0, q1)

q0 → a(q1, q0)

q0 → b(q1, q1)

q1 → a(q1, q1)

q1 → b(q1, q1)

Intuitively, q0 accepts a tree with at least one b node and q1 accepts any tree with
a and b labels. Then, we compute an alternating tree automaton representing
the preimage of this complemented output automaton w.r.t. the transducer:
(R,R0, RF ,Φ) where

R = {〈p0, q0〉, 〈p0, q1〉}

R0 = {〈p0, q0〉}

RF = {〈p0, q1〉}

and Φ is defined by the following.

Φ(〈p0, q0〉, a) = ↓1 〈p0, q0〉∧ ↓2 〈p0, q1〉 ∨ ↓1 〈p0, q1〉∧ ↓2 〈p0, q0〉

Φ(〈p0, q0〉, b) = ↓1 〈p0, q0〉∧ ↓2 〈p0, q1〉 ∨ ↓1 〈p0, q1〉∧ ↓2 〈p0, q0〉

∨ ↓1 〈p0, q1〉∧ ↓2 〈p0, q1〉

Φ(〈p0, q1〉, a) = ↓1 〈p0, q1〉∧ ↓2 〈p0, q1〉

Φ(〈p0, q1〉, b) = ↓1 〈p0, q1〉∧ ↓2 〈p0, q1〉 ∨ ↓1 〈p0, q1〉∧ ↓2 〈p0, q1〉

This alternating tree automaton can be translated to the following nondeter-
ministic tree automaton by using the construction ATL-to-ND (Section 8.2):
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({r0, r1}, {r0}, {r1},∆′) (let r0 = {〈p0, q0〉} and r1 = {〈p0, q1〉}) where ∆′ con-
sists of the following.

r0 → a(r0, r1)

r0 → a(r1, r0)

r0 → b(r0, r1)

r0 → b(r1, r0)

r0 → b(r1, r1)

r1 → a(r1, r1)

r1 → b(r1, r1)

This automaton is disjoint with the input automaton (accepting no tree with
all a labels). Indeed, taking the product of the input automaton and the in-
ferred automaton, we obtain ({(q, r0), (q, r1)}, {(q, r0)}, {(q, r1)},∆′′) where ∆′′

consists of

(q, r0)→ a((q, r0), (q, r1))

(q, r0)→ a((q, r1), (q, r0))

(q, r1)→ a((q, r1), (q, r1))

which accepts no tree (note that (q, r1) accepts some tree but (q, r0) does not).

Notice that, when the transformation T yields at most result from any input
(in particular when it is deterministic), the set τ ′I = {t | T (t) ⊆ τO} coincides the
preimage of the output type τO, that is, T −1(τO) = {t | ∃t′ ∈ τO. t′ ∈ T (t)}.
Therefore, by using exactly the same inference algorithm above, we can con-
struct an automaton representing τ ′I from another representing τO. Then, type-
checking can be done by testing τI ⊆ τ ′I . Note that the worst-case complexity
does not change: exponential time in both cases.

10.3.3 Exercise: Confirm by using Example 10.3.2 that the above method
does not work for a transducer that may yield multiple results from an input.

10.3.4 Example: Let us typecheck the example used in Section 10.2. The in-
put type is an automaton representing T = {a(t,#) | t is any tree with all a labels}
and the output type is the automaton ({q}, {q}, {q}, {q → a(q, q)}) accepting
any tree with all a labels. From the tree transducer in that section and the
output automaton, we construct the alternating tree automaton (R,R0, RF ,Φ)
where

R = {〈p0, q〉, 〈p1, q〉}

R0 = {〈p0, q〉}

RF = {〈p1, q〉}
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and Φ is defined by:

Φ(〈p0, q〉, a)→↓1 〈p1, q〉∧ ↓1 〈p1, q〉

Φ(〈p1, q〉, a)→↓1 〈p1, q〉∧ ↓2 〈p1, q〉

This alternating tree automaton can be translated toM = (Q, I, F,∆) where

Q = {∅, {〈p0, q〉}, {〈p1, q〉}}

I = {{〈p0, q〉}}

F = {∅, {〈p1, q〉}}

and ∆ consists of:

∅ → a(∅, ∅)

{〈p0, q〉} → a({〈p1, q〉}, ∅)

{〈p1, q〉} → a({〈p1, q〉}, {〈p1, q〉})

This automaton in fact represents the set of all non-leaf trees only with a labels.
We can thus easily see that T ⊆ L(M).

10.3.5 Exercise: By using Theorem 10.3.1, prove that a macro tree transducer
cannot express the transformation that returns true if the give tree has identical
subtrees and false otherwise.

10.3.6 Exercise: We can extend the above typechecking algorithm for macro
tree transducers by taking a tuple 〈p, q, q1, . . . , qk〉 as a state representing the set
of inputs from which the procedure p translates to a result that conforms to the
state q, assuming that k parameters conform to q1, . . . , qk respectively. Observe
that the tree automaton for the output type must be bottom-up deterministic.
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transducers [31] and macro forest transducers [80]. In the relation to XML,
exact typechecking started with forward-inference-based techniques, treating
relatively simple transformation languages [70, 67, 79]. A backward inference
technique has first been used for XML typechecking by Milo, Suciu, and Vianu
in their seminal work on k-pebble tree transducers [68]. Then, Tozawa has
proposed exact typechecking for a subset of XSLT based on alternating tree
automata [86]; this chapter adopts his style of formalization. Maneth, Perst,
Berlea, and Seidl [65] have shown a typechecking method for a non-trivial tree
transformation language TL by decomposition to macro tree transducers, whose
typechecking is already known. As macro tree transducers appear to be a
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promising model that is simple yet expressive, some efforts have been made to-
wards practically usable typechecking [66, 40]. A typechecking technique treat-
ing equality on leaf values can be found in [3] and one treating high-level tree
transducers in [87].





Chapter 11

Path Expressions and

Tree-Walking Automata

We have already seen pattern matching as an approach to specifying subtree
extraction (Chapter 4). In this chapter, we learn an alternative approach called
path expressions. While patterns use structural constraints to point to target
subtrees, path expressions use “navigation,” which specifies a sequence of move-
ments on the tree and checks on the traversed nodes. In both frameworks, the
user writes requirements to the local properties (i.e., the names) of nodes as
well as the positional relationship among them. A critical difference lies what
they specify for the nodes that the user does not mention. Patterns regard such
nodes as absence, whereas paths don’t care their presence. Since, in practice,
most nodes are irrelevant in subtree extraction, paths are often more useful.
However, as we will see soon, path expressions are theoretically less expressive
(they cannot express all regular tree languages) unless enough extension is done.

In this chapter, we first review path expressions used in actual XML pro-
cessing and then see their refinement called caterpillar expressions. After this,
we study their corresponding automata formalism called tree-walking automata
and compare their expressiveness with tree automata.

11.1 Path Expressions

Although path expressions can be found in a variety of styles, the basic idea is
to match a node such that, from the “current” node to the matched node, there
is a “path” conforming to the given path expression. When there are multiple
matching nodes, we usually take all of them.

The main differences among styles lies in what paths are allowed. A path is,
roughly, a sequence consisting of either movements or tests on nodes. In each
movement, we specify which direction to go, which we call axis. For example,
some styles allow only going to predecessor nodes—called forward axis—while
other allow also going to ancestor nodes—called backward axis. There are also
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other axes for following and preceding siblings, and so on. Tests on nodes
can be local or global. A local one includes the node’s label, whether the
node is root, and so forth. A typical global one is a path expression itself—
whether a specified node exists or not with respect to the present node. Path
expressions containing themselves as node tests are often called conjunctive path
expressions. In addition to these, various styles of path expressions differ in what
path languages to allow. Simple styles allow only a single path to be specified,
whereas others allow regular languages of paths.

11.1.1 XPath

XPath is a framework of path expressions standardized in W3C and nowadays
widely used in various languages and systems. Let us see below some examples
in XPath, where we take the family tree in Figure 2.1 as the input and some
person node as the current node.

children/person a person subnode of a children subnode (of the
current node)

.//person/name a name subnode of a person predecessor

../../spouse a spouse subnode of the grandparent node

Here, a label like children denotes the test whether the current node has that
label. The axes for moving to a child, an ancestor, and a parent are written by
/, //, and ... “Not moving” (or staying) is also an axis and written .. Slightly
verbose notations are used for going to siblings:

following-sibling::person a person right sibling
preceding-sibling::person a person left sibling

Here are some uses of path expressions as node tests, written in square brackets.

children/person[gender/male]

a children node’s person subnode that has a gender subnode with a
male subnode

children/person[gender/male and spouse]

similar to the previous except a spouse subnode to additionally be re-
quired in the person

Note that the last example above contains an and in the test; other logical
connectives or and not can also be used.

Regular expression paths An XPath expression only specifies a single path.
However, it is easy to extend it so as to specify a set of paths by means of regular
expressions. Such path expressions are usually called regular expression paths.
An example is:

(children/person)* The nodes on the path from the current node to the
matched node have labels children and person al-
ternatingly.
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11.1.2 Caterpillar Expressions

This section presents a formalism of regular expression paths called caterpillar
expressions. (The name stems from the analogy that this insect can crawl on a
tree in any direction.) It was first proposed by Brüggemann-Klein and Wood as
an alternative to XPath and has a direct relationship to tree-walking automata,
thus forming a basis for theoretical analysis on expressiveness and algorithmics
of path expressions. While caterpillar expressions were proposed originally for
unranked trees, we present a variant that walks on binary trees for the sake of
smooth transition to the automata framework.

Let Σ# be Σ∪{#}, ranged over by a. A caterpillar expression e is a regular
expression where each symbol is a caterpillar atom c defined as follows.

c ::= up move up
1 move to the first child
2 move to the second child
a “is its label a?”
isRoot “is it the root?”
is1 “is it a first child?”
is2 “is it a second child?”

The first three are movements while the rest are node tests. We call a sequence
of caterpillar atoms caterpillar path.

Let a (binary) tree t given. A sequence π1 . . . πn of nodes each from nodes(t)
belongs to a caterpillar path c1 . . . cn if, for i = 1, . . . , n− 1,

• if ci = up, then πi+1j = πi for some j = 1, 2,

• if ci = 1, then πi+1 = πi1,

• if ci = 2, then πi+1 = πi2,

• if ci = a, then πi+1 = πi and labelt(πi) = a,

• if ci = isRoot, then πi+1 = πi = ε,

• if ci = is1, then πi+1 = πi = π1 for some π,

• if ci = is2, then πi+1 = πi = π2 for some π,

Since a node is a leaf if and only if its label is #, we already have the test
whether the current node is a leaf or a parent.1 Note also that, since each node
of a binary tree either has two subnodes or is a leaf, the same test is enough for
checking that either child exists. A sequence of nodes belongs to a caterpillar
expression e if the sequence belongs to a caterpillar path generated by e. A
node π matches a caterpillar expression e if there is a sequence π1 . . . πn of
nodes belonging to e where π1 = ε and πn = π.

1In the original proposal, since a leaf can have an arbitrary label, it explicitly supports the

leaf-or-parent test.
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Some of XPath examples seen in the last section can be expressed by caterpil-
lar expressions. However, since the previous examples were on unranked trees,
we need to adjust the up and the down axes. Let us define

Xup = (is2 up)
∗
is1 up

Xdown = Σ 1 (Σ 2)∗.

(Σ in these expressions stands for a1 | . . . | an where Σ = {a1, . . . , an}.) That
is, Xup keeps going up, in a binary tree, as long as the visited node is a second
child, and then goes up once more if the node is a first child. The expression
Xdown reverses these movements: it first goes down once to the first child if the
node is a parent, and then repeatedly goes down taking the second child if the
node is a parent. By using these two expressions, we can represent previous
XPath expressions in the following way.

../../spouse ⇒ Xup Xup Xdown spouse

(children/person)* ⇒ (Xdown children Xdown person)
∗

following-sibling::person ⇒ (Σ 2)
+
person

Note that there is no obvious way of encoding conjunctive path expressions. In-
deed, a theoretical result tells that it is fundamentally impossible (Section 11.2.3).

We conclude this section by showing an amusing example that starts from
the root, traverses every node, and returns to the root.

(1∗ # (is2 up)
∗

is1 up 2)
∗

(is2 up)
∗

That is, if the current node is a parent, then we first go all the way down by
taking the first child until the leaf. From there, we go left-up repeatedly (this
can happen only when we didn’t go down in the last step) and then go right-up
once. We iterate these until we reach the right-most leaf and finally go straight
back to the root.

11.2 Tree-Walking Automata

Tree-walking automata (TWA) are a finite-state machine model directly corre-
sponding to caterpillar expressions. They move up and down in a binary tree,
changing states based on the kind of the current node and the current state.

11.2.1 Definitions

Let a set K of node kinds be Σ# × {root, 1, 2} and ranged over by k. A tree-
walking automaton (TWA) is a quadruple A = (Q, I, F, δ) where Q and I are as
usual,

• F is a set of pairs from Q×K, and2

2A usual definition of tree-walking automata does not have node tests in final states.

However, these are needed for encoding caterpillar expressions since they may perform node

tests in the end.
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• δ is a set of transition rules of the form

q1
k,d
−−→ q2

where q1, q2 ∈ Q, k ∈ K, and d ∈ {up, 1, 2}.

For a binary tree t, we define the kind of a node π in it as follows:

κt(π) = (labelt(π), h)

where h =







root if π = ε
1 if π = π′1 for some π′

2 if π = π′2 for some π′

A sequence (π1, q1) . . . (πn, qn) is a run of a tree walking automaton (Q, I, F, δ)
on a binary tree t if πi ∈ nodes(t) for each i = 1, . . . , n and

• qi
κt(πi),up
−−−−−−→ qi+1 ∈ δ with πi+1j = πi for some j = 1, 2,

• qi
κt(πi),1
−−−−−→ qi+1 ∈ δ with πi+1 = πi1, or

• qi
κt(πi),2
−−−−−→ qi+1 ∈ δ with πi+1 = πi2.

for each i = 1, . . . , n−1. That is, the automaton starts from node π1 in state q1
and finishes at node πn in state qn where each step makes a movement according
to a transition rule that matches the node kind. A run (π1, q1) . . . (πn, qn) is
successful when π1 = ε, q1 ∈ I, and (qn, κt(πn)) ∈ F . In this case, the node πn
is matched by the automaton. When πn is the root, we say that the whole tree
t is accepted by the automaton. We define the language L(A) of a TWA A to be
{t | A accepts t}. Let TWA be the class of languages accepted by tree-walking
automata.

It is quite clear that caterpillar expressions and tree-walking automata are
equivalent notions. The only part that needs a care is that a test of node kind
done on a transition or at a final state in a tree-walking automaton corresponds
to a consecutive sequence of tests on the same node done in a caterpillar ex-
pression.

11.2.1 Exercise: Write down conversions between caterpillar expressions and
tree walking automata.

11.2.2 Expressiveness

Since we have been considering path expressions as an alternative to patterns,
a question will naturally arise on relationship between the expressivenesses of
tree-walking automata and tree automata. The bottom line is that the former
are strictly less expressive. This can be proved by showing (1) TWA ⊆ ND and
(2) a counterexample against ND ⊆ TWA. The first part is easier and covered
in this section. The second part, on the other hand, is much more difficult and
the details cannot be presented in this book; in fact, it was a long-standing
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problem that had not been proved for several decades until 2004 by Bojańczyk
and Colcombat.

To show TWA ⊆ ND, it suffices to show a construction of a nondetermin-
istic tree automaton from a tree-walking automaton. It is possible to directly
do so, but we instead show a construction of an alternating tree automaton
defined in Chapter 8, from which we already know how to construct a normal
tree automaton.

Before our general discussion, let us see first an example for an intuitive
understanding. Figure 11.1 depicts a tree and a series of movements by a tree-
walking automaton with the indicated state transitions. That is, the automaton
starts from the root π0 in q0 and moves to the left child π1 in q′0. Then, it walks
around the nodes below π1 with some state transitions, after which it goes back
to π1 in q′1 and then to the root π0 in q1. Then, the automaton moves to the
right child, walks around the nodes below it, and returns to the root in q2.
Finally, it moves again to the left child π1 in q′2 and then immediately goes back
to the root in q3.

To analyze complex state transitions of tree-walking automata, a useful con-
cept is tour. A tour from a node π is a run starting from π, walking around the
nodes below π, and ends at π. More formally, a tour from π is a run of the form

(π1, q1) . . . (πn, qn)

where π1 = πn = π and, for each i = 2, . . . , n− 1, we have π < πi, i.e., πi is a
strict descendant of π. (Note that n must be an odd number from the definition
of runs.) In our example, the tours from the root π0 are

(π0, q0)(π1, q
′
0) . . . (π1, q

′
1)(π0, q1)

(π0, q1) . . . (π0, q2)

(π0, q2) . . . (π0, q3)

and those from the left child π1 are

(π1, q
′
0) . . . (π1, q

′
1)

(π1, q
′
2).

Note that, in the above, the set of tours from the root forms the entire run on
the tree. That is, the first tour starts in an initial state and ends in a state
from which the next tour starts, and so on; then, the last tour ends in a final
state. Of course, it is not the case for the tours from non-root nodes. It is also
worth mentioning that a tour can be a singleton run, i.e., a run of length 1, as
in the second tour from π1 above. It happens when the automaton does not
walk around the subtree at all. In particular, a tour from a leaf node is always
a singleton run.

Now, we construct an alternating tree automaton from this tree-walking
automaton in the following way. We generate each of its states as a pair of
states from the tree-walking automaton. In our example, one of the generated
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Figure 11.1: TWA transitions

states is the pair 〈q0, q1〉. This intuitively means that it accepts a node π such
that there is a tour from π starting in q0 and ending in q1:

(π, q0) . . . (π, q1)

We also generate other states including

〈q1, q2〉 〈q2, q3〉 〈q
′
0, q

′
1〉 〈q

′
2, q

′
2〉

whose intuitive meanings would similarly be understood. Next, we need to form
transitions among such states. The key observation is that, when there is a tour,
it must be either

1. a run that makes first a left-down move, then a sub-tour from the left
child, and finally an up move to the original node,

2. a run that makes first a right-down move, then a sub-tour from the left
child, and finally an up move to the original node, or

3. a singleton run.

In our example, the states 〈q0, q1〉 and 〈q2, q3〉 fall into the first kind, the state
〈q1, q2〉 into the second, and the state 〈q′2, q

′
2〉 into the third (the state 〈q′0, q

′
1〉

is unclear from the figure). Note then that, for the first kind of tour, if the
current state of the alternating automaton has a transition that corresponds
to the (first) left-down move and the (last) up move, then the sub-tour in the
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middle will be taken care of by another state. Thus, if the TWA in the figure
has the transitions

q0
k,1
−−→ q′0 q′1

k′,up
−−−→ q1

(for some node kinds k, k′), then we add the formula

↓1 〈q
′
0, q

′
1〉

to the transition function of the alternating automaton from the state 〈q0, q1〉 in
order to constrain the left child. We can similarly form transitions corresponding
to the second kind of tour, e.g., if the TWA has

q1
k,2
−−→ q′′1 q′′2

k′,up
−−−→ q2

then we add the formula
↓2 〈q

′′
1 , q

′′
2 〉

to the transition from 〈q1, q2〉. The third kind of tour imposes no constraint on
the node and therefore we need no corresponding transition.

A slight complication is that, compared to TWA, transitions of an alternating
automaton can perform a limited form of node tests and therefore we need a
little care in order not to lose information during the construction. For example,
from the set of pairs of TWA transitions like

q0
k,1
−−→ q′0 q′1

k′,up
−−−→ q1

how can we preserve, in an alternating automaton, the information that the
kind of the source node must match k and that of the left destination node
must match k′? (Note that the source node kind contains not only the label but
also the root-or-not flag, which an alternating automaton cannot examine.) A
trick to solve this problem is to augment each state of the alternating automaton
with a node kind. The details will be shown as a formal proof.

11.2.2 Theorem: TWA ⊆ ND.

Proof: Give a TWA A = (Q, I, F, δ), construct (R,RI , RF ,Φ) where:

R = K ×Q×Q

RI =

{

〈k, q1, q2〉 ∧ 〈k, q2, q3〉 ∧ . . . ∧ 〈k, qn−1, qn〉 |
k ∈ Σ# × {root}, q1 ∈ I, q2, . . . , qn−1 ∈ Q, 〈qn, k〉 ∈ F

}

RF = {〈k, q, q〉 | k ∈ {#} × {root, 1, 2}}

Φ(〈k, q, q′〉, a) =



























∨

{↓1 〈k1, q1, q
′
1〉 | q

k,1
−−→ q1, q

′
1
k1,up
−−−→ q′ ∈ δ}

∨
∨

{↓2 〈k2, q2, q
′
2〉) | q

k,2
−−→ q2, q

′
2
k2,up
−−−→ q′ ∈ δ}

if k ∈ {a} × {root, 1, 2}

⊥ otherwise
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In fact, the above automaton has a syntax error in the initial states: conjunction
of states is not allowed there. Therefore we instead construct the alternating
tree automaton B = (R ∪R′, RI ∪R

′, R ∪R′
F ,Φ ∪ Φ′) where:

R′ = {〈k, q1, . . . , qn〉 | k ∈ Σ# × {root},
q1 ∈ I, q2, . . . , qn−1 ∈ Q, 〈qn, k〉 ∈ F}

R′
F = {〈k, q1, . . . , qn〉 | 〈k, q1, q2〉, . . . , 〈k, qn−1, qn〉 ∈ RF }

Φ′(〈k, q1, . . . , qn〉, a) =















Φ(〈k, q1, q2〉, a) ∧ . . . ∧ Φ(〈k, qn−1, qn〉, a)
if k ∈ {a} × {root, 1, 2}

⊥ otherwise

To prove that t ∈ L(A)⇔ t ∈ L(B), it suffices to show both that

there is a tour (π, q) . . . (π, q′) in A on t if and only if B accepts
subtreet(π) at 〈κt(π), q, q′〉.

and that

there are tours
(π, q1) . . . (π, q2)
. . .
(π, qn−1) . . . (π, qn)

in A on t if and only if B accepts subtreet(π) at

〈κt(π), q1, . . . , qn〉.

The proof can be done by induction on the structure of π. �

11.2.3 Exercise: Complete the proof of Theorem 11.2.2

As mentioned, the converse does not hold and therefore the inclusion is strict.
The proof is very difficult.

11.2.4 Theorem [Bojańczyk and Colcombat, 2004]: TWA ( ND.

11.2.3 Variations

Deterministic Tree-Walking Automata

A TWA (Q, I, F, δ) is deterministic if

• I is a singleton and

• whenever q1
k,d
−−→ q2, q1

k,d′

−−→ q′2 ∈ δ, we have d = d′ and q2 = q′2.

Intuitively, for any tree, there is only a single way of running from the root
with an initial state. We write DTWA for the class of languages accepted by
deterministic tree-walking automata.

It has also been proved by Bojańczyk and Colcombat that deterministic
TWA are strictly less expressive than nondeterministic ones. The proof of this
property is also complex.

11.2.5 Theorem [Bojańczyk and Colcombat, 2004]: DTWA ( TWA.
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Alternating Tree-Walking Automata

In Section 11.1.1, we have seen examples of using path expressions themselves as
node tests and discussed that this cannot be expressed by caterpillar expressions
or, equivalently, by TWA. A direct way of allowing such node tests is to extend
TWA with conjunctions. Intuitively, the automaton walks not along a single-
threaded path, but along a multi-threaded “path” that forks at some point from
which all the branches must succeed.

Formally, an alternating tree-walking automaton (ATWA) is a quadruple
(Q, I, F, δ) where Q, I, and F are the same as in TWA and δ is a set of sets of
transition rules of the form

q1
k,d
−−→ q2

where q1, q2 ∈ Q, k ∈ K, and d ∈ {up, 1, 2}. Given an ATWA, a tree where
each node is labeled a pair of the form (π, q) is a run if, for each intermediate
node that is labeled (π, q) and whose children are labeled (π1, q1), . . . , (πn, qn),
there is a set of transitions

q
κt(π),d1
−−−−−→ q1

. . .

q
κt(π),dn
−−−−−→ qn

where each directions di matches the positional relationship between π and πi.
A run is successful if the root is labeled (ε, q) with q ∈ I and every leaf is
labeled (ε, q) and has k with (q, k) ∈ F . An ATWA accepts a tree when there
is a successful run and we write ATWA be the class of languages accepted by
ATWA.

It is rather easy to show that ATWA have at least the expressive power of
FTA since each FTA transition q → a(q1, q2) can (roughly) be considered to

be the conjunction of two ATWA transitions q
k,1
−−→ q2 and q

k,2
−−→ q2 for an

appropriate k. Note that, for this encoding, ATWA do not need the ability to
move up.

11.2.6 Theorem: ND ⊆ ATWA.

It is also known that the converse also holds. In other words, the backward
axis does not increase the expressiveness of ATWA. The proof is omitted here
and can be found in, e.g., [83].

11.2.7 Theorem: ATWA ⊆ ND.

11.3 Bibliographic Notes

The specification of XPath is available in [21]. Regular expression paths have
been proposed by database researchers [1, 16, 25]. Caterpillar expressions are
proposed by Brüggemann-Klein and Wood [14]. Their paper presents caterpillar
automata, but, in fact, this notion is identical to tree-walking automata. An
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extension of path expressions has been proposed that has the same expressive
power as regular expression patterns with one variable [71].

Tree-walking automata were first introduced by Aho and Ullman [2]. In the
initial formulation, automata do not have access to node kinds. It is known
that such automata are incapable of systematically traversing all the nodes of
a tree as in Section 11.1.2. For such automata, strict weakness relative to tree
automata was shown by Kamimura and Slutzki [55]. With the addition of the
access to node kinds, the same property was proved by Bojańczyk and Colcom-
bet [8]. The same authors also proved that tree-walking automata cannot be
determinized [7]. Equivalence between tree-walking automata and their alter-
nating variation is shown by Slutzki [83].

As a separate line of work, extensive investigations have been made on ex-
pressiveness and complexity properties of various fragments of XPath. A com-
prehensive survey can be found in [4].





Chapter 12

Ambiguity

As introduced in Chapter 2, ambiguity refers to the property that regular ex-
pressions or patterns have multiple possibilities of matching. Ambiguity can
make the behavior of the program harder to understand and can actually be a
programming error. Therefore it is sometimes useful to report such an ambiguity
to the user.

When it comes to ask what exactly we mean by ambiguity, there is no single
consensus. In Chapter, we review three different definitions. Two, called strong
and weak ambiguities, concern how a regular expression matches an input. The
third, called binding-ambiguity, concerns how a pattern yields bindings from an
input. We will study how these notions are related each other and how these
can be checked algorithmically.

Caveat: In this chapter, we concentrate on regular expressions and patterns
on strings rather trees for highlighting the essence of ambiguity. Extending for
the case of trees is routine and left for exercises.

12.1 Ambiguities for Regular Expressions

In this section, we study what strong and weak ambiguities are and how these
can be decided by using a checking algorithm for ambiguity for automata.

12.1.1 Definitions

First of all, ambiguity arises when a regular expression has several occurrences
of the same symbol. Therefore we need to be able to distinguish between these
occurrences. Let Σ̃ be the set of elaborated symbols, written by a(i), where a ∈ Σ
and i is an integer. We use s̃ to range over elaborated strings from Σ̃∗ and s
over strings from Σ∗. When s is the string obtained after removing all the
integers from s̃, we say that s̃ is an elaboration of s and s is the unelaboration
of s̃; we write unelab(s̃) for such s. Let r range over regular expressions over Σ̃

127
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where every occurrence of symbol is given a unique integer, e.g., a(1)∗b(2)a(3)∗.
Throughout this section, we only consider such regular expressions.

We define strong ambiguity in terms of the derivation relation s in r given
by the following set of rules (which is much like the rules for the conformance
relation in Section 2.2).

ε in ε
T-Eps

a in a(i)
T-Sym

s in r1

s in r1 | r2
T-Alt1

s in r2

s in r1 | r2
T-Alt2

s1 in r1 s2 in r2

s1s2 in r1r2
T-Cat

si in r 1 ≤ i ≤ n

s1 . . . sn in r
∗ T-Rep

Then, a regular expression r is strongly unambiguous if, for any string s, there
is at most one derivation of s in r.

12.1.1 Example: The regular expression r12.1.1 = (a(1)∗)
∗

is strongly am-
biguous since there are at least two derivations of aa in r12.1.1.

a in a(1)

a in a(1)∗

a in a(1)

a in a(1)∗

aa in (a(1)∗)
∗

a in a(1) a in a(1)

aa in a(1)∗ ε in a(1)∗

aa in (a(1)∗)
∗

12.1.2 Example: The regular expression r12.1.2 = a(1) | a(2) is also strongly
ambiguous since there are at least two derivations of a in r12.1.2.

a in a(1)

a in a(1) | a(2)

a in a(2)

a in a(1) | a(2)

Note that elaboration of the regular expression makes these two derivations
distinct.

Let the language L(r) ⊆ Σ̃∗ of a regular expression r be defined in the
standard way; we also say that r generates an element of L(r). Note that s in r
if and only if there is a string s̃ ∈ L(r) such that s = unelab(s̃). Then, r is
weakly unambiguous if r generates at most one elaboration of s for any string s.
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12.1.3 Example: The regular expression r12.1.2 in Example 12.1.2 is weakly
unambiguous since it generates only strings of the form a(1) . . . a(1). The regular
expression r12.1.1 in Example 12.1.1 is weakly ambiguous since it generates a(1)

and a(2).

12.1.4 Example: The regular expression r12.1.4 = (a(1) | a(2)b(3))(b(4) | ε) is
strongly ambiguous since there are two derivations for ab in r12.1.4:

a in a(1)

ab in (a(1) | a(2)b(3))

b in b(4)

b in (b(4) | ε)

ab in (a(1) | a(2)b(3))(b(4) | ε)

a in a(2) b in b(3)

ab in a(2)b(3)

ab in (a(1) | a(2)b(3))

ε in ε

ε in (b(4) | ε)

ab in (a(1) | a(2)b(3))(b(4) | ε)

The regular expression is also weakly ambiguous since it generates a(1)b(4) and
a(2)b(3).

As in Example 12.1.4, for a derivation of s in r, the concatenation (from left
to right) of the elaborated symbols appearing in the leaves coincides an s’s elab-
oration generated by r. Therefore, if r generates two different elaborations of s,
then the derivations corresponding to these must be different. This observation
leads to the following proposition.

12.1.5 Proposition: If a regular expression r is strongly unambiguous, then
it is also weakly unambiguous.

The converse does not hold as Example 12.1.1 is a counterexample.

Given a (string) automaton A = (Q, I, F, δ), a path is a sequence q1, . . . , qn
of states from Q such that qi

ai−→ qi+1 ∈ δ for each i = 1, . . . , n− 1. Such a path
accepts s when s = a1 . . . an−1. Then, a automaton is unambiguous if, for any
string s ∈ Σ∗, there is at most one path accepting s.

12.1.6 Example: The following automaton

///.-,()*+ a //

a

��

/.-,()*+�������� b ///.-,()*+��������
/.-,()*+

b

??��������

is ambiguous since there are two paths accepting ab.

The following proposition follows obviously.

12.1.7 Proposition: If a automaton is deterministic, then it is also unambigu-
ous.

The converse does not hold as the following shows a counterexample.
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12.1.8 Example: The automaton

///.-,()*+ a //

a

��?
??

??
??

?
/.-,()*+ b ///.-,()*+��������
/.-,()*+

c

??��������

is nondeterministic yet unambiguous.

12.1.2 Glushkov Automata and Star Normal Form

The next question that we are interested in is the relationship among strong
ambiguity, weak ambiguity, and ambiguity for automata. The key concepts
connecting these are Glushkov automata and star normal form.

For an (elaborated) regular expression r, we define the following.

pos(r) = {a(i) | s̃a(i)s̃′ ∈ L(r)}
first(r) = {a(i) | a(i)s̃ ∈ L(r)}
last(r) = {a(i) | s̃a(i) ∈ L(r)}
follow(r, a(i)) = {b(j) | s̃a(i)b(j)s̃′ ∈ L(r)}

Intuitively, these sets contain the elaborated symbols appearing in r’s words,
those at the beginning, those at the end, and those just after a(i), respectively.
We can easily compute these sets from the given regular expression.

12.1.9 Exercise: Give an algorithm for computing these sets.

The Glushkov automaton Mr of a regular expression r is (Q∪{qI}, {qI}, F, δ)
where

Q = pos(r)
qI 6∈ Q

F =

{

last(r) ∪ {qI} ε ∈ L(r)
last(r) ε 6∈ L(r)

δ = {qI
b
−→ b(j) | b(j) ∈ first(r)}

∪ {a(i) b
−→ b(j) | a(i) ∈ pos(e), b(j) ∈ follow(r, a(i))}.

That is, the automaton Mr has r’s elaborated symbols as states in addition to
a fresh state qI used as an initial state. If the automaton reads a symbol b in
the state qI , then it takes one of r’s first elaborated symbol bj as the state to
transit. If Mr reads b in a state a(i), then it takes, as the next state, one of
r’s elaborated symbol b(j) that follows after a(i). Mr halts in a last elaborated
symbol bj or in qI in case where e allows the empty sequence.

12.1.10 Example: Let r12.1.10 = (a(1)∗b(2)
∗
)
∗
. Then, pos(r12.1.10) = first(r12.1.10) =

last(r12.1.10) = follow(r12.1.10, a
(1)) = follow(r12.1.10, b

(2)) = {a(1), b(2)}.
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The automaton Mr12.1.10
is as follows.

// ?>=<89:;qI a //

b

&&ONMLHIJKa(1)

a

II

b

II
GFED@ABC?>=<89:;b(2)a

oo

b

bb

The above procedure constructs an automaton in a way that preserves not
only the language of the regular expression but also its ambiguity. More pre-
cisely, the regular expression is weakly unambiguous iff its Glushkov automaton
is unambiguous. This property can easily be obtained from the fact that there
is one-to-one correspondence between a word in the regular expression and an
accepting path in the automaton.

12.1.11 Lemma: a1
(i1) . . . an

(in) ∈ L(r) iff there is a path qIa1
(i1) . . . an

(in)

from an initial state to a final state.

12.1.12 Exercise: Prove Lemma 12.1.11.

12.1.13 Corollary: Mr accepts s iff s in r. Moreover, r is weakly unambigu-
ous iff Mr is unambiguous.

12.1.14 Example: The regular expression r12.1.10 in Example 12.1.10 is weakly
unambiguous and Mr12.1.10

is also unambiguous.

12.1.15 Exercise: Construct the Glushkov automaton of the regular expres-
sion r12.1.4 in Example 12.1.4 and show that it is ambiguous.

By the property shown above, we can reduce the weak ambiguity of a regular
expression to the ambiguity of an automaton. Next, we reduce strong ambiguity
to weak ambiguity.

A regular expression r is in the star normal form if, for every r’s subexpres-
sion of the form d∗, the following condition (SNF condition) holds.

follow(d, last(d)) ∩ first(d) = ∅

Here, we generalize the definition of follow so that follow(r, S) = ∪{follow(r, a(i)) |
a(i) ∈ S} for a set S of elaborated symbols. The intuition behind the star nor-
mal form is that, when a subexpression d∗ breaks the SNF condition, d itself is
already a repetition and therefore enclosing it by Kleene star makes it ambigu-
ous.

12.1.16 Example: The regular expression (a(1)b(2)
∗
)
∗

is in the star normal

form whereas (a(1)∗b(2)
∗
)
∗

is not.

A regular expression r is in the epsilon normal form if, for every r’s subex-
pression d, there is at most one derivation of ε in d (the ε-NF condition).
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12.1.17 Example: The regular expression a(1)∗ | b(2)
∗

is not in the epsilon nor-
mal form.

Having these two definitions of normal forms, we can describe the following
connection between strong and weak ambiguities.

12.1.18 Theorem [Brüggemann-Klein, 1996]: A regular expression r is strongly
unambiguous if and only if r is weakly unambiguous, in the star normal form,
and in the epsilon normal form.

Proof: We first prove the “if” direction by induction on the structure of r.
The cases r = ε and r = a(i) are trivial.

Case: r = r1r2

Suppose that r is strongly ambiguous. Then, there are two derivations of s in r
for a string s. But, since r1 and r2 are strongly unambiguous by the induction
hypothesis, the ambiguity arises only in how we divide s. That is, there are
s1, s2, s3 such that s = s1s2s3 and s2 6= ε with

s1s2 in r1 s3 in r2
s1 in r1 s2s3 in r2.

Therefore there are elaborations s̃1 and s̃′1 of s1, s̃2 and s̃′2 of s2, and s̃3 and s̃′3
of s3 such that

s̃1s̃2 ∈ L(r1) s̃3 ∈ L(r2)
s̃′1 ∈ L(r1) s̃′2s̃

′
3 ∈ L(r2).

Since s̃2 comes from r1 and s̃′2 from r2, these must be elaborated differently:
s̃2 6= s̃′2. This implies that different elaborations s̃1s̃2s̃3 and s̃′1s̃

′
2s̃

′
3 of s are in

r, contradicting the assumption that r is weakly unambiguous.

Case: r = r1 | r2

Similarly to the last case, suppose that r is strongly ambiguous. Then, there
are two derivations of s in r for a string s. But, since r1 and r2 are strongly
unambiguous by the induction hypothesis, the ambiguity arises only in which
choice to take. That is, we have both

s in r1 s in r2.

Therefore there are elaborations s̃ and s̃′ of s such that

s̃ ∈ L(r1) s̃′ ∈ L(r2).

Since r is in the epsilon normal form, s 6= ε and therefore s̃ 6= s̃′. Moreover, s̃
and s̃′ are distinct since these come from r1 and r2, respectively. This implies
that two different elaborations of s are in r, contradicting the assumption that
r is weakly unambiguous.



12.1. AMBIGUITIES FOR REGULAR EXPRESSIONS 133

Case: r = r1
∗

Similarly to the above cases, suppose that r is strongly ambiguous. Then, there
are two derivations of s in r for a string s. But, since r1 and r2 are strongly
unambiguous by the induction hypothesis, the ambiguity arises only in how
we divide s. That is, there are s1, . . . , sn, s

′
1, . . . , s

′
m such that s = s1 . . . sn =

s′1 . . . s
′
m where

si in r1 i = 1, . . . , n
s′i in r1 i = 1, . . . ,m
(s1, . . . , sn) 6= (s′1, . . . , s

′
m).

No si or s′i is ε since, otherwise, r1 generates ε and therefore obviously r becomes
not in the epsilon normal form. Then, there are elaborations s̃i of si and s̃′i of
s′i such that

s̃i ∈ L(r1) i = 1, . . . , n
s̃′i ∈ L(r1) i = 1, . . . ,m

From (s1, . . . , sn) 6= (s′1, . . . , s
′
m), we have that s̃1 = s̃′1, . . . , s̃k−1 = s̃′k−1 and

s̃k 6= s̃′k for some k. Without loss of generality, we can assume that s̃k = s̃′ks̃
′′

with s̃′′ 6= ε. Let l be the last elaborated symbol of s̃′k and f be the first of
s̃′′. Noting that l ∈ last(r1) and f ∈ first(r1), we conclude that s̃k = s̃′ks̃

′′

implies f ∈ follow(r1, l), that is, r1
∗ does not satisfy the SNF condition. This

contradicts that r is in the star normal form.
We next prove the converse. By Proposition 12.1.5, we only need to show

that, if r is strongly unambiguous, then r is both in the star normal form and
in the epsilon normal form. Suppose that r is strongly unambiguous but not in
one of these forms. Then, there is a subexpression d that breaks either the SNF
condition or the ε-NF condition. To reach the contradition that r is strongly
ambiguous, it suffices to show that d is strongly ambiguous. In the case that
d breaks the ε-NF condition, d is trivially strongly ambiguous by definition. In
the case that d = d′

∗
breaks the SNF condition, then

b(j) ∈ follow(d′, a(i))

for some a(i) ∈ last(d′) and b(j) ∈ first(d′). That is, there are strings sa(i) and
b(j)s′ in d′ for some s, s′. Since these imply that the Glushov automaton Md′

contains a path accepting sa(i) and one accepting b(j)s′ as well as a transition
from a(i) to b(j), it also contains a path accepting sa(i)b(j)s′, that is, d′ also
generates sa(i)b(j)s′. Therefore, there are at least two derivations of sa(i)b(j)s′ in
d′∗: . . .

sa(i) in d′ b(j)s′ in d′

sa(i)b(j)s′ in d′
∗

. . .

sa(i)b(j)s′ in d′

sa(i)b(j)s′ in d′
∗

Hence, d is strongly ambiguous. �

The star normal form and the epsilon normal form are rather easy to check.
Thus, by Theorem 12.1.18, we can reduce the check for strong ambiguity to that
for weak ambiguity.
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12.1.19 Exercise: Find algorithms to check the star normal form and the ep-
silon normal form.

12.1.3 Ambiguity Checking for Automata

Given an automaton A = (Q, I, F, δ), the following checks whether A is ambigu-
ous or not.

1. Take the self product B of A, that is, B = A×A = (Q×Q, I×I, F×F, δ′)
where

δ′ = {(q, r)→ a((q1, r1), (q2, r2)) | q → a(q1, q2), r → a(r1, r2) ∈ δ}.

2. Obtain the automaton C after eliminating the useless states from B. (See
Section 6.3.1 for useless state elimination.)

3. Answer “unambiguous” iff every state of C has the form (q, q).

12.1.20 Example: From the automaton

A12.1.20 = //?>=<89:;1 a




a
//?>=<89:;/.-,()*+2 a




the first step yields:

B12.1.20 = // GFED@ABC1, 1

a
		

a
//

a

��
a

!!C
CC

CC
CC

CC
GFED@ABC1, 2

a
		

a

��GFED@ABC2, 1

a

UU a
// GFED@ABC?>=<89:;2, 2

a

UU

(Note that the diagram of a self-product is always symmetric.) The second step
returns the same automaton C12.1.20 = B12.1.20. Thus, A12.1.20 is ambiguous
since C12.1.20 has the states (1, 2) and (2, 1).

12.1.21 Example: From the automaton

A12.1.21 = //?>=<89:;1
a,b





a
//?>=<89:;/.-,()*+2 b




the first step yields:

B12.1.21 = // GFED@ABC11

a,b





a
//

a

  A
AA

AA
AA

AA

a

��

GFED@ABC12

b




GFED@ABC21

b

TT
GFED@ABC?>=<89:;22

b

TT
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Then, the second step eliminates the states (1, 2) and (2, 1), resulting in:

C12.1.21 = // GFED@ABC11

a,b





a

  A
AA

AA
AA

AA

GFED@ABC?>=<89:;22

b

TT

Thus, A12.1.21 is unambiguous since C12.1.21 has only states of the form (q, q).

12.1.22 Theorem: The ambiguity checking algorithm returns “unambiguous”
for an automaton A if and only A is unambiguous.

Proof: Suppose that the automaton A is ambiguous. Then, there are two
paths from initial states to final states

q1, q2, . . . , qn
r1, r2, . . . , rn

both accepting a string s where qi 6= ri for some 1 ≤ i ≤ n. Therefore the
automaton B also has a path

(q1, r1), (q2, r2), . . . , (qn, rn)

from an initial state to a final state accepting s. Since (qi, ri) is in this path, this
state remains in the automaton C. Thus, the algorithm returns “ambiguous.”

Conversely, suppose the algorithm returns “ambiguous.” Then, there is a
state (q, r) in C with q 6= r. Since this states remain in C, there is, in C, a path
from an initial state to a final state passing through (q, r). Let the path accept
a string s. Then, A has two different path from initial states to final states
accepting s where one passes through q and another through r. Therefore A is
ambiguous. �

12.2 Ambiguity for Patterns

So far, we have considered two definitions of ambiguity for plain regular ex-
pressions. However, these definitions can be too restrictive if we are interested
in bindings of patterns. That is, it would be alright when a pattern (in the
nondeterministic semantics) yields a unique binding for any input even if its
underlying regular expression is weakly or strongly ambiguous. For example,
consider the pattern

((a∗)
∗

as x).

(In this section, we consider patterns as defined in Chapter 4 where labels do
not have contents.) The regular expression after removing the binder is strongly
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ambiguous. However, obviously, the pattern itself yields a unique binding for
any input—x is always bound to the whole sequence. Permitting such a harm-
less ambiguity can be important in practice. For example, for convenience of
programming, we may want to incorporate a part T of an externally provided
schema as a subexpression of pattern:

(T as x)

However, we may not have any control on the schema from the programmer’s
side. In such a case, it would be unreasonable to reject this pattern on the
ground that T is ambiguous.

So, let us define that a pattern is binding-unambiguous if it yields at most
one binding for any input. However, there is one trickiness in this definition.
Should we regard a pattern like

((a as x), a) | (a, (a as x))

as ambiguous or not? This pattern matches only the string aa and does yield
only one binding x 7→ a. However, the a in the binding comes from either the
first symbol or the second in the input. If we take the “structural view” that
these two symbols are the same, then the above pattern is unambiguous; if we
take the “physical view” that these are distinct, then the pattern is ambiguous.
In this section, we treat only the physical view since it is algorithmically simpler
and tricky cases like the above example rarely occur in practice.

12.2.1 Definitions

Let us formalize “physical” binding-ambiguity, first for patterns and then for
marking automata. For patterns, we need to define a semantics of patterns
that takes positions in input and output strings. Thus, we define the matching
relation s̃ ∈ P ⇒ Ṽ where s̃ is an elaborated string, P is a pattern (with no
contents in labels), and Ṽ is a mapping from variables to elaborated strings. We
assume that each symbol in elaborated strings is given a unique integer. The
matching relation is defined by the same set of rules as in Section 4.4 (without
pattern definitions F and priority ids I) except that rule P-Elm is replaced by
the following.

a(i) ∈ a⇒ ()

Then, a pattern P is binding-unambiguous if s̃ ∈ P ⇒ Ṽ and s̃ ∈ P ⇒ Ṽ ′ imply
Ṽ = Ṽ ′ for any s̃.

For marking automata on strings (whose definition is identical to those on
trees except that each transition has only one destination state), we define
ambiguity in terms of markings yielded from them. A marking automaton A
is marking-unambiguous if m = m′ whenever A yields successful marking runs
(r,m) and (r′,m′) on a string s. Noting that obtaining a binding for elaborated
strings has the same effect as marking substrings with variables, we can easily
prove the following.
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12.2.1 Proposition: Let P be a pattern and A be a marking automaton con-
structed from P . Then, P is binding-unambiguous iffA is marking-unambiguous.

Note that the proposition does not specify how the marking automaton is
constructed. Indeed, this property holds regardless to which automata construc-
tion is used.

12.2.2 Algorithm

Given a marking automaton A = (Q, I, F, δ,Ξ), the following checks whether A
is marking-ambiguous or not.

1. Calculate B = (Q × Q, I × I, F × F, δ′,Ξ′) where δ′ is the same as in
Section 12.1.3 and Ξ′ is as follows:

Ξ′((q, r)) = (Ξ(q),Ξ(r))

2. Obtain the automaton C after eliminating the useless states from B.

3. Answer “marking-unambiguous” iff Ξ′((q, r)) has the form (X,X) for ev-
ery state (q, r) of C.

The algorithm works quite similarly to the ambiguity checking algorithm shown
in Section 12.1.3 except for the last step, where we check how the automaton
marks each node with variables rather than how it assigns each node with states.
More precisely, the last step ensures that, for any two paths accepting the same
string, the same set of variables is assigned to each position. Thus, the following
expected property can be proved similarly to Theorem 12.1.22

12.2.2 Theorem: The marking-ambiguity checking algorithm returns “marking-
unambiguous” for an automaton A if and only A is marking-unambiguous.

12.2.3 Exercise: Prove Theorem 12.2.2.

12.2.4 Exercise: Apply the above algorithm for checking whether the follow-
ing automata are marking-ambiguous or not.

1. // WVUTPQRS1, {x}
a // GFED@ABC3, ∅

b // GFED@ABC?>=<89:;5, ∅

// GFED@ABC2, ∅
a // WVUTPQRS4, {x}

b

<<yyyyyyyyyy

2. // WVUTPQRS1, {x}
a // GFED@ABC3, ∅

b // GFED@ABC?>=<89:;5, ∅

// WVUTPQRS2, {x}
a // GFED@ABC4, ∅

b

>>|||||||||
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12.3 Bibliographic Notes

Ambiguity for string regular expressions and automata has been a classical
question [9, 11]. In [11], Brüggemann-Klein introduced the terminology of strong
and weak ambiguities with their relationship based on Glushkov automata and
star normal form. In the same paper, a checking procedure for strong ambiguity
is given as a reduction to an ambiguity checking algorithm for LR(0) grammars.
The ambiguity checking algorithm for automata presented in this chapter is a
folklore. For tree grammars, there are algorithms for weak ambiguity [56] and
for strong ambiguity [45]. A study on one-unambiguous regular expressions can
be found in [13]. Marking-ambiguity was first introduced by Hosoya, Frisch,
and Castagna as a way to ensure the uniqueness of solutions to a certain type
inference problem arising in parametric polymorphism for XML [47]. Although
the purpose was different from the present chapter, the definition was the same.



Chapter 13

Logic-based Queries

In this chapter, we revisit the question of how we express a subtree extraction
from an XML document. For answering the same question, we have already
presented two formalisms, pattern matching in Chapter 4 and path expressions
in Chapter 11. Here, we are going to introduce the third one, namely, the
first-order (predicate) logic and its extension the monadic second-order logic
(MSO). As we will see soon, one of the advantages of using logic-based queries
is that it allows a direct way of expressing retrieval conditions. That is, we do
not need to specify the structure of a whole tree (like patterns) or do not need
to navigate around (like paths); we simply need to specify logical relationships
among relevant nodes. Further, MSO has the additional advantage that it can
express any regular queries, that is, it is at least as powerful as marking tree
automata (and thus as pattern matching), defined in Chapter 5. On the other
hand, MSO can express not more than regular queries; indeed, any MSO formula
can be translated to a marking tree automaton. This means, however, that we
can use efficient execution algorithms that we have already learned in Chapter 7.

13.1 First-order Logic

When we consider a logical framework, we usually think of models on which
logic formulas are interpreted. In our setting, models are XML documents; for
simplicity, let us again take binary trees here. Then, we can say that a given
(binary) tree satisfies a certain logic formula. For example, the following tree

c

a

b

# #

c

# #

b

# a

b

# #

c

# #

139
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satisfies the formula:

∀x. (a(x)⇒ ∃y.∃z. b(y) ∧ c(z) ∧ leftchild(x, y) ∧ rightchild(x, z))

Here, the predicate a(x) means that the node x has label a; ditto for b(y)
and c(z). Also, leftchild(x, y) means that y is the left child of x; ditto for
rightchild(x, y). So the whole formula can be read “for any node with a label,
its left and right children exist with label b and c respectively.” Further, a
formula that contains free variables is interpreted with a tree and an assignment
of variables to its nodes. For example, the above tree with the following variable
assignment

{y 7→ 11, z 7→ 12}

(y and z are mapped to the left-most b node and its right sibling c node, re-
spectively) satisfies the formula

b(y) ∧ c(z) ∧ ∃x. leftchild(x, y) ∧ rightchild(x, z)

(“node y has label b, node z has label c, and there is a node x that has y as the
left child and z as the right child”). Note that the following assignment

{y 7→ 221, z 7→ 222}

(y and z are mapped to the bottom-most b node and its right sibling c node,
respectively) also satisfies the same formula. In general, for a given tree and
a given formula, there are multiple variable assignments. Thus, we can take a
logic formula as a query on a tree that yields a set of variable assignments.

Formally, the syntax of (first-order) formulas ψ is defined by the following
grammar, where x ranges over (first-order) variables.

ψ ::= Ru(x) unary relation
Rb(x1, x2) binary relation
ψ1 ∧ ψ2 conjunction
ψ1 ∨ ψ2 disjunction
ψ1 ⇒ ψ2 implication
¬ψ negation
∀x. ψ universal quantification
∃x. ψ existential quantification

As a unary relation Ru, we have each label a from Σ as well as root and leaf.
Their formal meanings are: given a node π in a tree t,

a(π)
def
⇐⇒ labelt(π) = a

root(π)
def
⇐⇒ π = ε

leaf(π)
def
⇐⇒ labelt(π) = #.

As a binary relation, we have leftchild and rightchild as already introduced above
as well as the equality =, the self-or-descendent relation ≤, and the document
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order �. Their formal meanings are: given nodes π1, π2 in a tree t,

leftchild(π1, π2)
def
⇐⇒ π2 = 1π1

rightchild(π1, π2)
def
⇐⇒ π2 = 2π1

π1 ≤ π2
def
⇐⇒ ∃π. π2 = ππ1

π1 � π2
def
⇐⇒ π2 is equal to or larger than π1 by lexicographic order on {1, 2}∗.

(The equality = means itself.) A formula ψ is interpreted in terms of a bi-
nary tree t and a function γ that maps each free variable of ψ to a node in t.
The semantics is described by the judgment of the form t, γ ` ψ, read “under
tree t and assignment γ, formula ψ is satisfied” and defined inductively by the
following rules.

t, γ ` Ru(x)
def
⇐⇒ Ru(γ(x))

t, γ ` Rb(x1, x2)
def
⇐⇒ Ru(γ(x1), γ(x2))

t, γ ` ψ1 ∧ ψ2
def
⇐⇒ t, γ ` ψ1 and t, γ ` ψ2

t, γ ` ψ1 ∨ ψ2
def
⇐⇒ t, γ ` ψ1 or t, γ ` ψ2

t, γ ` ψ1 ⇒ ψ2
def
⇐⇒ t, γ ` ψ1 implies t, γ ` ψ2

t, γ ` ¬ψ1
def
⇐⇒ not t, γ ` ψ1

t, γ ` ∀x. ψ
def
⇐⇒ for all π ∈ nodes(t), t, γ ∪ {x 7→ π} ` ψ

t, γ ` ∃x. ψ
def
⇐⇒ for some π ∈ nodes(t), t, γ ∪ {x 7→ π} ` ψ

In Chapters 4 and 11, we have introduced other formalisms for subtree ex-
traction, namely, pattern matching and path expressions. What is an advantage
of logic-based queries over these?

The most important is its ability to directly express retrieval conditions. In
patterns, we need to specify the structure of the whole tree to match even though
there are usually much more nodes irrelevant to the query than relevant ones.
Here, irrelevant nodes mean that we don’t care whether these nodes exist or not.
On the other hand, logical framework has a built-in “don’t-care” semantics in
the sense that it allows us even not to mention such nodes at all. Moreover,
when we want to extract a node from deeper places in the tree, pattern matching
require us to write a recursive definition (Section 4.2.1) whereas logic allows us
to directly jump at the subject node. For example, consider extracting all nodes
x with label a. In patterns, we need to write the following recursively defined
pattern.

X = (Any, (a[Any] as x), Any)

| (Any, ~[X], Any)

That is, the a node that we want to extract is located either somewhere at
the top level or at a deeper level through some label. Here, we assume that
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patterns are extended with the “wildcard” label ~ that matches any label and
the “wildcard” type Any that matches any value (of course, the Any type can
also be defined by using the ~ label and recursion). In logic, we only need to
write:

a(x)

Unlike patterns, we do not need to mention any nodes other than the node we
are interested in; we do not need to form a recursion to reach a node that may
be located at an arbitrarily deep position. Path expressions may seem to be
better than patterns in this sense since we only need to write the following (in
the caterpillar expression notation) for expressing the same:

(1|2)
∗
a

That is, we collect nodes with label a that are reachable from the root by
repeatedly following either the left or the right child. However, we still need a
navigation from the root, which is not necessary in logic. What concerns here
is not the visual succinctness but the number of concepts that are involved in
expressing the same condition.

Let us see next a more substantial example. Suppose that we want to build,
from an XHTML document, a table of contents that reflects the implicit struc-
ture among the heading tags, h1, h2, h3, etc. For this, we need to collect a set
of pairs of h1 node x and h2 node y such that y “belongs” to x (this set of pairs
can be viewed as a mapping from an h1 node to a set of belonging h2 nodes, by
which we can form a list of sections each with a list of subsections). To express
this query in logic, it would look like the following.

h1(x) ∧ h2(y) ∧ x � y ∧ ∀z. (h1(z) ∧ x � z ⇒ y � z)

That is, the h2 node y must come after the h1 node x and, for any h1 node z
that comes after the node x, the node y must come before z. Note that, since
XHTML headings may not appear in a flat list but can be intervened by other
tags, we need to use the document order �. As an example, in the following
fragment of document,

<body>

<h1> ... </h1>

<h2> ... </h2>

<p> <h2> ... </h2> </p>

<div> <h1> ... </h1> </div>

<h2> ... </h2>

</body>

we associate the first h1 with the first and the second h2s, but not with the last
h2 since the second h1 appears inbetween.

How can we express this example by a pattern? It is rather difficult mainly
because we need the document order; indeed, if we simplify the example so as
to consider only a flat list of heading tags, then we can write the following.
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Any, (h1[Any] as x), (^h1)[Any]*, (h2[Any] as y), Any

(Here, we introduce the notation ^h1 to match any label except h1.) Then, one
might argue that logic wins because it has the document order as a primitive.
However, as we will see in the next section, the document order itself can easily
be expressed by slightly extending the logical framework, namely, to MSO.

What about expressing the above example by a path expression? First, we
can easily extend paths by a “document order axis.” However, even with this,
it is still not possible since we need universal quantification. Path expressions,
essentially, can combine only existential conditions on nodes.

13.2 Monadic Second-order Logic

Monadic second-order logic adds to first-order logic the ability to quantify over
sets of nodes. Here, “second-order” by itself means quantification over relations
and “monadic” means that relations to be quantified can take only one argument
and are therefore sets. We present MSO interpreted under finite binary trees,
which is sometimes called weak second-order logic with two successors or WS2S
(“weak” for finite models and “two successors” for binary trees), but we prefer
to call it MSO here.

We extend the syntax of first-order logic as follows, where X ranges over
second-order variables.

ψ ::= . . .
x ∈ X variable unary relation
∀X. ψ second-order universal quantification
∃X. ψ second-order existential quantification

Accordingly, the semantics is extended so that a formula is interpreted under a
second-order variable assignment Γ (a mapping from second-order variables to
sets of nodes) in addition to a tree and a first-order assignment. We thus extend
the satisfaction judgment as t, γ,Γ ` ψ and define it by the following rules

t, γ,Γ ` x ∈ X
def
⇐⇒ γ(x) ∈ Γ(X)

t, γ,Γ ` ∀X. ψ
def
⇐⇒ for all Π ⊆ nodes(t), t, γ,Γ ∪ {X 7→ Π} ` ψ

t, γ,Γ ` ∃X. ψ
def
⇐⇒ for some Π ⊆ nodes(t), t, γ,Γ ∪ {X 7→ Π} ` ψ

plus exactly the same rules as first-order logic except that Γ is additionally
passed around.

Let us see how powerful second-order quantification is. To warm up, let us
define the relation xchild(x, y) to mean that y is a child of x in the unranked
tree (XML) view. For this, we first define the auxiliary relation xchildren(x, Y )
to mean that Y is the set of children of x:

xchildren(x, Y ) ≡ ∀y. y ∈ Y ⇔ (leftchild(x, y) ∨ ∃z. (z ∈ Y ∧ rightchild(z, y)))
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Figure 13.1: xchildren(x, Y )

This relation says that each element in Y is either the left child of x or the right
child of some other element in Y and vice versa. This is depicted in Figure 13.1.
By using xchildren, we can easily define xchild as follows.

xchild(x, y) ≡ ∃Y. (xchildren(x, Y ) ∧ y ∈ Y )

We can use xchild for, e.g., collecting all b nodes y appearing as a child of an a
node (in XML view).

∃x. xchild(x, y) ∧ a(x) ∧ b(y)

(Note here that “relation definitions” are not a part of our logical framework
but simply an informal macro notation, e.g., the use of xchild(x, y) above should
be expanded by the body of xchild in which the use of xchildren(x, Y ) should
further be expanded by the body of xchildren. This repeated expansion works
since we never define “recursive” relations.)

13.2.1 Exercise: In the definition of xchildren, if we replace the ⇔ with a ⇐,
then how does the meaning change? How about ⇒ instead of ⇐?

13.2.2 Exercise: In the same fashion as xchild, define xdescendent standing for
the self-or-descendent relation in XML view. Also, define the self-or-descendent
relation ≤ and the document order � that were primitives in first-order logic in
the previous section.

Let us conclude this section with a more substantial example from compu-
tational linguistics. In this area, we often need to query on a parse tree of a
sentence in a natural language. Figure 13.2 shows an example of a parse tree. In
such a tree, we sometimes need to find all nodes that follow after a given node
in a “proper analysis.” A proper analysis originally refers to the set of nodes
that appear at a certain moment during a parsing process of a given sentence,
but, for the present purpose, it is enough to define it by a set of nodes where
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Figure 13.2: A proper analysis

each node not in the set is either an ancestor or a descendent of a node from
this set and vice versa. Let us define such “follow in a proper analysis” relation
in MSO. First, abbreviate:

x//y ≡ xdescendents(x, y) ∧ ¬(x = y)

Then, the notion of proper analysis can be expressed by

proper analysis(A) ≡ ∀x. ¬(x ∈ A)⇔ ∃y. x ∈ A ∧ (x//y ∨ y//x)

and the “follow” relation by:

follow(x, y) ≡ ∃A. proper analysis(A) ∧ y ∈ A ∧ y ∈ A ∧ x � y

Observe that these literally translate the informal definitions given above by
logical formulas.

13.3 Regularity

As already mentioned in the beginning, MSO expresses exactly regular queries,
i.e., is equivalent to marking tree automata. This section aims at proving this
equivalence. We will show below a concrete construction of a marking tree
automaton from an MSO formula. However, the opposite direction will be left
as an exercise for the reader.

13.3.1 Canonicalization

For simplifying the presentation, we first translate a given MSO formula into a
canonical form. In this form, we elide, as usual, logical combinators expressible
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by other combinators, but further eliminate first-order variables. Each first-
order variable used in the original formula is replaced with a second-order one
and each first-order quantification or primitive relation is modified so as to
preserve the meaning.

Formally, we define the syntax of canonical (MSO) formulas by the following.

ψc ::= X ⊆ Y | Ru(X) | Rb(X,Y ) | single(X)
| ¬ψc | ψc ∧ ψ′

c | ∃X. ψc

Here, we do not have disjunction (∨), implication (⇒), and second-order uni-
versal quantification (∀X), which will be represented, as usual, by combinations
of conjunction, negation, and second-order existential quantification. We also
do not have set membership (x ∈ Y ), primitive relations on first-order variables
(Ru(x) and Rb(x, y)), and first-order quantification (∀x and ∃x). For encoding
these, we first introduce a second-order variableXx for each first-order one x. In
order to ensure that Xx refers to exactly one element as in the original formula,
we add the extra condition single(Xx) meaning that the set Xx is a singleton.
Then, assuming that Xx refers to the same element that x refers to, we replace
each use of x by Xx. Namely, a set membership x ∈ Y is replaced with a
set inclusion Xx ⊆ Y and primitive relations Ru(x) and Rb(x, y) with Ru(Xx)
and Rb(Xx, Xy). Here, we extend the semantics of Ru and Rb to work with
second-order variables in the following way: assuming Π = {π}, Π1 = {π1}, and
Π2 = {π2},

Ru(Π)
def
⇐⇒ Ru(π)

Rb(Π1,Π2)
def
⇐⇒ Rb(π1, π2).

Note that the semantics of Ru and Rb are undefined when Π, Π1, or Π2 is not
a singleton. This fact will be crucial in automata construction below.

Now, the canonicalization canon(ψ) of a formula is defined as follows.

canon(x ∈ Y ) = Xx ⊆ Y

canon(Ru(x)) = Ru(Xx)

canon(Rb(x, y)) = Rb(Xx, Xy)

canon(ψ1 ∨ ψ2) = ¬(¬canon(ψ1) ∧ ¬canon(ψ2))

canon(ψ1 ⇒ ψ2) = ¬(canon(ψ1) ∧ ¬canon(ψ2))

canon(ψ1 ∧ ψ2) = canon(ψ1) ∧ canon(ψ2)

canon(∃X. ψ) = ∃X. canon(ψ)

canon(∀X. ψ) = ¬∃X. ¬canon(ψ)

canon(∃x. ψ) = ∃Xx. single(Xx) ∧ canon(ψ)

canon(∀x. ψ) = ¬∃Xx. single(Xx) ∧ ¬canon(ψ)

Here, the translation of a first-order universal quantification can be understood
that we first transform ∀x. ψ to ¬∃x. ¬ψ and then to ¬∃Xx. single(Xx) ∧
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¬canon(ψ) (applying the translation of a first-order existential). Note that it
is incorrect to swap the order, i.e., first transform ∀x. ψ to ∀Xx. single(Xx) ∧
canon(ψ) and then to ¬∃Xx. ¬single(Xx) ∨ ¬canon(ψ), since the internal
existential in the result would always hold as a non-singleton set Xx always
exists.

A formal correctness of canonicalization can be stated as a given formula
ψ holds under first- and second-order assignments γ and Γ if and only if the
canonical formula canon(ψ) holds under the canonicalization of γ. The canon-
icalization of a first-order assignment is defined as follows.

canon({x1 7→ π1, . . . , xn 7→ πn}) = {Xx1 7→ {π1}, . . . , Xxn
7→ {πn}}

13.3.1 Lemma: t, γ,Γ ` ψ iff t, ∅,Γ ∪ canon(γ) ` canon(ψ).

Proof: By induction on the structure of ψ. �

13.3.2 Exercise: Finish the proof of Lemma 13.3.1.

Note that the above lemma does not tell whether or not canon(ψ) holds
when the variables converted from first-order variables are assigned to non-
singleton sets. In order to ensure that the canonical formula does not hold in
such a case, we add the singleton constraints on the converted variables, i.e.,

canon(ψ0) ∧
∧

x∈FV1(ψ0)

single(Xx)

where ψ0 is the original formula given to the whole translation (FV1(ψ0) is the
set of first-order free variables appearing in ψ0).

13.3.2 Automata Construction

Having a canonical formula ψc in hand, we remain to construct a marking tree
automatonM such that

t,Γ, ∅ ` ψc holds if and only ifM accepts t with marking Γ.

(Note that a mapping from variables to node sets can be viewed as a mapping
from nodes to variable sets.)

The construction is done by induction on the structure of the formula. First,
let us see the base cases.

Case: ψc = X ⊆ Y

This formula is translated to:

// GFED@ABC?>=<89:;q
∅

{Y }
{X, Y }

∅ : Σ
{Y } : Σ

{X,Y } : Σ //

��

q

q
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This depicts a marking tree automaton with a single state q and three kinds of
transitions, namely,

q → ∅ : a(q, q) q → {Y } : a(q, q) q → {X,Y } : a(q, q)

for every label a ∈ Σ. (Note that the ?>=<89:;/.-,()*+q and the q’s that the arrows are led

to are the same state; for a better readability, we avoid letting each arrow go
around.) The state q is initial and is final with a variable set either ∅, {Y }, or
{X,Y } (i.e., all (q, ∅), (q, {Y }), and (q, {X,Y }) are in the F set of the marking
tree automaton). Thus, the automaton accepts any tree and marks each node
with X whenever it also marks the same node with Y . In other words, the set
of X-marked is a subset of the set of Y -marked nodes.

Case: ψc = root(X)

This formula is translated to:

// ONMLHIJKGFED@ABCq1 {X}:Σ //

{X} ��

ONMLHIJKGFED@ABCq2 ∅:Σ //

∅ ��

q2

q2 q2

This automaton consists of two states q1 and q2. The state q2 accepts any tree
with no marking. Thus, the state q1 accepts any tree with marking X on the
root node (no matter whether it is a leaf or an intermediate node).

Case: ψc = a(X)

This formula is translated to:

// GFED@ABC?>=<89:;q {X}:a //
∅

@A
∅:Σ //

��

q

q

��

q

q

This automaton consists of a single state q with two transitions. The state
accepts any tree with no marking by always following the second transition.
However, it can also take the first transition, which accepts a node with label a
and marks it with X . Therefore, if there is exactly one node marked with X ,
then the node must be labeled a, as desired by the semantics of a(X). If there
are no node or more than one node marked with X , then the tree may or may
not be accepted, but this does not matter (recall that the semantics of a(X) is
undefined in such a case).
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Case: rightchild(X,Y )

This formula is translated to:

// ONMLHIJKGFED@ABCq1 {X}:Σ //
∅

@A
∅:Σ //

��

ONMLHIJKGFED@ABCq2 {Y }:Σ //

{Y } ��

q1

q1 q1

��

q1

q1

This automaton consists of two states q1 and q2. Again, the state q1 accepts any
tree with no marking by always following the second transition. However, when
we take the first transition, we mark the current node with X and then, at the
state q2, the right child node with Y . Note also that the automaton implements
the desired meaning when we use each of X and Y exactly once. In other cases,
the behavior of the automaton does not matter.

Case: ψc = single(X)

This formula is translated to:

// ONMLHIJKGFED@ABCq1 {X}:Σ //
{X}

@A
∅:Σ //

@A
∅:Σ //

��

ONMLHIJKGFED@ABCq2 ∅:Σ //

∅ ��

q2

q2 q2

��

q2

q1

��

q1

q2

This automaton consists of two states q1 and q2. First, the state q2 accepts any
tree with no marking. Then, the state q1 also accepts any tree but marks X on
exactly one node. Indeed, if the current tree is a leaf, then we mark it with X .
If it is an intermediate node, then we take either of three transitions. In the
first transition, we put the mark X on the current node and no mark on any
node below. In the second, we put no mark on the right subtree but continue
with the state q1 for the left subtree, that is, mark X exactly once somewhere
in this subtree. The third transition is similar except that we mark X exactly
once in the right subtree instead.

Next, let us see the inductive cases.
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Case: ψc = ¬ψ′
c

To translate this formula, we first compute a marking tree automaton from the
subformula ψ′

c. Then, notice that a marking tree automaton can be regarded
as an ordinary tree automaton whose each label is a pair of a label from Σ and
a set of variables (thus, the automaton accepts a binary tree whose each node
is already marked with a set of variables). Then, we take the complement of
this tree automaton. Note, however, that such an automaton requires multiple
leaf symbols in general (due to variable sets), whereas our definition of tree au-
tomata allows only a single symbol (#). However, this generalization is entirely
straightforward and all procedures for basic set operations can easily be adapted
accordingly.

Case: ψc = ψ′
c ∧ ψ

′′
c

Similarly to the previous case, we first compute marking tree automata from
the subformulas ψ′

c and ψ′′
c . However, we cannot simply take their intersection

since the sets of variables used in the two marking automata can be different.
To adjust them, we augment each transition in one automaton so as to allow
arbitrary extra variables that are used only in the other automaton. That is,
suppose that the two marking automata, calledM1 andM2, allow the sets Ξ1

and Ξ2 of variables. Then, whenever there is a transition in the automatonM1

q → Ξ : a(q1, q2)

we add the following transition as well

q → (Ξ ∪ Ξ′) : a(q1, q2)

for any Ξ′ such that ∅ 6⊆ Ξ′ ⊆ (Ξ2 \ Ξ1) (any variables that are only in Ξ2).
The other automaton is adjusted similarly. After this operation, regarding the
adjusted marking automata as ordinary tree automata just as before, we take
their intersection.

Case: ψc = ∃X. ψ′
c

To translate this formula, we first compute a marking tree automaton for ψ′
c

as before and then simply remove the variable X from any transition, i.e., each
transition

q → Ξ : a(q1, q2)

is replaced with the following.

q → (Ξ \ {X}) : a(q1, q2)

This operation can be understood by noticing that ψ′
c holds for a tree t under

an assignment Γ if and only if ψc holds for the same tree t under the assignment
Γ minus the mapping for the variable X .

Note that, if the originally given formula contains only first-order variables,
then the resulting marking tree automaton is linear, i.e., yields only a marking
that puts each variable on exactly one node (Section 5.1). This fact enables us
to use the efficient evaluation algorithm for marking tree automata presented
in Section 7.2.
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13.3.3 Exercise: A marking tree automaton can be translated to an MSO
formula by directly expressing the semantics of marking tree automata in MSO.
Show a concrete procedure.

13.4 Bibliographic Notes

The first attempt to bring the MSO logic to practical XML transformation has
been made in the work on the MTran language [52], though a theoretical con-
nection of MSO to tree transformation has already been made in the framework
of MSO-definable tree transducers [24]. Compilation from MSO to marking tree
automata has first been given in [85]. The MONA system [43] provides an ef-
ficient implementation of MSO based on binary decision diagrams and various
other techniques. The MSO compilation presented in this chapter was taken
from MONA manual [60] with a slight modification. Some other work proposes
XML processing based on other kinds of logic, such as Ambient Logic [18],
Sheaves Logic [90], and Context Logic [17].





Chapter 14

Unorderedness

In all the previous chapters, our discussions on the data model, schemas, au-
tomata, transformations, typechecking, and logic focus on the element structure
of XML, where ordering is significant. However, reality of XML requires also
unordered structure to be treated. This arises from two directions, namely,
XML attributes and shuffle expressions. Attributes are auxiliary data that are
associated to elements and are intrinsically unordered by data model, whereas
shuffle expressions introduce unorderedness into the ordered data model of ele-
ments. Unorderedness is relatively less studied since dealing with it is surpris-
ingly tricky. In this chapter, we briefly review previous proposals for description
mechanisms and relevant algorithmics.

14.1 Attributes

As briefly mentioned in Section 2.1, attributes are a label-string mapping as-
sociated with each element and used in almost all applications of XML. Recall
the following example there:

<person age="35" nationality="japanese">

...

</person>

Here, the person element is associated with two attributes age and nationality.
Attributes are different from elements in that attributes have no ordering and
cannot repeat the same label in the same element. Thus, the above example is
considered to be identical to:

<person nationality="japanese" age="35">

...

</person>

Also, the following

153
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<person nationality="japanese" nationality="french" age="35">

...

</person>

is an error.
What constraints do we want to impose on attributes and how can we de-

scribe them? First, the most obvious necessity is to associate each attribute
label to its value type. For this, we can introduce a notation like in the follow-
ing

person[@nationality[String], @age[String], ...]

where we list label-type pairs in front of the content type of person. (We would
also want to specify attribute values more precisely, for which we could introduce
types denoting some subsets of all strings, e.g., positive integers, but we do not
go further in this direction.) Then, we would like to express more “structural”
constraints as follows:

• optionality. For example, we may want an attribute nationality to al-
ways be present but an age to be possibly omitted.

• choice of labels. For example, we may want either an age or a date to be
present. A more complicated example would require either just an age or
all of a year, a month, and a day at the same time.

• openness, that is, allowance of an arbitrary number of arbitrary attributes
from a given range of labels. For example, we may want to allow any
attributes other than age or nationality. In real applications, we often
want to allow arbitrary attributes not in a certain name space (name
spaces are briefly introduced in Section 2.1).

How can we describe these constraints? For the first two, we are actually al-
ready able to express them thanks to union types. For example, “a mandatory
nationality and an optional age” can be described as

person[@nationality[String], @age[String], ...]

| person[@age[String], ...]

and “either just an age or all of a year, a month, and a day” as:

person[@age[String], ...]

| person[@year[String], @month[String], @day[String], ...]

At this moment, we notice that repeating the element label person is rather
awkward. Moreover, if both a nationality and an age are optional, then we
need to list up four combinations; if there are k optional attributes, then there
are 2k combinations. For more concise description, we can introduce regular-
expression-like notations for attributes. For example, the above two examples
of types are equivalently written as
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person[@nationality[String]?, @age[String], ...]

and

person[(@age[String] |

@year[String], @month[String], @day[String]), ...]

respectively. What about openness? Since we have no way to say “arbitrary
number of” or “arbitrary label from,” let us add special notations for them.
First, we introduce expressions that each denote a set of labels. We write ~ for
all labels and a for a singleton set of label a; for label sets L1 and L2, we write
(L1|L2) as their union and (L1 \L2) as their difference. Then, we write @L[T ]

∗

for a type denoting an arbitrary number of arbitrary attributes from a label set
L with value type T . Thus, the above example used in the openness can be
written:

person[@(~\age\nationality)[String]*, ...]

Note that the data model requires that the same attribute label is not repeated.
So far, we have introduced quite rich notations for constraining attributes. In

practice, it is occasionally required to further mix constraints on both attributes
and elements, for example, the following:

• attribute-dependent element types. For example, we may want an element
person to contain a sub-element visa-id if and only if the person has
an attribute nationality with a value other than japanese.

• choice of attribute or element. For example, we may want each of a
nationality and an age to be given as either an attribute or an element.

For attribute-dependent element types, we can express them by using union
types, e.g.,

person[@foreigner["japanese"], ...]

| person[@foreigner[^"japanese"], visa-id[String], ...]

(Here, assume that the type ^string denotes the set of strings except the
string.) On the other hand, we do not have yet a way to write a choice of
an attribute or an element without a potential blow-up. For example, if we
want to grant such choices to both a nationality and an age, we need to
enumerate four combinations:

person[@nationality[String], @age[String], ...]

| person[@age[String], nationality[String], ...]

| person[@nationality[String], age[String], ...]

| person[nationality[String], age[String], ...]

A solution to this problem is attribute-element constraints, adopted in the
schema language RELAX NG. In this, we can mix both attribute and element
constraints in the same expression. For example, the above can be rewritten as:
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person[(@nationality[String] | nationality[String]),

(@age[String] | age[String]), ...]

Note that each expression constrains a pair of an attribute set and an element
sequence.

14.1.1 Exercise: Formalize the syntax and semantics of attribute-element con-
straints. Use the syntactic restriction where, when two types T1 and T2 are
concatenated, these contain no common attribute label. In this semantics, in
what cases is concatenation commutative?

14.2 Shuffle Expressions

Another kind of unorderedness comes from the desire to consider some ordering
among elements to be insignificant. Typically, this kind of demand arises when
one wants to define data-oriented documents, where a sequence is often taken
as a set or a record.

If one wants to disregard all ordering among elements, then it would be sensi-
ble to take an unordered data model from the first place and equip a completely
different, non-regular-expression-based schema language. However, reality is
more complicated. For one thing, some people want some parts of a document
to be ordered but other parts of the same document to be unordered. For exam-
ple, in a document representing a “stream of records,” the top-most sequence
would be ordered and each sequence in the next-level would be unordered. For
another thing, some people want a single schema language for all purposes,
rather than different schema languages for different purposes. Shuffle expres-
sions have arisen as a compromise, by which we can allow any permutation of
elements for specified parts of document. Note here that the data model is still
ordered, but an intended meaning can be unordered.

Let us first introduce notations. We add shuffle types of the form T1&&T2

in the syntax of types. Its meaning is the set of all “interleaves” of values from
T1 and ones from T2. More formally, we add the following rule in the semantics
of types:

E ` v1 ∈ T1 E ` v2 ∈ T2 v ∈ interleave(v1, v2)

E ` v ∈ T1&&T2
T-Shu

Here, interleave(v1, v2) is the set of values v where v contains v1 as a (pos-
sibly non-consecutive) sub-sequence and taking away v1 from v yields v2. For
example, interleave((a[], b[]), (c[], d[])) contains all the following values:

a[], b[], c[], d[] a[], c[], b[], d[] a[], c[], d[], b[]
c[], a[], b[], d[] c[], a[], d[], b[] c[], d[], a[], b[]

Note that the operator && is commutative. As a concrete example, we can
express, by using shuffle types, a list of records each of which has a mandatory
name, an optional address, and any number of emails, in any order:
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List = list[Record*]

Record = record[Name && Address? && Email*]

Name = name[first[String], last[String]]

Address = address[String]

Email = email[String]

In this example, the top list element contains an ordered sequence of records,
each of which contains an unordered list of fields, of which a name contains an
ordered pair. It is important that shuffle expressions by themselves do not
increase the expressive power of the schema model, but only allow an exponen-
tially more concise description. For example, the type a[] && b[] && c[] can
be rewritten to the non-shuffle type

a[],b[],c[],d[] | a[],c[],b[],d[] | a[],c[],d[],b[]

| c[],a[],b[],d[] | c[],a[],d[],b[] | c[],d[],a[],b[]

with a blow-up.

14.2.1 Exercise: Rewrite the type Name && Address? && Email* to a non-
shuffle type. Find a general procedure for eliminating shuffle expressions.

We have seen that shuffle expressions are quite powerful. However, their full
power would not necessarily be useful, while allowing it might make algorith-
mics difficult. Therefore some schema languages adopt shuffle expressions with
certain syntactic restrictions. The most typical one is to require that, in a shuf-
fle type T1&&T2, the sets of labels appearing in the top levels of T1 and T2 are
disjoint. For example, the record type in the above obeys this restriction since
the types Name, Address? and Email* have disjoint sets of top-level labels. On
the other hand, a type like (Name,Tel?) && (Name,Email*) is an error. This
restriction can make algorithmics easier to some extent since a certain kind
of nondeterminism can be avoided in shuffle automata (described later). The
RELAX NG schema language takes the restriction.

Another restriction that is often used in conjunction with the last one is to
require that, in a shuffle type T1&&T2, each T1 or T2 denotes a sequence of length
at most one. For example, a type like (Name,Address?) && Email is disallowed.
Also, the above example of a list of records is rejected since a component of
a shuffle type is Email*, which can arbitrarily repeat emails. Nevertheless, this
restriction can represent most usual record-like data that simply bundle a set of
fields of different names (that are possibly optional). Moreover, algorithmics can
be made easier since a sequence described by a shuffle type can be taken simply
as a set (rather than a complicated interleave of sequences). Note that, with
the further restriction that disallows concatenation of a shuffle type to some
other type or repetition of a shuffle type, we can clearly separate unordered and
ordered sequences with no mixture. XML Schema adopts this restriction.
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14.3 Algorithmic techniques

As we have seen, both attribute-element constraints and shuffle expressions can
be converted to more elementary forms of types. Thereby, relevant algorithmic
problems, such as membership test and basic set operations, could be solved
by using existing algorithms (possibly with a small modification). However,
this easily causes a combinatorial blow-up. Although some efforts have been
made to deal with this difficulty, none is completely satisfactory. Nevertheless,
discussing some of them are worthwhile since they are at least good starting
points.

Attribute-element automata A straightforward way to represent an attribute-
element constraint is to use a tree automaton with two kinds of transitions:
element transitions (which are usual ones) and attribute transitions. Such an
automaton accepts a pair of an element sequence and an attribute set: when
it follows an element transition, it consumes an element from the head of the
sequence and, when it follows an attribute transition, it consumes an attribute
from the set.

It is known how to adapt the on-the-fly membership algorithms (Section 7.1)
for attribute-element automata. However, it is rather tricky to perform basic
set operations such intersection and complement. It is because the ordering
among attribute transitions can be exchanged and, in general, all permutations
have to be generated for performing set operations. This could be improved by a
“divide and conquer” technique in special cases that often arise in practice. That
is, if a given automaton can be divided as a concatenation of independent sub-
automata (i.e., whose sets of top-level labels are disjoint), then a certain analysis
can be done separately on these sub-automata. For example, suppose that two
automata A and B are given and that each can be divided as a concatenation
of sub-automata, say A1 and A2 from A and B1 and B2 from B, such that both
A1 and B1 have label set L1 and both A2 and B2 have label set L2. Then,
intersection of A and B can be computed by taking that of the A1 and B1,
taking that of A2 and B2, and then re-concatenating the resulting automata.
This technique can also be applied to computing a complement.

Shuffle automata A well-known automata-encoding of a shuffle expression
T1&&T2 is to equip two automata A1 and A2 corresponding to T1 and T2 and
run them in an interleaving way. That is, in each step of reading the input
sequence, either A1 or A2 reads the head label; at the end of the sequence,
both A1 and A2 must be in final states. (A similar idea is used in product
construction, which also runs two automata in parallel but, in this case, both
of two automata read the head label in each step.) Note that, by the “disjoint
label sets” restriction on shuffle expressions, we can uniquely decide which of
A1 or A2 reads each head label. With the “at most length one” restriction,
a shuffle automaton becomes trivial—just a set of occurrence flags. Further,
with the disallowance of concatenation or repetition of a shuffle, we can avoid
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mixing ordinary and shuffle automata since the behavior of such mixture would
extremely be complicated.

14.4 Bibliographic Notes

Whether attributes are important or not has been debated for a long time and
has never settled [78]. Meanwhile, most applications extensively use attributes
and the situation seems to be impossible to be reverted.

The specification of RELAX NG formalizes both attribute-element con-
straints and shuffle expressions [22]; XML schema provides its version of shuffles
[33]. Although XML’s DTD does not have shuffles, SGML’s DTD [53] provides
a weak notion of shuffle operator &, where (a,b)&(c,d) means just the union
of (a,b,c,d) and (c,d,a,b) with no other interleaving. Reasoning of this
operator is usually rather unclean.

Algorithmic sides of attribute-element constraints have been studied in sev-
eral papers. A membership (validation) algorithm based on attribute-element
automata is given in [73]; a similar algorithm has been tested in the context
of bidirectional XML transformation [58]; another algorithm based on “deriva-
tives” of regular expressions [15] can be found in [20] . Algorithms for basic
set operations based on divide-and-conquer are in [48], though these algorithms
directly operate on constraint expressions rather than automata for the purpose
of presentation.

Shuffle automata have long been known and are formalized in, e.g., [54],
though these have rarely been used in the context of XML. The above-mentioned
derivative-based validation algorithm treats also shuffle expressions [20].

A completely different approach to dealing with unorderedness is to use
Presburger’s arithmetics, which can be used for describing constraints on the
counts of element labels [90]. Such counting constraints have their own source
of exponential blow-up, though an attempt has been made for a practical im-
plementation [36].
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P. Wadler. XQuery 1.0 Formal Semantics, 2001. http://www.w3.org/

TR/query-semantics/.

[35] J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-
decompositions. Journal of ACM, 49(6):716–752, 2002.

[36] J. N. Foster, B. C. Pierce, and A. Schmitt. A logic your typechecker can
count on: Unordered tree types in practice. In ACM SIGPLAN Work-
shop on Programming Language Technologies for XML (PLAN-X), Nice,
France, pages 80–90, Jan. 2007.
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