
1

COMP4211 – Advanced Computer Architectures & Algorithms

University of NSW

Seminar Presentation

Semester 1 2004

Software Approaches to Exploiting Instruction Level

Parallelism

Lecture notes by: David A. Patterson

Boris Savkovic
2

Outline

TALK1. Introduction

2. Basic Pipeline Scheduling

3. Instruction Level Parallelism and Dependencies

4. Local Optimizations and Loops

5. Global Scheduling Approaches

6. HW Support for Aggressive Optimization Strategies

TALK

TALK

TALK

TALK

TALK

3

INTRODUCTION

What is scheduling?

Scheduling is the ordering of program execution so as to improve performance without

affecting program correctness.

Our focus to date has been on hardware-based scheduling, which involved execution

scheduling or rearrangement of issued instructions to reduce execution time.

Today we’ll look at compiler-based scheduling, which is also known as static scheduling if

the hardware does not subsequently reorder the instruction sequence produced by the

compiler.

4

INTRODUCTION

How does software-based scheduling differ from hardware-based

scheduling?

Unlike with hardware-based approaches, the overhead due to intensive analysis of the

instruction sequence is generally not an issue:

We can afford to perform more detailed analysis of the instruction sequence.

We can generate more information about the instruction sequence and thus involve more

factors in optimizing the instruction sequence.

BUT:

There will be a significant number of cases where not enough information can be

extracted from the instruction sequence statically to perform an optimization:

do two pointers point to the same memory location?

what is the upper bound on the induction variable of a loop?

e.g. :

5

INTRODUCTION

How does software-based scheduling differ from hardware-based

scheduling?

STILL:

We can assist the hardware during compile time by exposing more ILP in the instruction

sequence and/or performing some classic optimizations.

We can exploit characteristics of the underlying architecture to increase performance

(e.g. schedule a branch delay slot).

The above tasks are usually performed by an optimizing compiler via a series of analysis

and transformation steps (see next slide).

6

INTRODUCTION

Architecture of a typical optimizing compiler

FE O(1) O(2) O(N-1) O(N) BE

FRONT END MIDDLE END BACK END

High Level

Language

e.g. Pascal,

C, Fortran,..

Intermediate

Representation (IR)

e.g. AST-s,

Three-address

Code, DAG-s...

Optimized IR Machine

Language

I(1)…..I(N-1)

CHECK

SYNTAX AND

SEMANTICS

a.) PERFORM LOCAL OPTIMISATINS

b.) PERFORM GLOBAL OPTIMISATIONS

EMIT TARGET

ARCHITECTURE

MACHINE CODE

7

INTRODUCTION

Compile-Time Optimizations are subject to many predictable and unpredictable

factors:

Like with hardware approaches, it might be very difficult

to judge the benefit gained from a transformation

applied to a given code segment.

Code Size (Y)

Compiler Complexity (X)

Existing ILP in Source Program (Z)

?

?

This is because changes at compile-time can have

many side-effects, which are not easy to quantize

and/or measure for different program behaviours

and/or inputs.

Different compilers emit code for different architectures, so identical transformations

might produce better or worse performance, depending on how the hardware schedules

instructions.

8

INTRODUCTION

THIS IS WHAT I AM GOING

TO TALK ABOUT

What are some typical optimizations?

HIGH LEVEL OPTIMISATIONS LOW LEVEL OPTIMISATIONS

Perform high level optimizations, that are

very likely to improve performance, but do

not generally depend on the target

architecture. E.g. :

- Scalar Replacement of Aggregates

- Data-Cache Optimizations

- Procedure Integration

- Constant Propagation

- Symbolic Substitution

……..

Perform a series of optimizations, which

are usually very target architecture

specific or very low level. E.g.:

- Prediction of Data & Control Flow

- Software pipelining

- Loop unrolling

……..

VARIOUS IR OPTIMISATIONS

9

Outline

1. Introduction

2. Basic Pipeline Scheduling

3. Instruction Level Parallelism and Dependencies

4. Local Optimizations and Loops

5. Global Scheduling Approaches

6. HW Support for Aggressive Optimization Strategies

DONE

TALK

TALK

TALK

TALK

TALK

10

BASIC PIPELINE SCHEDULING

STATIC BRANCH PREDICTION

Basic pipeline scheduling techniques involve static prediction of branches, (usually)

without extensive analysis at compile time.

Two approaches

Direction Based Prediction Profile Based Prediction

Static prediction methods are based on expected/observed behaviour at branch points.

Usually based on heuristic assumptions, that are easily violated, which we will address

in the subsequent slides

KEY IDEA: Hope that our assumption is correct. If yes, then we’ve gained a

performance improvement. Otherwise, program is still correct, all we’ve done is “waste”

a clock cycle. Overall, we hope to gain.

11

BASIC PIPELINE SCHEDULING

1.) Direction based Predictions (predict taken/not taken)

- Assume branch behavior is highly predictable at compile time,

- Perform scheduling by predicting branch statically as either taken or not taken,

- Alternatively, choose forward going branches as “not taken” and backward going

branches as “taken”, i.e. exploit loop behaviour,

Branch behaviour is variable. It can be dynamic or static,

depending on code. Can’t capture such behaviour at compile

time with simple direction based prediction!

This is unlikely to produce a misprediction rate of less than

30% to 40% on average, with a variation from 10% to 59%

(CA:AQA)

12

BASIC PIPELINE SCHEDULING

Example: Filling a branch delay slot, a Code Sequence (Left) and its Flow-

Graph (Right)

LD

DSUBU

BEQZ

OR

DADDU

DADDUL :

R1,0(R2)

R1,R1,R3

R1,L

R4,R5,R6

R10,R4,R3

R7,R8,R9

LD

DSUBU

BEQZ

R1,0(R2)

R1,R1,R3

R1,L

OR

DADDU

R4,R5,R6

R10,R4,R3

DADDU R7,R8,R9

R1 == 0

R1 != 0

B1

B2

B3

1.) DSUBU and BEQZ are output dependent on LD,

2.) If we knew that the branch was taken with a high probability, then DADDU could be

moved into block B1, since it doesn’t have any dependencies with block B2,

3.) Conversely, knowing the branch was not taken, then OR could be moved into block

B1, since it doesn’t affect anything in B3,

13

BASIC PIPELINE SCHEDULING

2.) Profile Based Predictions

- Collect profile information at run-time

- Since branches tend to be “bimodal”, i.e., highly biased, a more accurate prediction can

be made based on collected information.

This produces an average of 15% of mispredicted branches,

with a lower standard deviation, which is better than direction

based prediction!

This method might involve profile collection, during

compilation or run-time, which might not be desirable.

Execution traces usually highly correlate with input data. Hence

a high variation in input, produces less than optimal results!

14

Outline

1. Introduction

2. Basic Pipeline Scheduling

3. Instruction Level Parallelism and Dependencies

4. Local Optimizations and Loops

5. Global Scheduling Approaches

6. HW Support for Aggressive Optimization Strategies

DONE

DONE

TALK

TALK

TALK

TALK

15

ILP

What is instruction Level Parallelism (ILP)?

Inherent property of a sequence of instructions, as a result of which some instructions

can be allowed to execute in parallel.

There is an upper bound, as too how much parallelism can be achieved, since by

definition parallelism is an inherent property of the sequence of instructions.

(This shall be our definition)

Note that this definition implies parallelism across a sequence of instructions (block).

This could be a loop, a conditional, or some other valid sequence of statements.

We can approach this upper bound via a series of transformations that either expose or

allow more ILP to be exposed to later transformations.

16

OUR AIM: Improve performance by exploiting ILP !Hence

ILP

What is instruction Level Parallelism (ILP)?

Dependencies within a sequence of instructions determine how much ILP is present.

Think of this as:

To what degree can we rearrange the instructions without compromising correctness?

17

ILP

How do we exploit ILP?

Have a collection of transformations, that operate on or across program blocks, either

producing “faster code” or exposing more ILP. Recall from before :

An optimizing compiler does this by iteratively applying a series of transformations!

Our transformations should rearrange code, from data available statically at compile

time and from our knowledge of the underlying hardware.

18

ILP

How do we exploit ILP?

KEY IDEA: These transformations do one (or both) of the following, while preserving

correctness :

1.) Expose more ILP, such that later transformations in the compiler can

exploit this exposure of more ILP.

2.) Perform a rearrangement of instructions, which results in increased

performance (measured by execution time, or some other metric of

interest)

19

ILP

Loop Level Parallelism and Dependence

We will look at two techniques (software pipelining and static loop unrolling) that can

detect and expose more loop level parallelism.

Q: What is Loop Level Parallelism?

A: ILP that exists as a result of iterating a loop.

Loop Carried Loop Independent

A dependence, which only

applies if a loop is iterated.

A dependence within the body

of the loop itself (i.e. within

one iteration).

Two types of dependencies limit the degree to which Loop Level Parallelism can be

exploited.

Two types of dependencies

20

ILP

An Example of Loop Level Dependences

Consider the following loop:

for (i = 0; i <= 100; i++) {

A[i + 1] = A[i] + C [i] ; // S1

B[i + 1] = B[i] + A [i + 1] ; // S2

}

A Loop Independent Dependence

N.B. how do we know A[i+1] and A[i+1] refer to the same location? In general by

performing pointer/index variable analysis from conditions known at compile time.

21

ILP

An Example of Loop Level Dependences

Consider the following loop:

for (i = 0; i <= 100; i++) {

A[i + 1] = A[i] + C [i] ; // S1

B[i + 1] = B[i] + A [i + 1] ; // S2

}

Two Loop Carried Dependences

We’ll make use of these concepts when we talk about software pipelining and loop unrolling !

22

ILP

What are typical transformations?

Recall from before:

HIGH LEVEL OPTIMISATIONS LOW LEVEL OPTIMISATIONS

Perform high level optimizations, that are

very likely to improve performance, but do

not generally depend on the target

architecture. E.g. :

- Scalar Replacement of Aggregates

- Data-Cache Optimizations

- Procedure Integration

- Constant Propagation

- Symbolic Substitution

……..

Perform a series of optimizations, which

are usually very target architecture

specific or very low level. E.g.:

- Prediction of Data & Control Flow

- Software pipelining

- Loop unrolling

……..

VARIOUS IR OPTIMISATIONS THIS IS WHAT I AM GOING

TO TALK ABOUT

Let’s have a look at some of these in detail !

23

Outline

1. Introduction

2. Basic Pipeline Scheduling

3. Instruction Level Parallelism and Dependencies

4. Local Optimizations and Loops

5. Global Scheduling Approaches

6. HW Support for Aggressive Optimization Strategies

DONE

DONE

DONE

TALK

TALK

TALK

24

LOCAL

What are local transformations?

Transformations which operate on basic blocks or extended basic blocks.

Our transformations should rearrange code, from data available statically at compile

time and from knowledge of the underlying hardware.

KEY IDEA: These transformations do one of the following (or both), while preserving

correctness :

1.) Expose more ILP, such that later transformations in the compiler can

exploit this exposure.

2.) Perform a rearrangement of instructions, which results in increased

performance (measured by execution time, or some other metric of

interest)

25

LOCAL

We will look at two local optimizations, applicable to loops:

SOFTWARE PIPELINING

Reschedule instructions from a sequence

of loop iterations to enhance ability to

exploit more ILP.

KEY IDEA:

Reduce stalls due to data dependencies.

STATIC LOOP UNROLLING

Loop Unrolling replaces the body of a loop

with several copies of the loop body, thus

exposing more ILP.

KEY IDEA:

Reduce loop control overhead and thus

increase performance

These two are usually complementary in the sense that scheduling of software pipelined

instructions usually applies loop unrolling during some earlier transformation to expose more

ILP, exposing more potential candidates “to be moved across different iterations of the loop”.

26

LOCAL

STATIC LOOP UNROLLING

OBSERVATION: A high proportion of loop instructions executed are loop management

instructions (next example should give a clearer picture) on the induction variable.

KEY IDEA: Eliminating this overhead could potentially significantly increase the

performance of the loop:

We’ll use the following loop as our example:

for (i = 1000 ; i > 0 ; I --) {

x[i] = x[i] + constant;

}

27

LOCAL

STATIC LOOP UNROLLING (continued) – a trivial translation to MIPS

for (i = 1000 ; i > 0 ; I --) {

x[i] = x[i] + constant;

}

L.D

ADD.D

S.D

DADDUI

BNE

Loop : F0,0(R1)

F4,F0,F2

F4,0(R1)

R1,R1,#-8

R1,R2,Loop

; F0 = array elem.

; add scalar in F2

; store result

; decrement ptr

; branch if R1 !=R2

Our example translates into the MIPS

assembly code below (without any

scheduling).

Note the loop independent

dependence in the loop ,i.e. x[i] on

x[i]

28

LOCAL

STATIC LOOP UNROLLING (continued)

Let us assume the following latencies for our pipeline:

INSTRUCTION PRODUCING RESULT INSTRUCTION USING RESULT

FP ALU op

FP ALU op

Load double

Load double

Another FP ALU op

Store double

FP ALU op

Store double

LATENCY (in CC)*

3

2

1

0

Also assume that functional units are fully pipelined or replicated, such that one

instruction can issue every clock cycle (assuming it’s not waiting on a result!)

Assume no structural hazards exist, as a result of the previous assumption

* - CC == Clock Cycles

29

LOCAL

STATIC LOOP UNROLLING (continued) – issuing our instructions

Let us issue the MIPS sequence of instructions obtained:

CLOCK CYCLE ISSUED

F0,0(R1)

stall

F4,F0,F2

stall

stall

F4,0(R1)

R1,R1,#-8

stall

R1,R2,Loop

stall

L.D

ADD.D

S.D

DADDUI

BNE

1

2

3

4

5

6

7

8

9

10

Loop :

30

LOCAL

STATIC LOOP UNROLLING (continued) – issuing our instructions

Let us issue the MIPS sequence of instructions obtained:

CLOCK CYCLE ISSUED

L.D

ADD.D

S.D

DADDUI

BNE

Loop : F0,0(R1)

stall

F4,F0,F2

stall

stall

F4,0(R1)

R1,R1,#-8

stall

R1,R2,Loop

stall

1

2

3

4

5

6

7

8

9

10

Each iteration of the loop

takes 10 cycles!

We can improve

performance by rearranging the

instructions, in the next slide.

We can push S.D. after

BNE, if we alter the offset!

We can push ADDUI

between L.D. and ADD.D,

since R1 is not used

anywhere within the loop

body (i.e. it’s the induction

variable)

31

LOCAL

STATIC LOOP UNROLLING (continued) – issuing our instructions

Here is the rescheduled loop:

L.D

DADDUI

ADD.D

stall

BNE

S.D

Loop : F0,0(R1)

R1,R1,#-8

F4,F0,F2

R1,R2,Loop

F4,8(R1)

1

2

3

4

5

6

CLOCK CYCLE ISSUED

Here we’ve decremented R1 before we’ve stored

F4. Hence need an offset of 8!

Each iteration now takes 6

cycles

This is the best we can

achieve because of the inherent

dependencies and pipeline

latencies!

32

LOCAL

STATIC LOOP UNROLLING (continued) – issuing our instructions

Here is the rescheduled loop:

L.D

DADDUI

ADD.D

stall

BNE

S.D

Loop : F0,0(R1)

R1,R1,#-8

F4,F0,F2

R1,R2,Loop

F4,8(R1)

1

2

3

4

5

6

CLOCK CYCLE ISSUED Observe that 3 out of the 6

cycles per loop iteration are due

to loop overhead !

33

LOCAL

STATIC LOOP UNROLLING (continued)

Hence, if we could decrease the loop management overhead, we could increase the

performance.

SOLUTION : Static Loop Unrolling

Make n copies of the loop body, adjusting the loop terminating conditions

and perhaps renaming registers (we’ll very soon see why!),

This results in less loop management overhead, since we effectively merge

n iterations into one !

This exposes more ILP, since it allows instructions from different iterations to

be scheduled together!

34

LOCAL

STATIC LOOP UNROLLING (continued) – issuing our instructions

The unrolled loop from the running example with an unroll factor of n = 4 would then be:

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

DADDUI

BNE

Loop : F0,0(R1)

F4,F0,F2

F4,0(R1)

F6,-8(R1)

F8,F6,F2

F8,-8(R1)

F10,-16(R1)

F12,F10,F2

F12,-16(R1)

F14,-24(R1)

F16,F14,F2

F16,-24(R1)

R1,R1,#-32

R1,R2,Loop

35

LOCAL

STATIC LOOP UNROLLING (continued) – issuing our instructions

The unrolled loop from the running example with an unroll factor of n = 4 would then be:

Note the renamed

registers. This eliminates

dependencies between

each of n loop bodies of

different iterations.

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

DADDUI

BNE

Loop : F0,0(R1)

F4,F0,F2

F4,0(R1)

F6,-8(R1)

F8,F6,F2

F8,-8(R1)

F10,-16(R1)

F12,F10,F2

F12,-16(R1)

F14,-24(R1)

F16,F14,F2

F16,-24(R1)

R1,R1,#-32

R1,R2,Loop

n loop

Bodies for

n = 4

Note the adjustments

for store and load

offsets (only store

highlighted red)!

Adjusted loop

overhead

instructions
36

LOCAL

STATIC LOOP UNROLLING (continued) – issuing our instructions

Let’s schedule the unrolled loop on our pipeline: CLOCK CYCLE ISSUED

Loop : F0,0(R1)

F6,-8(R1)

F10,-16(R1)

F14,-24(R1)

F4,F0,F2

F8,F6,F2

F12,F10,F2

F16,F14,F2

F4,0(R1)

F8,-8(R1)

R1,R1,#-32

F12,16(R1)

R1,R2,Loop

F16,8(R1);

L.D

L.D

L.D

L.D

ADD.D

ADD.D

ADD.D

ADD.D

S.D

S.D

DADDUI

S.D

BNE

S.D

1

2

3

4

5

6

7

8

9

10

11

12

13

14

37

LOCAL

STATIC LOOP UNROLLING (continued) – issuing our instructions

Let’s schedule the unrolled loop on our pipeline: CLOCK CYCLE ISSUED

Loop : F0,0(R1)

F6,-8(R1)

F10,-16(R1)

F14,-24(R1)

F4,F0,F2

F8,F6,F2

F12,F10,F2

F16,F14,F2

F4,0(R1)

F8,-8(R1)

R1,R1,#-32

F12,16(R1)

R1,R2,Loop

F16,8(R1);

L.D

L.D

L.D

L.D

ADD.D

ADD.D

ADD.D

ADD.D

S.D

S.D

DADDUI

S.D

BNE

S.D

1

2

3

4

5

6

7

8

9

10

11

12

13

14

This takes 14 cycles for 1

iteration of the unrolled

loop.

Therefore w.r.t. original

loop we now have 14/4 =

3.5 cycles per iteration.

Previously 6 was the best

we could do!

We gain an increase in

performance, at the

expense of extra code and

higher register

usage/pressure

The performance gain

on superscalar

architectures would be

even higher! 38

LOCAL

STATIC LOOP UNROLLING (continued)

However loop unrolling has some significant complications and disadvantages:

Unrolling with an unroll factor of n, increases the code size by (approximately) n. This might

present a problem,

Imagine unrolling a loop with a factor n= 4, that is executed a number of times that is not a

multiple of four:

more formally, the original copy should be included if (UB mod n != 0), i.e. number of

iterations is not a multiple of the unroll factor

one would need to provide a copy of the original loop and the unrolled loop,

this would increase code size and management overhead significantly,

this is a problem, since we usually don’t know the upper bound (UB) on the induction

variable (which we took for granted in our example),

39

We usually ALSO need to perform register renaming to reduce dependencies within the

unrolled loop. This increases the register pressure!

LOCAL

STATIC LOOP UNROLLING (continued)

However loop unrolling has some significant complications and disadvantages:

The criteria for performing loop unrolling are therefore usually very restrictive!

40

LOCAL

SOFTWARE PIPELINING

Software Pipelining is an optimization that can improve the loop-execution-performance

of any system that allows ILP, including VLIW and superscalar architectures,

KEY IDEA: Increase performance by scheduling instructions from different iterations

into a single iteration of the loop.

It derives its performance gain by filling delays within each iteration of a loop body with

instructions from different iterations of that same loop,

This method requires some extra code to fill (preheader) and drain (postheader) the

software pipelined loop, as we’ll see in the next example.

This method requires fewer registers per loop iteration than loop unrolling,

41

LOCAL

SOFTWARE PIPELINING

Consider the instruction sequence from before:

; F0 = array elem.

; add scalar in F2

; store result

; decrement ptr

; branch if R1 !=R2

F0,0(R1)

F4,F0,F2

F4,0(R1)

R1,R1,#-8

R1,R2,Loop

L.D

ADD.D

S.D

DADDUI

BNE

Loop :

42

LOCAL

SOFTWARE PIPELINING

Which was executed in the following sequence on our pipeline:

Loop : F0,0(R1)

stall

F4,F0,F2

stall

stall

F4,0(R1)

R1,R1,#-8

stall

R1,R2,Loop

stall

L.D

ADD.D

S.D

DADDUI

BNE

1

2

3

4

5

6

7

8

9

10

43

LOCAL

SOFTWARE PIPELINING

A pipeline diagram for the execution sequence is given by:

43

Each red instruction

is a no operation

(nop), i.e. a stall !

We could be

performing useful

instructions here !

L.D

ADD.D

S.D

DADDUI

BNE

nop

nop

nop

nop

nop

44

LOCAL

SOFTWARE PIPELINING

Software pipelining eliminates nop’s by inserting instructions from different iterations of

the same loop body:

44

L.D

ADD.D

S.D

DADDUI

nop

nop

nop

nop

nop

Insert instructions from

different iterations to

replace the nop’s!

BNE

45

LOCAL

SOFTWARE PIPELINING

How is this done?

1 unroll loop body with an unroll factor of n. we’ll take n = 3 for our example

2 select order of instructions from different iterations to pipeline

3 “paste” instructions from different iterations into the new pipelined loop body

Let’s schedule our running example (repeated below) with software pipelining:

; F0 = array elem.

; add scalar in F2

; store result

; decrement ptr

; branch if R1 !=R2

F0,0(R1)

F4,F0,F2

F4,0(R1)

R1,R1,#-8

R1,R2,Loop

L.D

ADD.D

S.D

DADDUI

BNE

Loop :

46

LOCAL

SOFTWARE PIPELINING

Step 1 unroll loop body with an unroll factor of n. we’ll take n = 3 for our example

Iteration i: L.D

ADD.D

S.D

F0,0(R1)

F4,F0,F2

F4,0(R1)

F0,0(R1)

F4,F0,F2

F4,0(R1)

Notes:

1.) We are unrolling the loop body

Hence no loop overhead

Instructions are shown!

2.) There three iterations will be

“collapsed” into a single loop body

containing instructions from

different iterations of the original

loop body.

L.D

ADD.D

S.D

Iteration i + 1:

F0,0(R1)

F4,F0,F2

F4,0(R1)

L.D

ADD.D

S.D

Iteration i + 2:

47

LOCAL

SOFTWARE PIPELINING

Step 2 select order of instructions from different iterations to pipeline

Iteration i: L.D

ADD.D

S.D

F0,0(R1)

F4,F0,F2

F4,0(R1)

L.D

ADD.D

S.D

L.D

ADD.D

S.D

F0,0(R1)

F4,F0,F2

F4,0(R1)

F0,0(R1)

F4,F0,F2

F4,0(R1)

Notes:

1.) We’ll select the following order in

our pipelined loop:

2.) Each instruction (L.D ADD.D S.D)

must be selected at least once to

make sure that we don’t leave out

any instructions when we collapse

The loop on the left into a single

pipelined loop.

1.)

2.)

3.)

Iteration i + 1:

Iteration i + 2:

48

LOCAL

SOFTWARE PIPELINING

Step 3 “paste” instructions from different iterations into the new pipelined loop body

L.D

ADD.D

S.D

F0,0(R1)

F4,F0,F2

F4,0(R1)

L.D

ADD.D

S.D

L.D

ADD.D

S.D

F0,0(R1)

F4,F0,F2

F4,0(R1)

F0,0(R1)

F4,F0,F2

F4,0(R1)

Iteration i:

Iteration i + 1:

1.)

2.)

3.)Iteration i + 2:

S.D

ADD.D

L.D

DADDUI

BNE

Loop : F4,16(R1)

F4,F0,F2

F0,0(R1)

R1,R1,#-8

R1,R2,Loop

; M[i]

; M[i – 1]

; M[i – 2]

THE Pipelined Loop

49

LOCAL

SOFTWARE PIPELINING

Now we just insert a loop preheader & postheader and the pipelined loop is finished:

Instructions to fill “software pipeline”
Preheader

S.D

ADD.D

L.D

DADDUI

BNE

Loop : F4,16(R1)

F4,F0,F2

F0,0(R1)

R1,R1,#-8

R1,R2,Loop

; M[i]

; M[i – 1]

; M[i – 2]

Pipelined Loop Body

Postheader
Instructions to drain “software pipeline”

50

LOCAL

SOFTWARE PIPELINING

F4,16(R1)

F4,F0,F2

F0,0(R1)

R1,R1,#-8

R1,R2,Loop

S.D

ADD.D

L.D

DADDUI

BNE

; M[i]

; M[i – 1]

; M[i – 2]

Loop :

Assuming we reschedule the last 2 (iteration) steps, our pipelined loop can run in 5 cycles

per iteration (steady state), which is better than the initial running time of 6 cycles per

iteration, but less than the 3.5 cycles achieved with loop unrolling

Software pipelining can be thought of as symbolic loop unrolling, which is analogous to

executing Tomasulo’s algorithm in software

51

LOCAL

SOFTWARE PIPELINING & LOOP UNROLLING: A Comparison

LOOP UNROLLING

Consider the parallelism (in terms of overlapped instructions) vs. time curve for a loop

That is scheduled using loop unrolling:

LEGEND:
<=> Single Iteration of

Unrolled Loop

Number of

overlapped

instructions Through due to iteration start-up and end overhead

time

Overlap between successive iterations of the unrolled loop

Single Iteration of an unrolled loop body running at peak

The unrolled loop does not run at maximum overlap, due to entry and exit overhead

associated with each iteration of the unrolled loop.

A Loop with an unroll factor of n, and m iterations when run, will incur m/n non-maximal

throughs 52

LOCAL

SOFTWARE PIPELINING & LOOP UNROLLING: A Comparison

SOFTWARE PIPELINING

In contrast, software pipelining only incurs a penalty during start up (pre-header) and

drain (post-header):

time

Number of

overlapped

instructions

drain

Except for start-up and drain, the loop runs at maximum overlap

start up

The pipelined loop only incurs non-maximum overlap during start up and drain, since we’re

pipelining instructions from different iterations and thus minimize the stalls arising from

dependencies between different iterations of the pipelined loop.

53

Outline

1. Introduction

2. Basic Pipeline Scheduling

3. Instruction Level Parallelism and Dependencies

4. Local Optimizations and Loops

5. Global Scheduling Approaches

6. HW Support for Aggressive Optimization Strategies

DONE

DONE

DONE

DONE

TALK

TALK

54

Global Scheduling Approaches

Global scheduling approaches perform code movement across branches, based on the

relative frequency of execution across different control flow paths,

Hence we would ideally like to be able to move instructions across branches,

GLOBAL

The approaches seen so far work well with linear code segments,

For programs with more complex control flow (i.e. more branching), our approaches so

far are not very effective, since we cannot move code across (non-LOOP) branches,

This approach must deal with both control dependencies (on branches) and data

dependencies that exist within and across basic blocks,

Since static global scheduling is subject to numerous constraints, hardware approaches

exist for either eliminating (speculative execution) or supporting compile-time

scheduling, as we’ll see in the next section.

55

GLOBAL

Global Scheduling Approaches:

TRACE SCHEDULING
SUPERBLOCK SCHEDULING

We will briefly look at two common global scheduling approaches

Both approaches are suited to scientific code with intensive loops and accurate profile

data,

Both approaches incur heavy penalties for control flow that does not follow the predicted

flow of control,

The latter is a consequence of moving any overhead associated with global instruction

movement to less frequented blocks of code.

56

GLOBAL

Trace Scheduling

Find likely sequence of basic blocks (trace) of (statically predicted

or profile predicted) long sequence of straight line code

Two Steps:

Since we move instructions, along the trace, between basic blocks, compensating code

is inserted along control flow edges that are not included in the trace to guarantee

program correctness,

This means that for control flow deviation from the trace, we are very likely to incur

heavy penalties,

Try to schedule instructions along the trace as early as possible

within the trace. On VLIW processors, this also implies packing

the instructions into as few instructions as possible

1.)Trace Selection

2.) Trace Compaction

E

C2

C2

C1

C – exit compensate

E - entry compensate

Trace scheduling essentially treats each branch as a jump, hence we gain a performance

enhancement if we select a trace indicative of program flow behaviour. If we are wrong in

our guess, the compensating code is likely to adversely affect behaviour.

57

GLOBAL

Superblock Scheduling (for loops)

In trace scheduling entries into the middle of a trace cause

significant problems, since we need to place compensating code at

each entry,

Problems with trace scheduling:

C

C

When the trace is left, we only provide one piece of code C for the

remaining iterations of the loop

CSuperblock scheduling groups the basic blocks along a trace into

extended basic blocks that contain one entry point and multiple

exits

The underlying assumption is that the compensating code C will not be executed

frequently. If it is, then creating a superblock out of C is a possible option

This approach significantly reduces the bookkeeping associated with trace scheduling

It can, however, lead to larger code increases than for trace scheduling

Allows a better estimate of the cost of compensating code C, since we are now dealing

with one piece of compensating code
58

Outline

1. Introduction

2. Basic Pipeline Scheduling

3. Instruction Level Parallelism and Dependencies

4. Local Optimizations and Loops

5. Global Scheduling Approaches

6. HW Support for Aggressive Optimization Strategies

DONE

DONE

DONE

DONE

DONE

TALK

59

We will briefly have a look at predicated instructions, which

allow us to speculate more effectively in the presence of

control dependencies

HW Support for exposing more ILP at compile-time

If our “applicability criteria” fail, then a conservative guess is the best that we can do (so

far).

HW

The techniques seen so far produce potential improvements in execution time but are

subject to numerous criteria that must be satisfied before they can be safely applied.

It is desirable to provide supporting hardware mechanisms that preserve correctness at

run time while improving our ability to speculate effectively:

60

HW

Predicated Instructions

Consider the following code:

If (A == 0) {S = T;}

Which we can translate to MIPS as follows (assuming R1,R2,R3 hold A,S,T respectively) :

R1,L

R2,R3,R0

BNEZ

ADDU

L :

With support for predicated instructions, the above C code would translate to :

R2,R3,R1 ; if (R1 == 0) move R3 to R2CMOVZ

61

HW

Predicated Instructions

We hence performed the following transformation in the last example (a.k.a. if-conversion) :

Block BBlock A

BNEZ

ADDU

R1,L

R2,R3,R0

L :

CMOVZ R2,R3,R1

What are the implications?

1.) we have converted a control dependence in Block A to a data

dependence (subject to evaluation of the condition on R1),

2.) we have effectively moved the resolution location from the front end of

the pipeline (for control dependencies) to the end (for data dependencies),

3.) this reduces the number of branches, creating a linear code segment,

thus exposing more ILP.

62

HW

Predicated Instructions

What are the implications? (continued)

4.) we have effectively reduced branch pressure, which otherwise might

have prevented issue of the second instruction (depending on architecture)

5.) usually a whole block is control dependent on a branch. Thus all

instructions within that block would need to be predicated, which can be

very inefficient

this might be solved with full predication, where every instruction is predicated !

HOWEVER:

6.) annulations of an instruction (whose condition evaluates to be false) is

usually done late in the pipeline to allow sufficient time for condition

evaluation.

this however means, that annulled instructions effectively reduce our CPI. If there

are too many (e.g. when predicating large blocks), we might be faced with significant

performance losses

63

HW

Predicated Instructions

What are the implications? (continued)

7.) since predicated instructions introduce data dependencies on the

condition evaluation, we might be subject to additional stalls while waiting for

the data hazard on the condition to be cleared!

8.) Since predicated instructions perform more work than normal instructions

(i.e. might require to be pipeline-resident for more clock cycles due to higher

workload) in the instruction set, these might lead to an overall increase of

the CPI of the architecture.

Hence most current architectures include just a few simple predicated

instructions

64

Outline

1. Introduction

2. Basic Pipeline Scheduling

3. Instruction Level Parallelism and Dependencies

4. Local Optimizations and Loops

5. Global Scheduling Approaches

6. HW Support for Aggressive Optimization Strategies

DONE

DONE

DONE

DONE

DONE

DONE

Just a brief summary to go!

65

SUM

SUMMARY

1.) Compile-time optimizations provide a number of analysis-intensive optimizations that

otherwise could not be performed at run time due to the high overhead associated with

the analysis.

2.) Compiler based approaches are usually limited by the inaccuracy or unavailability of

run-time data and control flow behaviour.

3.) Compilers can reorganize code such that more ILP is exposed for further

optimization or exploitation at run time.

1.) The most efficient approach is a hardware-software co-scheduling approach, where

the hardware and compiler co-operatively exploit as much information as possible within

the respective restrictions of each approach.

2.) Such an approach is most likely to produce high performance!

CONCLUSION:

66

REF

REFERENCES

“Computer Architecture: A Quantitative Approach”.

J.L. Hennessy & D.A. Patterson.

Morgan Kaufmann Publishers, 3rd Edition.

1.

“Optimizing Compilers for Modern Architectures”.

S. Muchnik.

Morgan Kaufmann Publishers, 2nd Edition.

2.

“Advanced Compiler Design & Implementation”.

S. Muchnik.

Morgan Kaufmann Publishers, 2nd Edition.

3.

4. “Compilers: Principles, Techniques and Tools”:

A.V. Aho, R. Sethi, J.D. Ullman.

Addision Wesly Longman Publishers,2nd Edition.

