
COMP4211 05s1 Seminar 5:
Multiple Issue & Speculation

W05S1

Slides due to

David A. Patterson, 2001

Getting CPI < 1:
Issuing Multiple Instructions/Cycle

W05S2

• Vector Processing: Explicit coding of independent
loops as operations on large vectors of numbers

– Multimedia instructions being added to many processors

• Superscalar: varying no. instructions/cycle (1 to 8),
scheduled by compiler or by HW (Tomasulo)

– IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium III/4

• (Very) Long Instruction Words (V)LIW:
fixed number of instructions (4-16) scheduled by
the compiler; put ops into wide templates

– Intel Architecture-64 (IA-64) 64-bit address

» Renamed: “Explicitly Parallel Instruction Computer (EPIC)”

• Anticipated success of multiple instructions lead to
Instructions Per Clock cycle (IPC) vs. CPI

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

W05S3

• Superscalar MIPS: 2 instructions, 1 FP & 1 anything
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

• 1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot

Multiple Issue Issues

W05S4

• issue packet: group of instructions from fetch
unit that could potentially issue in 1 clock

– If instruction causes structural hazard or a data hazard
either due to earlier instruction in execution or to earlier
instruction in issue packet, then instruction does not issue

– 0 to N instruction issues per clock cycle, for N-issue

• Performing issue checks in 1 cycle could limit
clock cycle time: O(n2-n) comparisons

– => issue stage usually split and pipelined

– 1st stage decides how many instructions from within this
packet can issue, 2nd stage examines hazards among selected
instructions and those already been issued

– => higher branch penalties => prediction accuracy important

Multiple Issue Challenges

W05S5

• While Integer/FP split is simple for the HW, get CPI
of 0.5 only for programs with:

– Exactly 50% FP operations AND No hazards

• If more instructions issue at same time, greater
difficulty of decode and issue:

– Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide
if 1 or 2 instructions can issue; (N-issue ~O(N2-N) comparisons)

– Register file: need 2x reads and 1x writes/cycle
– Rename logic: must be able to rename same register multiple times in

one cycle! For instance, consider 4-way issue:
add r1, r2, r3 add p11, p4, p7
sub r4, r1, r2 sub p22, p11, p4
lw r1, 4(r4) lw p23, 4(p22)
add r5, r1, r2 add p12, p23, p4

Imagine doing this transformation in a single cycle!
– Result buses: Need to complete multiple instructions/cycle

» So, need multiple buses with associated matching logic at every
reservation station.

» Or, need multiple forwarding paths

Dynamic Scheduling in Superscalar
The easy way

W05S6

• How to issue two instructions and keep in-order
instruction issue for Tomasulo?

– Assume 1 integer + 1 floating point

– 1 Tomasulo control for integer, 1 for floating point

• Key is assigning reservation station and updating
control tables

– Issue 2X Clock Rate, so that issue remains in order

• Only loads/stores might cause dependency between
integer and FP issue:

– Replace load reservation station with a load queue;
operands must be read in the order they are fetched

– Load checks addresses in Store Queue to avoid RAW violation

– Store checks addresses in Load Queue to avoid WAR,WAW

Hardware-Based Speculation

W05S7

• Trying to exploit more ILP while maintaining
control dependencies becomes a burden

• Overcome control dependencies by
speculating on the outcome of branches and
executing the program as if our guesses
were correct

– Need to handle incorrect guesses

• Key ideas:
– Dynamic branch prediction

– Speculation

– Dynamic scheduling

Implementing Speculation

W05S8

• We consider building on top of Tomasulo’s
algorithm

– Must separate bypassing of results among instructions
from actual completion (write-back) of instructions

– Cannot allow updates to be performed that can’t be
undone

– Instruction commit updates register or memory when
instruction no longer speculative

– Need to add re-order buffer

• Key idea: execute out-of-order but commit
in-order

Tomasulo extended to handle speculation

W05S9

Reorder buffer

W05S10

• Contains 4 fields:
1. Instruction type indicates whether branch, store, or

register op

2. Destination field memory or register

3. Value field

4. Ready flag indicates instruction has completed
operation

• The renaming function of the reservation
stations is replaced by the ROB

• Every instruction has a ROB entry until it
commits
– Therefore tag results using ROB entry number

Instruction execution

W05S11

1. Issue – get instruction from instruction Q and issue
if reservation station and ROB slots available –
sometimes called dispatch

2. Execute – when both operands available at the
reservation station – sometimes called issue

3. Write result – when result available, write to CDB
tagged by ROB entry #; mark reservation station
slot available

4. Commit – when instruction at head of Q ready,
writeback result unless mispredicted branch. In
latter case, flush all remaining instructions in ROB
and commence fetching at target.

Register renaming, virtual registers
versus Reorder Buffers

W05S12

• Alternative to Reorder Buffer is a larger virtual
set of registers and register renaming

• Virtual registers hold both architecturally visible
registers + temporary values

– replace functions of reorder buffer and reservation station

• Renaming process maps names of architectural
registers to registers in virtual register set

– Changing subset of virtual registers contains architecturally
visible registers

• Simplifies instruction commit: mark register as no
longer speculative, free register with old value

• Adds 40-80 extra registers: Alpha, Pentium,…
– Size limits no. instructions in execution (used until commit)

How much to speculate?

W05S13

• Speculation Pro: uncover events that would
otherwise stall the pipeline (cache misses)

• Speculation Con: speculate costly if exceptional
event occurs when speculation was incorrect

• Typical solution: speculation allows only low-
cost exceptional events (1st-level cache miss)

• When expensive exceptional event occurs,
(2nd-level cache miss or TLB miss) processor
waits until the instruction causing event is no
longer speculative before handling the event

• Assuming single branch per cycle: future may
speculate across multiple branches!

Limits to ILP

W05S14

• Conflicting studies of amount
– Benchmarks (vectorized Fortran FP vs. integer C programs)
– Hardware sophistication
– Compiler sophistication

• How much ILP is available using existing
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW mechanisms to
keep on processor performance curve?

– Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
– Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
– Motorola AltaVec: 128 bit ints and FPs
– Supersparc Multimedia ops, etc.

Limits to ILP

W05S15

Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted
2 & 3 => machine with perfect speculation & an
unbounded buffer of instructions available
4. Memory-address alias analysis – addresses are
known & a store can be moved before a load
provided addresses not equal

Also:
unlimited number of instructions issued/clock cycle;
perfect caches;
1 cycle latency for all instructions (FP *,/);

W05S16

Upper Limit to ILP: Ideal Machine
(Figure 3.34, page 294)

Programs

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

Integer: 18 - 60

FP: 75 - 150

IP
C

More Realistic HW: Branch Impact
Figure 3.38, Page 300

W05S17

35

41

16

61

58

60

9

12

10

48

15

6
7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

46

0

10

20

30

40

50

60

gcc espresso li fpppp doducd tomcatv

Program

Perfect Selective predictor Standard 2-bit Static None

Change from Infinite
window to examine to
2000 and maximum
issue of 64
instructions per clock
cycle

ProfileBHT (512)TournamentPerfect No prediction

FP: 15 - 45

Integer: 6 - 12

IP
C

W05S18

11

15

12

29

54

10

15

12

49

16

10

13
12

35

15

44

9
10

11

20

11

28

5 5
6 5 5

7

4 4
5

4
5 5

59

45

0

10

20

30

40

50

60

70

gcc espresso li fpppp doducd tomcatv

Program

Infinite 256 128 64 32 None

More Realistic HW:
Renaming Register Impact

Figure 3.41, Page 304

Change 2000 instr
window, 64 instr
issue, 8K 2 level
Prediction

64 None256Infinite 32128

Integer: 5 - 15

FP: 11 - 45

IP
C

W05S19

Program

0

5

10

15

20

25

30

35

40

45

50

gcc espresso li fpppp doducd tomcatv

10

15

12

49

16

45

7 7

9

49

16

4
5 4 4

6
5

3

5

3 3 4 4

45

Perfect Global/stack Perfect Inspection None

More Realistic HW:
Memory Address Alias Impact

Figure 3.43, Page 306

Change 2000 instr
window, 64 instr issue,
8K 2 level Prediction,
256 renaming registers

NoneGlobal/Stack perf;

heap conflicts

Perfect Inspec.

Assem.

FP: 4 - 45

(Fortran,

no heap)

Integer: 4 - 9

IP
C

W05S20

Program

0

10

20

30

40

50

60

gcc expresso li fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8 9

14

9

14

6 6 6
8

7
9

4 4 4 5
4

6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

Realistic HW for ‘00: Window Impact
(Figure 3.45, Page 309)

Perfect disambiguation
(HW), 1K Selective
Prediction, 16 entry
return, 64 registers,
issue as many as
window

64 16256Infinite 32128 8 4

Integer: 6 - 12

FP: 8 - 45

IP
C

How to Exceed ILP Limits of this
study?

W05S21

• WAR and WAW hazards through memory:
eliminated WAW and WAR hazards through
register renaming, but not in memory usage

• Unnecessary dependences (compiler not unrolling
loops so iteration variable dependence)

• Overcoming the data flow limit: value prediction,
predicting values and speculating on prediction

– Address value prediction and speculation predicts addresses
and speculates by reordering loads and stores; could provide
better aliasing analysis, only need predict if addresses =

Workstation Microprocessors 3/2001

W05S22Source: Microprocessor Report, www.MPRonline.com

• Max issue: 4 instructions (many CPUs)
Max rename registers: 128 (Pentium 4)
Max BHT: 4K x 9 (Alpha 21264B), 16Kx2 (Ultra III)
Max Window Size (OOO): 126 intructions (Pent. 4)
Max Pipeline: 22/24 stages (Pentium 4)

SPEC 2000 Performance 3/2001 Source: Microprocessor Report, www.MPRonline.com

W05S23

1.6X

3.8X

1.2X

1.7X

1.5X
Conclusion

W05S24

• 1985-2000: 1000X performance
– Moore’s Law transistors/chip => Moore’s Law for Performance/MPU

• Hennessy: industry been following a roadmap of ideas
known in 1985 to exploit Instruction Level Parallelism
and (real) Moore’s Law to get 1.55X/year
– Caches, Pipelining, Superscalar, Branch Prediction, Out-of-order

execution, …

• ILP limits: To make performance progress in future
need to have explicit parallelism from programmer vs.
implicit parallelism of ILP exploited by compiler, HW?
– Otherwise drop to old rate of 1.3X per year?
– Less than 1.3X because of processor-memory performance gap?

• Impact on you: if you care about performance,
better think about explicitly parallel algorithms
vs. rely on ILP?

