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Getting CPI < 1: 
Issuing Multiple Instructions/Cycle
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• Vector Processing: Explicit coding of independent 
loops as operations on large vectors of numbers

– Multimedia instructions being added to many processors

• Superscalar: varying no. instructions/cycle (1 to 8), 
scheduled by compiler or by HW (Tomasulo)

– IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium III/4

• (Very) Long Instruction Words (V)LIW:
fixed number of instructions (4-16) scheduled by 
the compiler; put ops into wide templates

– Intel Architecture-64 (IA-64) 64-bit address

» Renamed: “Explicitly Parallel Instruction Computer (EPIC)”

• Anticipated success of multiple instructions lead to 
Instructions Per Clock cycle (IPC) vs. CPI

Getting CPI < 1: Issuing
Multiple Instructions/Cycle
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• Superscalar MIPS: 2 instructions, 1 FP & 1 anything
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

• 1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot

Multiple Issue Issues
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• issue packet: group of instructions from fetch 
unit that could potentially issue in 1 clock

– If instruction causes structural hazard or a data hazard 
either due to earlier instruction in execution or to earlier 
instruction in issue packet, then instruction does not issue

– 0 to N instruction issues per clock cycle, for N-issue

• Performing issue checks in 1 cycle could limit 
clock cycle time: O(n2-n) comparisons

– => issue stage usually split and pipelined

– 1st stage decides how many instructions from within this 
packet can issue, 2nd stage examines hazards among selected 
instructions and those already been issued

– => higher branch penalties => prediction accuracy important



Multiple Issue Challenges
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• While Integer/FP split is simple for the HW, get CPI 
of 0.5 only for programs with:

– Exactly 50% FP operations AND No hazards

• If more instructions issue at same time, greater 
difficulty of decode and issue:

– Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide 
if 1 or 2 instructions can issue; (N-issue ~O(N2-N) comparisons)

– Register file: need 2x reads and 1x writes/cycle
– Rename logic: must be able to rename same register multiple times in 

one cycle!  For instance, consider 4-way issue:
add r1, r2, r3 add p11, p4, p7
sub r4, r1, r2 sub p22, p11, p4
lw r1, 4(r4) lw p23, 4(p22)
add r5, r1, r2 add p12, p23, p4

Imagine doing this transformation in a single cycle!
– Result buses: Need to complete multiple instructions/cycle

» So, need multiple buses with associated matching logic at every 
reservation station.

» Or, need multiple forwarding paths

Dynamic Scheduling in Superscalar
The easy way
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• How to issue two instructions and keep in-order 
instruction issue for Tomasulo?

– Assume 1 integer + 1 floating point

– 1 Tomasulo control for integer, 1 for floating point

• Key is assigning reservation station and updating 
control tables

– Issue 2X Clock Rate, so that issue remains in order

• Only loads/stores might cause dependency between 
integer and FP issue:

– Replace load reservation station with a load queue; 
operands must be read in the order they are fetched

– Load checks addresses in Store Queue to avoid RAW violation

– Store checks addresses in Load Queue to avoid WAR,WAW

Hardware-Based Speculation

W05S7

• Trying to exploit more ILP while maintaining 
control dependencies becomes a burden

• Overcome control dependencies by 
speculating on the outcome of branches and 
executing the program as if our guesses 
were correct

– Need to handle incorrect guesses

• Key ideas:
– Dynamic branch prediction

– Speculation

– Dynamic scheduling

Implementing Speculation
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• We consider building on top of Tomasulo’s 
algorithm

– Must separate bypassing of results among instructions 
from actual completion (write-back) of instructions

– Cannot allow updates to be performed that can’t be 
undone

– Instruction commit updates register or memory when 
instruction no longer speculative

– Need to add re-order buffer

• Key idea: execute out-of-order but commit 
in-order



Tomasulo extended to handle speculation
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Reorder buffer 
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• Contains 4 fields:
1. Instruction type indicates whether branch, store, or 

register op

2. Destination field memory or register

3. Value field

4. Ready flag indicates instruction has completed 
operation

• The renaming function of the reservation
stations is replaced by the ROB

• Every instruction has a ROB entry until it 
commits
– Therefore tag results using ROB entry number

Instruction execution
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1. Issue – get instruction from instruction Q and issue 
if reservation station and ROB slots available –
sometimes called dispatch

2. Execute – when both operands available at the 
reservation station – sometimes called issue

3. Write result – when result available, write to CDB 
tagged by ROB entry #; mark reservation station 
slot available

4. Commit – when instruction at head of Q ready, 
writeback result unless mispredicted branch. In 
latter case, flush all remaining instructions in ROB 
and commence fetching at target.

Register renaming, virtual registers 
versus Reorder Buffers
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• Alternative to Reorder Buffer is a larger virtual 
set of registers and register renaming

• Virtual registers hold both architecturally visible 
registers + temporary values

– replace functions of reorder buffer and reservation station

• Renaming process maps names of architectural 
registers to registers in virtual register set

– Changing subset of virtual registers contains architecturally 
visible registers

• Simplifies instruction commit: mark register as no 
longer speculative, free register with old value

• Adds 40-80 extra registers: Alpha, Pentium,…
– Size limits no. instructions in execution (used until commit)



How much to speculate?
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• Speculation Pro: uncover events that would 
otherwise stall the pipeline (cache misses)

• Speculation Con: speculate costly if exceptional 
event occurs when speculation was incorrect

• Typical solution: speculation allows only low-
cost exceptional events (1st-level cache miss)

• When expensive exceptional event occurs, 
(2nd-level cache miss or TLB miss) processor 
waits until the instruction causing event is no 
longer speculative before handling the event

• Assuming single branch per cycle: future may 
speculate across multiple branches!

Limits to ILP
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• Conflicting studies of amount
– Benchmarks (vectorized Fortran FP vs. integer C programs)
– Hardware sophistication
– Compiler sophistication

• How much ILP is available using existing 
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW mechanisms to 
keep on processor performance curve?

– Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints 
– Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
– Motorola AltaVec: 128 bit ints and FPs
– Supersparc Multimedia ops, etc.

Limits to ILP
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Initial HW Model here; MIPS compilers. 
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions 
3. Jump prediction – all jumps perfectly predicted 
2 & 3 => machine with perfect speculation & an 
unbounded buffer of instructions available
4. Memory-address alias analysis – addresses are 
known & a store can be moved before a load 
provided addresses not equal

Also:
unlimited number of instructions issued/clock cycle; 
perfect caches;
1 cycle latency for all instructions (FP *,/);
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Upper Limit to ILP: Ideal Machine
(Figure 3.34, page 294)
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More Realistic HW: Branch Impact
Figure 3.38, Page 300
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Figure 3.41, Page 304
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More Realistic HW: 
Memory Address Alias Impact

Figure 3.43, Page 306
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How to Exceed ILP Limits of this 
study?
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• WAR and WAW hazards through memory: 
eliminated WAW and WAR hazards through 
register renaming, but not in memory usage

• Unnecessary dependences (compiler not unrolling
loops so iteration variable dependence)

• Overcoming the data flow limit: value prediction,
predicting values and speculating on prediction

– Address value prediction and speculation predicts addresses 
and speculates by reordering loads and stores; could provide 
better aliasing analysis, only need predict if addresses =

Workstation Microprocessors 3/2001

W05S22Source: Microprocessor Report, www.MPRonline.com

• Max issue: 4 instructions (many CPUs)
Max rename registers: 128 (Pentium 4) 
Max BHT: 4K x 9 (Alpha 21264B), 16Kx2 (Ultra III)
Max Window Size (OOO): 126 intructions (Pent. 4)
Max Pipeline: 22/24 stages (Pentium 4)

SPEC 2000 Performance 3/2001 Source: Microprocessor Report, www.MPRonline.com
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1.6X

3.8X

1.2X

1.7X

1.5X
Conclusion
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• 1985-2000: 1000X performance 
– Moore’s Law transistors/chip => Moore’s Law for Performance/MPU

• Hennessy: industry been following a roadmap of ideas 
known in 1985 to exploit Instruction Level Parallelism 
and (real) Moore’s Law to get 1.55X/year
– Caches, Pipelining, Superscalar, Branch Prediction, Out-of-order 

execution, …

• ILP limits: To make performance progress in future 
need to have explicit parallelism from programmer vs. 
implicit parallelism of ILP exploited by compiler, HW?
– Otherwise drop to old rate of 1.3X per year?
– Less than 1.3X because of processor-memory performance gap?

• Impact on you: if you care about performance, 
better think about explicitly parallel algorithms 
vs. rely on ILP?


