
COMP4211 05s1 Seminar 4:
Branch Prediction

W04S1

Slides due to

David A. Patterson, 2001

Review Tomasulo

W04S2

• Reservations stations: implicit register renaming to
larger set of registers + buffering source operands

– Prevents registers as bottleneck
– Avoids WAR, WAW hazards of Scoreboard
– Allows loop unrolling in HW

• Not limited to basic blocks
(integer units gets ahead, beyond branches)

• Today, helps cache misses as well
– Don’t stall for L1 Data cache miss (insufficient ILP for L2 miss?)

• Lasting Contributions
– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are Pentium III; PowerPC 604;
MIPS R10000; HP-PA 8000; Alpha 21264

Tomasulo Algorithm and Branch
Prediction

W04S3

• 360/91 predicted branches, but did not
speculate: pipeline stopped until the branch
was resolved

– No speculation; only instructions that can complete

• Speculation with Reorder Buffer allows
execution past branch, and then discard if
branch fails

– just need to hold instructions in buffer until branch can
commit

Case for Branch Prediction when
Issue N instructions per clock cycle

W04S4

1. Branches will arrive up to n times faster in
an n-issue processor

2. Amdahl’s Law => relative impact of the
control stalls will be larger with the lower
potential CPI in an n-issue processor

7 Branch Prediction Schemes

W04S5

1. 1-bit Branch-Prediction Buffer

2. 2-bit Branch-Prediction Buffer

3. Correlating Branch Prediction Buffer

4. Tournament Branch Predictor

5. Branch Target Buffer

6. Integrated Instruction Fetch Units

7. Return Address Predictors

Dynamic Branch Prediction

W04S6

• Performance = ƒ(accuracy, cost of misprediction)
• Branch History Table: Lower bits of PC address

index table of 1-bit values
– Says whether or not branch taken last time
– No address check (saves HW, but may not be right branch)

• Problem: in a loop, 1-bit BHT will cause
2 mispredictions (avg is 9 iterations before exit):

– End of loop case, when it exits instead of looping as before
– First time through loop on next time through code, when it

predicts exit instead of looping
– Only 80% accuracy even if loop 90% of the time

Dynamic Branch Prediction
(Jim Smith, 1981)

W04S7

• Solution: 2-bit scheme where change prediction only
if get misprediction twice: (Figure 3.7, p. 198)

• Red: stop, not taken

• Green: go, taken

• Adds hysteresis to decision making process

T

T

NT

Predict Taken

Predict Not

Taken

Predict Taken

Predict Not

TakenT

NT

T

NT

NT

Prediction accuracy: 4K-entry 2-bit
table vs infinite table size

W04S8

Correlating Predictors

W04S9

• 2-bit prediction uses a small amount of (hopefully)
local information to predict behaviour

• Sometimes behaviour is correlated, and we can do
better by keeping track of direction of related
branches, for example consider the following code:

if (d==0)

d = 1;

if (d==1) {

• If the first branch is not taken, neither is the
second. Predictors that use the behaviour of other
branches to make a prediction are called
correlating predictors or two-level predictors

Correlating Branches

Idea: taken/not
taken of recently
executed branches is
related to behavior
of next branch (as
well as the history of
that branch behavior)

– Then behavior of recent
branches selects
between, say, 4
predictions of next
branch, updating just
that prediction

• (2,2) predictor: 2-bit
global, 2-bit local

W04S10

Branch address (4 bits)

2-bits per branch

local predictors

PredictionPrediction

2-bit global

branch history

(01 = not taken then taken)

W04S11

0%

1%

5%

6% 6%

11%

4%

6%

5%

1%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes
(Figure 3.15, p. 206)

4096 Entries 2-bit BHT

Unlimited Entries 2-bit BHT

1024 Entries (2,2) BHT

0%

18%

F
re

q
u

e
n

c
y

 o
f

M
is

p
re

d
ic

ti
o

n
s

Re-evaluating Correlation

W04S12

• Several of the SPEC benchmarks have less
than a dozen branches responsible for 90%
of taken branches:
program branch % static # = 90%

compress 14% 236 13

eqntott 25% 494 5

gcc 15% 9531 2020

mpeg 10% 5598 532

real gcc 13% 17361 3214

• Real programs + OS more like gcc

• Small benefits beyond benchmarks for
correlation? problems with branch aliases?

BHT Accuracy

W04S13

• Mispredict because either:
– Wrong guess for that branch

– Got branch history of wrong branch when index the
table

• 4096 entry table programs vary from 1%
misprediction (nasa7, tomcatv) to 18%
(eqntott), with spice at 9% and gcc at 12%

• For SPEC92,
4096 about as good as infinite table

Tournament Predictors

W04S14

• Motivation for correlating branch predictors is
2-bit predictor failed on important branches;
by adding global information, performance
improved

• Tournament predictors: use 2 predictors, 1
based on global information and 1 based on
local information, and combine with a selector

• Hopes to select right predictor for right
branch

Tournament Predictor in Alpha 21264

W04S15

• 4K 2-bit counters to choose from among a global
predictor and a local predictor

• Global predictor also has 4K entries and is indexed by
the history of the last 12 branches; each entry in the
global predictor is a standard 2-bit predictor

– 12-bit pattern: ith bit 0 => ith prior branch not taken;
ith bit 1 => ith prior branch taken;

• Local predictor consists of a 2-level predictor:
– Top level a local history table consisting of 1024 10-bit

entries; each 10-bit entry corresponds to the most recent
10 branch outcomes for the entry. 10-bit history allows
patterns 10 branches to be discovered and predicted.

– Next level Selected entry from the local history table is
used to index a table of 1K entries consisting a 3-bit
saturating counters, which provide the local prediction

• Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!

(~180,000 transistors)

% of predictions from local predictor
in Tournament Prediction Scheme

98%

100%

94%

90%

55%

76%

72%

63%

37%

69%

0% 20% 40% 60% 80% 100%

nasa7

matrix300

tomcatv

doduc

spice

fpppp

gcc

espresso

eqntott

li

W04S16

W04S17

Accuracy v. Size (SPEC89)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Total predictor size (Kbits)

Local

Correlating

Tournament

Pitfall: Sometimes bigger and
dumber is better

W04S18

• 21264 uses tournament predictor (29 Kbits)
• Earlier 21164 uses a simple 2-bit predictor

with 2K entries (or a total of 4 Kbits)
• SPEC95 benchmarks, 21264 outperforms

– 21264 avg. 11.5 mispredictions per 1000 instructions
– 21164 avg. 16.5 mispredictions per 1000 instructions

• Reversed for transaction processing (TP) !
– 21264 avg. 17 mispredictions per 1000 instructions
– 21164 avg. 15 mispredictions per 1000 instructions

• TP code much larger & 21164 hold 2X
branch predictions based on local behavior
(2K vs. 1K local predictor in the 21264)

Need Address
at Same Time as Prediction

• Branch Target Buffer (BTB): Address of branch index to get
prediction AND branch address (if taken)
– Note: must check for branch match now, since can’t use wrong branch address

(Figure 3.19, p. 210)

Branch PC Predicted PC

=?

PC
 of instruction

F
E
T
C
H

Extra
prediction state

bits

Yes: instruction is
branch and use
predicted PC as
next PC

No: branch not
predicted, proceed normally

(Next PC = PC+4)
W04S19 W04S20

Predicated Execution

• Avoid branch prediction by turning branches
into conditionally executed instructions:

if (x) then A = B op C else NOP
– If false, then neither store result nor cause exception

– Expanded ISA of Alpha, MIPS, PowerPC, SPARC have
conditional move; PA-RISC can annul any following
instr.

– IA-64: 64 1-bit condition fields selected
so conditional execution of any instruction

– This transformation is called “if-conversion”

• Drawbacks to conditional instructions
– Still takes a clock even if “annulled”

– Stall if condition evaluated late

– Complex conditions reduce effectiveness;
condition becomes known late in pipeline

x

A =
B op C

W04S21

Special Case Return Addresses

W04S22

• Register Indirect branch hard to predict
address

• SPEC89 85% such branches for procedure
return

• Since stack discipline for procedures, save
return address in small buffer that acts like
a stack: 8 to 16 entries has small miss rate

Dynamic Branch Prediction Summary

W04S23

• Prediction becoming important part of scalar
execution

• Branch History Table: 2 bits for loop accuracy
• Correlation: Recently executed branches correlated

with next branch.
– Either different branches
– Or different executions of same branches

• Tournament Predictor: more resources to
competitive solutions and pick between them

• Branch Target Buffer: include branch address &
prediction

• Predicated Execution can reduce number of
branches, number of mispredicted branches

• Return address stack for prediction of indirect
jump

