COMP4211 05s1 Seminar 4:
Branch Prediction

Slides due to
David A. Patterson, 2001

wo4s1

Review Tomasulo

- Reservations stations: implicit register renaming to

larger set of registers + buffering source operands
- Prevents registers as bottleneck
- Avoids WAR, WAW hazards of Scoreboard
- Allows loop unrolling in HW

* Not limited to basic blocks

(integer units gets ahead, beyond branches)

* Today, helps cache misses as well

- Don't stall for L1 Data cache miss (insufficient ILP for L2 miss?)

* Lasting Contributions

- Dynamic scheduling
- Register renaming
- Load/store disambiguation

- 360/91 descendants are Pentium III; PowerPC 604;

MIPS R10000; HP-PA 8000; Alpha 21264

wo4s2

Tomasulo Algorithm and Branch
Prediction

- 360/91 predicted branches, but did not
speculate: pipeline stopped until the branch
was resolved

- No speculation; only instructions that can complete
- Speculation with Reorder Buffer allows
execution past branch, and then discard if
branch fails

- just need to hold instructions in buffer until branch can
commit

Wo04s3

Case for Branch Prediction when
Issue N instructions per clock cycle

1. Branches will arrive up to n times faster in
an n-issue processor

2. Amdahl's Law => relative impact of the
control stalls will be larger with the lower
potential CPI in an n-issue processor

Wo04s4




7 Branch Prediction Schemes

1-bit Branch-Prediction Buffer
2-bit Branch-Prediction Buffer
Correlating Branch Prediction Buffer
Tournament Branch Predictor
Branch Target Buffer

Integrated Instruction Fetch Units
Return Address Predictors

N hwpE=

Wo04s5

Dynamic Branch Prediction

* Performance = f(accuracy, cost of misprediction)
« Branch History Table: Lower bits of PC address

index table of 1-bit values
- Says whether or not branch taken last time
- No address check (saves HW, but may not be right branch)

* Problem: in a loop, 1-bit BHT will cause

2 mispredictions (avg is 9 iterations before exit):
- End of loop case, when it exits instead of looping as before

- First time through loop on next time through code, when it
predicts exi/t instead of looping

- Only 80% accuracy even if loop 90% of the time

Wo04s6

Dynamic Branch Prediction
(Jim Smith, 1981)

* Solution: 2-bit scheme where change prediction only
if get misprediction twice: (Figure 3.7, p. 198)

T

Predict Taken Predict Taken

Predict Not Predict Not
Taken Taken
* Red: stop, not taken NT

- Green: go, taken
* Adds hAysteresis to decision making process

wo04s7

Prediction accuracy: 4K-entry 2-bit
table vs infinite table size

nasa7

0%
: 0% W 4096 entries:
matrix300
. 0% 2 bits per entry
% O Unilimited entries:
tomeaty ” 2 bits per entry
0%

doduc

SPECS9
benchmarks

gee
espresso

18%

ntott
“ 18%

10%
10%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions wo04s8




Correlating Predictors

- 2-bit prediction uses a small amount of (hopefully)
local information to predict behaviour

Sometimes behaviour is correlated, and we can do
better by keeping track of direction of related
branches, for example consider the following code:

if (d==0)
d = 1;
if (d==1) {

« If the first branch is not taken, neither is the
second. Predictors that use the behaviour of other
branches to make a prediction are called
correlating predictors or two-level predictors

Wo04s9

Correlating Branches

Idea: taken/not
taken of recently
executed branches is _
related to behavior 2-bits per bfanch
of next branch (as local prediptors
well as the history of
that branch behavior)

- Then behavior of recent
branches selects
between, say, 4
predictions of next
branch, updating just
that prediction

(2,2) predictor: 2-bit
global, 2-bit local 2-bit global

branch history
(01 = not taken then taken)

Branch address (4 bits)

1
1

HInnn
1

HInnn

HIINNN (anin

vaks

—»l Prediction

Wo04s10

Accuracy of Different Schemes
(Figure 3.15, p. 206)

18%

8% 4096 Entries 2-bit BHT
6% 1 Unlimited Entries 2-bit BHT
s + 1024 Entries (2,2) BHT

12% T

10% T

8% T

6% T

% T

Frequency of Mispredictions

0%

0%

nasa’
matrix300
tomcaty
dod ucd
spice
fpppp

qec
B3presso
eqntott

B 4,096 entries: 2-bits per entry @ Unlimited entries: 2-bits/entry W 1,024 entries (2,2) |

wo04s11

Re-evaluating Correlation

- Several of the SPEC benchmarks have less
than a dozen branches responsible for 90%
of taken branches:

program branch % static # = 90%
compress 14% 236 13
egntott 25% 494 5
gcc 15% 9531 2020
mpeg 10% 5598 532
real gcc 13% 17361 3214

* Real programs + OS more like gcc

- Small benefits beyond benchmarks for
correlation? problems with branch aliases?

wo4s12




BHT Accuracy

* Mispredict because either:
- Wrong guess for that branch

- Got branch history of wrong branch when index the
table

+ 4096 entry table programs vary from 1%
misprediction (nasa7, tomcatv) to 18%
(egntott), with spice at 9% and gcc at 12%

- For SPEC92,
4096 about as good as infinite table

Wo04s13

Tournament Predictors

*+ Motivation for correlating branch predictors is
2-bit predictor failed on important branches:
by adding global information, performance
improved

* Tournament predictors: use 2 predictors, 1
based on global information and 1 based on
local information, and combine with a selector

* Hopes to select right predictor for right
branch

W04s14

Tournament Predictor in Alpha 21264

+ 4K 2-bit counters to choose from among a global
predictor and a local predictor

* Global predictor also has 4K entries and is indexed by
the history of the last 12 branches; each entry in the
global predictor is a standard 2-bit predictor

- 12-bit pattern: ith bit O => ith prior branch not taken;
ith bit 1 => ith prior branch taken:

* Local predictor consists of a 2-level predictor:

- Top level a local history table consisting of 1024 10-bit
entries; each 10-bit entry corresponds to the most recent
10 branch outcomes for the entry. 10-bit history allows
patterns 10 branches to be discovered and predicted.

- Next level Selected entry from the local history table is
used to index a table of 1K entries consisting a 3-bit
saturating counters, which provide the local prediction

- Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
(~180,000 transistors)

Wo04s15

% of predictions from local predictor
in Tournament Prediction Scheme

0% 20% 40% 60% 80% 100%

nasa7
matrix300
tomcatv
doduc
spice

espresso
eqgntott
li

Wo04s16




Accuracy v. Size (SPEC89)

10%
9%
8%
7%
6% -
5% &
4% A
3% A
2% A
1% -
0%

Conditional branch misprediction rate

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Total predictor size (Kbits)

wo4s17

Pitfall: Sometimes bigger and
dumber is better

21264 uses tournament predictor (29 Kbits)

Earlier 21164 uses a simple 2-bit predictor
with 2K entries (or a total of 4 Kbits)

SPEC95 benchmarks, 21264 outperforms
- 21264 avg. 11.5 mispredictions per 1000 instructions
- 21164 avg. 16.5 mispredictions per 1000 instructions
Reversed for transaction processing (TP) !
- 21264 avg. 17 mispredictions per 1000 instructions
- 21164 avg. 15 mispredictions per 1000 instructions
TP code much larger & 21164 hold 2X

branch predictions based on local behavior
(2K vs. 1K local predictor in the 21264)

wo4s18

Need Address
at Same Time as Prediction

+ Branch Target Buffer (BTB): Address of branch index to get
prediction AND branch address (if taken)

- Note: must check for branch match now, since can't use wrong branch address

(Figure 3.19, p. 210)
Branch PC Predicted PC

H2134

‘ UoILINUYSUl JO Od

. L Extra
Yes: instruction is prediction state

) branch and use bi
. No: branch not predicted PC as s
predicted, proceed normally next PC

(Next PC = PC+4)

wo04s19

IF

Entry found in
branch-target
buffer?

Is
instruction Yes
a taken
branch?

Normal
instruction
axacution

I

Enter Mispredicted Branch

branch instruction branch, kill fetched cormectly
address and instruction; restart predicted;
EX next PC fetch at other continue
into branch- target; delete execution with
target buffer entry from no stalls
— target buffer

W04520




Predicated Execution

Avoid branch prediction by turning branches Special Case Return Addresses

into conditionally executed instructions:

if (x) then A = B op C else NOP * Register Indirect branch hard to predict
- If false, then neither store result nor cause exception address
- Expanded ISA of Alpha, MIPS, PowerPC, SPARC have . °
conditional move; PA-RISC can annul any following _ SPEC89 85% such branches for pr'ocedur'e
instr. A= return
so conditional execution of any instruction ‘

return address in small buffer that acts like

- This transformation is called "if-con ion” . 3
s Transtormation is cafled “IT-conversio a stack: 8 to 16 entries has small miss rate

Drawbacks to conditional instructions
- Still takes a clock even if “annulled”
- Stall if condition evaluated late

- Complex conditions reduce effectiveness;
condition becomes known late in pipeline

wo4s21 Wo04s22

Dynamic Branch Prediction Summary

* Prediction becoming important part of scalar
execution

* Branch History Table: 2 bits for loop accuracy
* Correlation: Recently executed branches correlated
with next branch.
- Either different branches
- Or different executions of same branches

« Tournament Predictor: more resources to
competitive solutions and pick between them

* Branch Target Buffer: include branch address &
prediction

* Predicated Execution can reduce number of
branches, number of mispredicted branches

* Return address stack for prediction of indirect
Jump Wo4s23




