
COMP4211 (Seminar)
Intro to Instruction-Level Parallelism

05S1 Week 02
Oliver Diessel

05S1 COMP4211 Seminar W02S2

Overview

• Review pipelining from COMP3211
• Look at integrating FP hardware into the pipeline

– Example: MIPS R4000

• Goal: increasing exploitation of ILP
• A little more on hazards…

• Refs:
– Hennessy & Patterson, Appendix A; Chapter 3

05S1 COMP4211 Seminar W02S3

Five stage statically scheduled pipeline

05S1 COMP4211 Seminar W02S4

Pipeline characteristics

• Parallelism
• 1 instruction issued per cycle
• CPI Pipelined = Ideal CPI 

+ Pipeline stall cycles per instruction
• Reduced performance due to hazards:

– Structural
• E.g. single memory – need to provide sufficient resources

– Data
• Use forwarding/stall

– Control
• Cope with hardware and software techniques



05S1 COMP4211 Seminar W02S5

Structural hazard example

05S1 COMP4211 Seminar W02S6

Data hazard examples

05S1 COMP4211 Seminar W02S7

Data hazard remedy – forwarding 

05S1 COMP4211 Seminar W02S8

Data hazard needing stall



05S1 COMP4211 Seminar W02S9

Forwarding hardware

05S1 COMP4211 Seminar W02S10

Control hazard – hardware amelioration

05S1 COMP4211 Seminar W02S11

Control stalls – software amelioration

05S1 COMP4211 Seminar W02S12

Notes on scheduling the delay slot

• Scheduling an op that is above and independent of 
the branch into the delay slot, as in (a) is 
preferable

• If that is not possible, and we know the branch is 
usually taken, then as in (b)we can schedule from 
the target of the branch

• Otherwise, one of the fall-through instructions can 
be moved to the delay slot as in (c)

• In cases (b) and (c) it must not be the case that the 
moved instruction alters program correctness if 
the branch goes in the unexpected direction



05S1 COMP4211 Seminar W02S13

Extending MIPS to handle FP operations

2524Div (Int & FP)

16Mult (Int & FP)

13FP add

11Memory (Int & FP 
loads)

10Integer ALU

Initiation 
interval

LatencyFunctional unit

05S1 COMP4211 Seminar W02S14

Making the pipeline stages explicit

05S1 COMP4211 Seminar W02S15

FP pipeline hazards

• Structural – only divide unit
• RAW – easiest to stall at ID stage if a source is not 

yet available
• WAW – stall at ID if necessary

05S1 COMP4211 Seminar W02S16

Example: MIPS R4000 pipeline

• 8 stage pipeline
• Extend IF & MEM stages to account for cache 

overheads
– Split into “First” and “Second” stages followed by a 

“Tag Check” for misses
– The IF tag check is done in the RF stage



05S1 COMP4211 Seminar W02S17

R4000: 2 cycle LoaD delay

05S1 COMP4211 Seminar W02S18

R4000: 3 cycle BRanch delay

05S1 COMP4211 Seminar W02S19

R4000: SPEC92 performance

05S1 COMP4211 Seminar W02S20

Instruction-level parallelism

• Pipelining commonly used since 1985 to overlap 
the execution & improve performance – since 
instructions evaluated in parallel, known as 
instruction-level parallelism (ILP)

• Here we look at extending pipelining ideas by 
increasing the amount of parallelism exploited 
among instructions

• Start by looking at limitation imposed by data & 
control hazards, then look at increasing the ability 
of the processor to exploit parallelism



05S1 COMP4211 Seminar W02S21

Two main approaches

• Two largely separable approaches to exploiting 
ILP:
– Dynamic techniques (HP, Ch. 3) depend upon hardware 

to locate parallelism
– Static techniques (HP, Ch. 4) rely much more on 

software

• Practical implementations typically involve a mix 
or some crossover of these approaches

• Dynamic, hardware-intensive approaches 
dominate the desktop and server markets; 
examples include Pentium, Power PC, and Alpha

• Static, compiler-intensive approaches have seen 
broader adoption in the embedded market, except, 
for example, IA-64 and Itanium 

05S1 COMP4211 Seminar W02S22

Questions this raises:

• What are the features of programs & processors that 
limit the amount of parallelism that can be exploited 
among instructions?

• How are programs mapped to hardware?
• Will a program property limit performance? If so, 

when?

05S1 COMP4211 Seminar W02S23

Recall from Pipelining Review

• Pipeline CPI = Ideal pipeline CPI + Structural 
Stalls + Data Hazard Stalls + Control Stalls
– Ideal pipeline CPI: measure of the maximum 

performance attainable by the implementation
– Structural hazards: HW cannot support this 

combination of instructions
– Data hazards: Instruction depends on result of prior 

instruction still in the pipeline
– Control hazards: Caused by delay between the 

fetching of instructions and decisions about changes 
in control flow (branches and jumps)

• In order to increase instructions/cycle (IPC) we 
need to pay increasing attention to dealing with 
stalls

05S1 COMP4211 Seminar W02S24

Ideas to Reduce Stalls
Technique Reduces
Dynamic scheduling Data hazard stalls
Dynamic branch
prediction

Control stalls

Issuing multiple
instructions per cycle

Ideal CPI

Speculation Data and control stalls
Dynamic memory
disambiguation

Data hazard stalls involving
memory

Loop unrolling Control hazard stalls
Basic compiler pipeline
scheduling

Data hazard stalls

Compiler dependence
analysis

Ideal CPI and data hazard stalls

Software pipelining and
trace scheduling

Ideal CPI and data hazard stalls

Compiler speculation Ideal CPI, data and control stalls

Chapter 3

Chapter 4



05S1 COMP4211 Seminar W02S25

First limits on exploiting ILP

• The amount of parallelism available within a basic 
block – a straight-line code sequence with no 
branches in or out except to the entry and from the 
exit – is quite small

• Typical dynamic branch frequency is often 
between 15% and 25% – between 4 and 7 
instructions execute between branch pairs – these 
instructions are likely to depend upon each other, 
and thus the overlap we can exploit within a basic 
block is typically less than the average block size

• To obtain substantial performance enhancements, 
we must exploit ILP across multiple basic blocks

05S1 COMP4211 Seminar W02S26

Loop-level parallelism

• Loop-level parallelism increases the amount of parallelism 
available among iterations of a loop

• In the code:

for (i=1; i<1000; i++)

x[i] = x[i] + y[i];
every iteration can overlap with any other, although within a 
loop iteration there is little or no opportunity for overlap

• We will examine techniques for unrolling loops to convert 
the loop-level parallelism to ILP

• Another approach to exploiting loop-level parallelism is to 
use vector instructions. While processors that exploit ILP 
have almost totally replaced vector processors, vector 
instruction sets may see a renaissance for use in graphics, 
DSP, and multimedia

05S1 COMP4211 Seminar W02S27

Data dependences and hazards

• In order to exploit ILP we must determine which 
instructions can be executed in parallel

• Parallel instructions can execute simultaneously 
without causing stalls assuming there are no 
structural hazards (sufficient resources)

• Dependent instructions are not parallel and must 
be executed in order, although they may often be 
partially overlapped

• Three types of dependences exist:
– Data dependences
– Name dependences
– Control dependences

05S1 COMP4211 Seminar W02S28

Data dependence

• Instruction j is data dependent on instruction i if:
– i produces a result that may be used by j, or
– j is data dependent on instruction k, and k is data dependent 

on instruction i.

• Example

Loop: L.D F0,0(R1) ;F0 = array element

ADD.D F4,F0,F2 ;add scalar in F2

S.D F4,0(R1) ;store result

ADDUI R1,R1,#-8 ;dec pointer 8 bytes

BNE R1,R2,LOOP ;branch R1!=R2

has data dependences on consecutive pairs of instructions



05S1 COMP4211 Seminar W02S29

Dependencies vs Hazards

• Processors with pipeline interlocks will detect a hazard and 
stall if such instructions are scheduled simultaneously

• Compilers for processors without interlocks that rely on 
compiler scheduling cannot schedule dependent 
instructions to allow complete overlap

• Dependences are properties of programs – whether a 
dependence results in an actual hazard being detected and 
whether that hazard causes a stall is a property of the 
pipeline organization

• A dependence 

1. Indicates the possibility of a hazard;
2. Determines the order in which results must be 

calculated; and
3. Sets an upper bound on how much parallelism 

can possibly be exploited
05S1 COMP4211 Seminar W02S30

Maximise ILP by reducing hazards

• Since data dependences limit the amount of ILP 
we can exploit, we focus on how to overcome 
those limitations

• A dependence can be overcome by
– Maintaining the dependence but avoiding a hazard, and
– Eliminating the dependence by transforming the code.

• Here we primarily consider hardware techniques 
for scheduling the code dynamically as it is 
executed

05S1 COMP4211 Seminar W02S31

Dependencies via register/memory 

• Data values may flow from instruction to instruction 
– via registers (in which case dependence detection is 

reasonably straightforward since register names are fixed in 
the instructions, although intervening branches may cause 
correctness concerns), or

– via memory (in which case dependences are more difficult to 
detect because of aliasing i.e. 100(R4) = 20(R6) and effective 
addresses such as 20(R6) may change from one execution of 
an instruction to the next)

• We will examine hardware for detecting data dependences 
that involve memory locations and will see the limitations of 
these techniques

• Compiler techniques for detecting dependences (Ch. 4) may 
be examined later

05S1 COMP4211 Seminar W02S32

Name dependences

• A name dependence occurs when two instructions use the 
same register or memory location, called a name but there 
is no flow of data between the instructions associated with 
that name

• Two types, defined between an instruction i that precedes
instruction j:
1. An antidependence occurs when j writes to a name that i 

reads – the original ordering must be preserved
e.g. ADD R1, R3, R4

LD R4, 0(R0)

2. An output dependence occurs when i and j write to the same 
name – also requires order to be preserved
e.g. ADD R4, R3, R1

LD R4, 0(R0)



05S1 COMP4211 Seminar W02S33

Avoiding name dependencies

• Since a name dependence is not a true (data) 
dependence, instructions involved in a name 
dependence can be executed simultaneously or be 
reordered if the name (register or memory 
location) is changed to avoid the conflict

• Renaming is more easily done for registers, and it 
can be done either statically by the compiler, or 
dynamically by hardware

05S1 COMP4211 Seminar W02S34

Data hazards

• A hazard is created whenever there is a 
dependence between instructions and they are 
close enough that the overlap caused by 
pipelining or reordering would change the order of 
access to the operand involved in the dependence

• We must then preserve program order i.e., the 
order instructions would execute in if executed 
sequentially

• Our goal is to exploit parallelism by preserving 
program order only where it affects the outcome of 
the program

• Detecting & avoiding hazards ensures the 
necessary program order is preserved

05S1 COMP4211 Seminar W02S35

Categorizing data hazards

• Three types of data hazards depending upon the 
order of read and write accesses

• By convention, hazards are named by the 
ordering that must be preserved

• Consider two instructions i and j with i occurring 
before j in program order. The possible hazards 
are:
– RAW (read after write) – j tries to read a source before i 

writes it. This hazard is most common and corresponds 
to true data dependence
e.g. LD R4, 0(R0)

ADD R1, R3, R4

05S1 COMP4211 Seminar W02S36

Data hazard categories

– WAW (write after write) – j tries to write an operand 
before it is written by i. This hazard corresponds to 
output dependence. They occur in pipelines that write in 
more than one stage or allow instructions to proceed 
when previous ones are stalled. It is not present in the 
simple statically scheduled 5 stage pipeline that only 
writes in the WB stage.

– WAR (write after read) – j tries to write a destination 
before it has been read by i. Arises from 
antidependence. Cannot occur in static issue pipelines 
when reads are earlier in the pipeline than writes. Can 
occur when some instruction writes early in the pipeline 
and another reads late, or when instructions can be 
reordered

• Note that RAR (read after read) is not a hazard



05S1 COMP4211 Seminar W02S37

Control dependence

• A control dependence determines the ordering of 
an instruction i with respect to a branch 
instruction so that i is executed in correct program 
order, and only when it should be
e.g. S1;

if P2 {

S3;

}

• S1 cannot be moved under the control of P2, nor 
can S3 be moved out of control of P2

05S1 COMP4211 Seminar W02S38

Control Dependence Ignored

• Control dependence need not be preserved
– willing to execute instructions that should not have 

been executed, thereby violating the control 
dependences, if can do so without affecting 
correctness of the program 

• Instead, 2 properties critical to program 
correctness are exception behavior and data 
flow

05S1 COMP4211 Seminar W02S39

Overcoming data hazards with dynamic 
scheduling
• Simple statically scheduled pipelines fetch instructions and 

issue them unless stalled due to some data dependence 
that cannot be hidden by forwarding

• Once stalled, no further instructions are fetched or issued 
until the dependence is cleared

• From now on we explore dynamic scheduling in which the 
hardware rearranges instruction execution to reduce stalls 
while maintaining data flow and exception behaviour

• This technique allows us to handle dependences that are 
unknown at compile time (e.g. a memory reference) and 
allows code that was compiled with one pipeline in mind to 
be efficiently executed on a different pipeline

• Unfortunately, the benefits of dynamic scheduling are 
gained at the cost of a significant increase in hardware 
complexity

05S1 COMP4211 Seminar W02S40

Scheduling to minimize hazards

• A dynamically scheduled processor attempts to 
avoid stalls in the presence of dependences.

• In contrast, static pipeline scheduling by the 
compiler (Ch. 4) tries to minimize stalls by 
separating dependent instructions to avoid 
hazards



05S1 COMP4211 Seminar W02S41

For next week:

• Appendix A.8 – Scoreboarding
• Ch 3.2,3.3 – Tomasulo’s Algorithm


