
Analysis

Summary

Intro

New Arch

Systems and 

Techniques for Fast 

FPGA Reconfiguration

Usama Malik
School of Computer Science and Engineering 

University of New South Wales 

Sydney, Australia

Analysis

Summary

Intro

New Arch

The Thesis

• This thesis examines the problem of 

reducing reconfiguration time of an 

FPGA at its configuration memory 

level.

Analysis

Summary

Intro

New Arch

Existing Designs

• An SRAM-based FPGA consists 
of logic cells and switches that 
can be configured to realize an 
on-chip circuit

• The device is configured by 
loading configuration (or
instruction) data in the 
configuration SRAM

– The SRAM can be thought of as 
a local instruction cache

• Dynamic reconfiguration involves 
re-loading the configuration data 
in order to the change the 
behavior of the executing circuits

– This corresponds to our cache 
misses in the general problem

Analysis

Summary

Intro

New Arch

Existing Designs

• Various configuration 

distribution models 

exist

• A shift register 

solution (XV4000 

series)

– Synchronous update 

of the entire memory

– Simple but constant

reconfiguration delay



Analysis

Summary

Intro

New Arch

Existing Designs

• Various configuration distribution 
models exists

• A shift register solution (XV4000
series)

– Constant reconfiguration delay

– Synchronous update of the 
entire memory

• RAM style addressing  (XC6200
series)

– Byte sized instructions

– Synchronous update of k
memory cells

– Partial reconfiguration reduces 
the reconfiguration bandwidth

– Scalability issues

» Significant on-chip wiring 
resources needed

Address Data

Analysis

Summary

Intro

New Arch

Existing Designs

• The Virtex Model

– Combines the shift register model with the 
RAM model

• Synchronous update of a portion of a 
memory-column

– Instruction size = 18X#rows+2x18 bits 
(more than 150bytes for a large device)

– Single configuration port for address and 
data

• Pin limitations in large devices

• Reconfiguration time is proportional to the 
amount of frame data plus the address data

– DMA style addressing
• Load the address of the first frame and the 

number of consecutive frames to follow

• Our target device
– State-of-the-art

– Widely used in research

– Have associated CAD tools available

f frame/Column

b bytes/frame

Analysis

Summary

Intro

New Arch

Analyzing Partial

Reconfigurablity in Virtex

• The configuration re-use problem
• Input: A sequence of configurations

• Aim: To minimize the total number of frames to be loaded

• Algorithm
– Place the first configuration on chip.

– For each next configuration in the sequence
• Load the frames that are present in the next but are different 

from the current on-chip frames at the same addresses.

• Results
– For a sequence of thirteen benchmark circuits, 1% of the 

frames were re-used (Target device was an XCV1000). 

– A judicial placement of circuits to increase the amount of 
overlap between successive configurations increased the re-
use to 3%.

Analysis

Summary

Intro

New Arch

The Effect of 

Frame Granularity

b/8 bytes/frame

b bytes/frame FPGA

• Motivation

– A single bit change in a 
frame can lead to loading 
the entire frame (156 
bytes).

– Break the frame into sub-
frames and assume that 
each sub-frame can be 
independently loaded on 
the device.

• Results

– At single byte granularity 
up to 78% of frame data 
was removed for the 
same circuits (assuming 
fixed placements)



Analysis

Summary

Intro

New Arch

The Configuration 

Addressing Problem

• Decreasing the size of the configuration unit can 
reduce the reconfiguration bandwidth 
requirements.

• However, increasing the number of configuration 
units increases the overhead in terms of address 
data.

• Assuming a RAM style addressing the overall 
reduction in the previous case was calculated to 
be 34%. 

• Thus, the address data is a significant factor in 
consuming bandwidth motivating the need to 
study configuration addressing schemes.

Analysis

Summary

Intro

New Arch

The Configuration 

Addressing Problem

• Let there be n configuration registers in 
the device numbered from 1 to n.

• We are given an address set {a1, a2,
a3….ak} where 1 ai n, 1 k n.

• Our goal is to find an efficient encoding of 
the address set
– The address string must be small so that it 

demands less configuration bandwidth

– The address decoding must be fast so that the 
decoder delay is small

• Next we study the run-length encoding (or 
the DMA model) of the address set.

Analysis

Summary

Intro

New Arch

The DMA Analysis

• The previous analysis was 
repeated for a set of ten 
benchmark circuits from the 
signal processing domain 
mapped onto an XCV100 device 
(90,160 bytes per complete 
configuration)

• The total amount of frame data 
under the available Virtex model
was 684,944 bytes for a 
sequence of nine circuits (we 
assumed that the first circuit was 
already on-chip)

• DMA performed best at 2-byte 
granularity

– 42% reduction in the amount of 
configuration data compared to 
the existing model

• Performs similar to the RAM 
model at single-byte granularity

Sub-

Frame

Size

(B)

Sub-Frame

Data (B)

RAM

Address

(B)

DMA

Address

(B)

8 390,725 83,290

(39%)

35,382

(41)

4 322,164 151,014

(31%)

76,819

(41%)

2 248,620 248,620

(27%)

144,104

(42%)

1 164,121 348,758

(25%)

365,211

(22%)

A better configuration addressing 

scheme is required

Analysis

Summary

Intro

New Arch

The Vector Addressing (VA) 

Technique

• Unary or one-hot 
encoding of the address 
set

• Define a bit vector of size 
n bits where n is the 
number of configuration 
registers in the device
– Set the ith bit in the vector 

if the ith register is to be 
updated else clear it to 
zero

• For the same sequence of 
circuits a maximum of
60% reduction in the 
configuration data was 
observed.

Frame

Size

(B)

#Frames

in an 

XCV100

Total VA 

Data (B)

% reduction

compared to 

current Virtex

8 11,270 12,679 41

4 22,540 25,358 48

2 45,080 50,715 51

1 90,160 101,430 60



Analysis

Summary

Intro

New Arch

Vector Addressing: 

Theoretical Considerations

• The VA method has a constant addressing overhead of n
bits compared to the RAM method which gives klog2(n) bits

• Compare n < klog2(n)
– VA method is better than the RAM method as long as k > 

n/log2(n)
• This has been shown for core style reconfiguration where an 

entire circuit is swapped with an other (e.g. a filter by an 
encryption circuit).

• Another use of dynamic reconfiguration is making a small 
update to the on-chip circuits (e.g. updating filter 
coefficients)
– The above inequality is not likely to be true in these case

• In order to cater for the needs of reconfiguration at 
opposing ends of granularity combine DMA with VA
– Enhance the current Virtex Model by incorporating the VA at 

the frame level

Analysis

Summary

Intro

New Arch

Deriving the New Memory 

Architecture

• Consider RAM style 
implementation of DMA-VA

– Frame registers
implemented as a column of 
independent registers

– A frame address decoder 
selects a column (i.e. a 
frame)

– Add a vector address 
decoder (VAD) that selects a 
row

• Problem
– Too many wires

• Consider a read-modify-write 
strategy

– In Virtex frames are first
written in an intermediate
buffer called frame data 
register (FDR) and then 
shifted in their final 
destination

• Read a frame into FDR, 
modify it and write it back

– Keeps the shift register
implementation of frame 
registers intact

• Problem
– The bandwidth mismatch

– Frames must be read/written 
fast enough otherwise the 
benefit of partial updates will 
be lost

Analysis

Summary

Intro

New Arch

Deriving the New 

Architecture

• Let the configuration port be of size c bits
– The VA data must be loaded in chunks of c bits.

– Thus at any stage only c bytes of frame data can be modified

• Partition the memory frames into blocks such that there are 
c frames per block

• Read c top bytes from a block into FDR, modify them and 
write them back

• Involves c horizontal buses instead of buses for all bytes in 
the frame

• Fix c=8
– Virtex, Virtex-II and Virtex-IV all have 8-bit wide configuration 

ports

– Pin limitations will not allow port width to increase 
substantially

Analysis

Summary

Intro

New Arch

The New Architecture

Block Address Decoder
Configuration

Port (8-bits)

VA

Decoder

Frame

Data

Register

(8-bytes)

8-bit wide bus

Frame Blocks

(8 frames 

per block)

Main Controller



Analysis

Summary

Intro

New Arch

The Operation of the Memory

Block Address Decoder
Starting Block

Address + #consecutive

blocks

VA

Decoder

Frame

Data

Register

(8-bytes)

8-bit wide bus

Frame Blocks

(8 frames 

per block)

Main Controller

Analysis

Summary

Intro

New Arch

The Operation of the Memory

Block Address Decoder
VA for the top 8 bytes

of the first block

Frame

Data

Register

(8-bytes)

8-bit wide bus

Frame Blocks

(8 frames 

per block)

Main Controller

VA

Decoder

Analysis

Summary

Intro

New Arch

The Operation of the Memory

Block Address Decoder
Bytes that are to be

loaded

Frame

Data

Register

(8-bytes)

8-bit wide bus

Frame Blocks

(8 frames 

per block)

Main Controller

VA

Decoder

Analysis

Summary

Intro

New Arch

The Operation of the Memory

Block Address Decoder
VA for the next set

Of 8 bytes

Frame

Data

Register

(8-bytes)

8-bit wide bus

Frame Blocks

(8 frames 

per block)

Main Controller

VA

Decoder



Analysis

Summary

Intro

New Arch

The Vector Address Decoder

8

8

Main Controller

Network Controller

VARPort
Configuration

Done
Signal

Frame Data Register

Analysis

Summary

Intro

New Arch

The Network Controller

• Let V be the 8 bits of the input vector address stored in the VAR. 
The goal is to generate i vectors such that V = V1 xor V2 …. xor
Vi where i is the number of set bits in that portion of VA.

• Define a mask register (MA) such that 

MR[7] = VAR[7] + VAR[6]….VAR[0] 

MR[j] = VAR[j+1].MAR[j+1], 6 j 0

• The address signals are generated by successive XOR operation
vj = MR[j] xor MR[j+1], v0 = MR[0] xor VAR[0]

• The processed set bit in the VAR is cleared and the above cycle 
repeats

• A maximum of 8 gate delays that can be accommodated in a 
single cycle

• The done signal is generated as

done = VAR[7] + VAR[6]….VAR[0] (3 gate delays) 

Analysis

Summary

Intro

New Arch

Evaluating the New Design

• Additional VA will be needed if the user 
configuration does not span blocks of eight. 

• For the set of benchmark circuits it was 
calculated that the DMA-VA provides about 62% 
reduction in the overall amount of configuration 
data.
– The VA overhead decreases compared to the VA 

model because we have removed the VA 
corresponding to frames that are not loaded in the 
Virtex model

• Thus DMA-VA offers similar levels of 
configuration data reduction as the device-level 
VA.

Analysis

Summary

Intro

New Arch

Implementation Results

• The implementation details of Virtex are not known to us
– 0.22µm, 5 metal layers, XCV100 is packaged in 27mm2

• The current Virtex model and the new design were implemented in VHDL 
and Synopsis Design Compiler (v 2004.06) was used to synthesize it to a 
90nm cell library

– Target device was XCV100 (20 x 30 CLBs, 56bytes/per frame,1610 frames )

– Max fan-out 32, V= 3.3volts

• Area
– Difficulty in synthesizing the entire design

– Synthesized main controller + decoders +8frames
• The frame area was found to be almost linear in the number of frames

• Each frame approximately adds 20,700µm2

– Current Virtex Results
• Main controller = 70,377µm2, FAD+ 8 frames = 156,742µm2

• Estimated total device (main controller excluded) = 3.32 x 107 µm2 (or 33mm2)

– New Virtex Results
• Main Controller = 2,592 µm2, VAD = 3,458 µm2, BAD+8frames = 319,630µm2

• Estimated total device (main controller excluded) = 3.34 x 107µm2

• Approximately 0.5% area increase compare to the base memory model

– Note: As we do not have SRAM libraries, the area estimates are based on FF 
area. While absolute values might be bigger our design requires modest 
additional hardware relative to the base memory model



Analysis

Summary

Intro

New Arch

Implementation Results

• The Delay results suggest that the new design can be clocked at 50MHz 
with the main controller taking the longest time (20ns). The VAD delay is 
only 8ns. The current Virtex model is externally clocked at 33MHz

• As we have assumed that we can read/write to the destination frame 
registers in a single cycle the wire delays also need to be accounted for

– As we could not synthesize the entire device we estimated the wire delays 
using Elmore delay formula. The values for the wire resistance and capacitance 
were found from the TSMC data sheets

– It was estimated that up to 28,86 frames could be spanned in 20ns. Scalability 
issue will be discussed later

• Power
– Using DC the power estimated for the basic design with 8 frames was 353mW

(including cell internal, net switching and cell leakage)

– The new design with 8 frames had a power consumption of 871mW. 

– Thus power increases by 59%. 

– However, the actual situation is more complicated
• A recent study (Lorenz et. al. [FPL04]) has shown that energy wasted during FPGA 

reconfiguration is dominated by short-circuit and static power of the cells that are being
reconfigured. The longer it takes to reconfigure the more energy is consumed even if 
the same amount of data is written to the configuration memory (more than a linear
increase).

• Thus faster reconfiguration is desirable from power perspective

• This issue is currently being investigated 

Analysis

Summary

Intro

New Arch

Scalability

• As the device grows in size the wire delays will 
become significant and single cycle read will be 
an unrealistic assumption. 

• Solution
– Partition the memory into configuration pages 

• Virtex-IV seems to already have implemented 
configuration page strategy

– Address the configuration pages  in a RAM style 
fashion

– Replicate the DMA-VA memory in each of the 
configuration pages 

• The area needed by the controller and the decoders is 
fairly small compared to the memory array

• Pipeline the configuration distribution

Analysis

Summary

Intro

New Arch

Address Compression

• The VA data for typical circuits contain many 
zeros
– Can compress to further reduce the amount of data to 

be loaded

• Evaluated a well-known hierarchical compression 
scheme
– 66% reduction in the amount of configuration data

• The corresponding HW decompressor
contributed significant control delays

• Schemes for distributed decompression were 
considered but they turned out to be too 
complicated to be implemented in hardware

Analysis

Summary

Intro

New Arch

Related Work

• Several people have worked on reducing reconfiguration delay
– Architectural research

• Time multiplexed FPGA (Trimberger[97]). Involves doubling the 
configuration memory requirements

• Pipeline reconfiguration (Schmit[97]). Local memory interconnect for
pipelined FPGAs

– Algorithmic research
• Scheduling reconfigurations (Sarrafzadeh[03])

– Configuration compression
• Dictionary based compression up to 41%(Dandalis et. al. [01]). Requires

significant on-chip memory for decompression

• LZ77 based compression (Li et al. [01]). Reduction up to 75%. Assumes a 
RAM style configuration distribution network. 

• LZ based compression [Ju et al. [04]]. Compression up to 76%. No H/W 
decompressor described.

– Configuration caching
• Mainly in the context of tightly coupled gate arrays (e.g. Li et.al. [00] and 

Sadhir et al. [01])



Analysis

Summary

Intro

New Arch

Conclusions and Future 

Work

• A new configuration memory architecture has 
been developed that reduces the reconfiguration 
time of an FPGA by 2.5X for a set of benchmark 
circuits at modest additional hardware cost

• Techniques for incorporating published 
compression methods into our methodology
– We applied Huffman compression on the benchmark 

partial configurations (frame data + VA data) and found 
up to 87% reduction in the amount of data (LZ77 gave a 
78% reduction)

• A corresponding reduction in decompression in not 
possible unless bandwidth mismatch problem is solved

– Study the feasibility of distributing the decompressors to
maintain a constant throughput at the configuration port

– Study the feasibility of inter-frame configuration re-use


