
Communication Support for Task-Based

Runtime Reconfiguration in FPGAs

Shannon Koh

COMP4211 Advanced Computer Architectures Seminar

1 June 2005

Overview

Motivation

Model Definition

System architecture

Task model

Implementation model

Research Direction

Motivation

Today’s FPGA-based
systems run
hardware/software
partitioned applications

Hardware modules
sharing the
reconfigurable
resource

Conceivably have
dynamism during
runtime

Embedded

FPGA Core

I/O

Write

Memory

Address

Bus

Int Data

Bus

Embedded

AVR Core

Real Application: UAV Control System

Hardware: Repetitious, long time-scale

functions e.g. command pulse

Software: Altitude and heading control

Dynamism – Single Task

Hardware Virtualisation

Image Processing

Reconfigurable

Fabric

RGB to

YCrCb

Dynamism – Single Task

Hardware Virtualisation

Image Processing

2-D

Discrete

Cosine

Transform

RGB to

YCrCb

Dynamism – Single Task

Hardware Virtualisation

Image Processing

Quantization

2-D

Discrete

Cosine

Transform

RGB to

YCrCb

Dynamism – Single Task

Hardware Virtualisation

Power/QoS Tradeoffs
E.g. 16/32 bit realisation

Quantization

2-D

Discrete

Cosine

Transform

Dynamism – Multiple Tasks

Pipelining/

Dataflow

Multiple

independent

applications

Dynamism – Multiple Tasks

Pipelining/

Dataflow

Multiple

independent

applications

Challenge (Focus of my study)

How to support communication

Processor and reconfigurable logic tasks

HW/SW partitioning

RL tasks and other fixed components

Memory

I/O

RL tasks and other RL tasks

Pipelining

Overall Goal

Design Flow Framework

Design Capture

Analysis, Partitioning
Implementation

Requirements

Implementation Requirements

Analysis

Comms.

Infr.
Implementation

Model Definition: System Model

Processor
Memory

RL

Loose Coupling

RL on IO/Peripheral Bus

System Model

Processor
Memory

RL

“Medium-Tightness” Coupling

RL on Processor Bus

System Model

Memory

RL

Processor

Mem

Mem

Tight Coupling
Reconfigurable Systems-on-Chip

Platform FPGAs

Model I will be considering

Model Definition: Tasks

Task Flow

Partitioning

Pipeline for

2 and 4

Parallel

processing

at 5 and 6

1

2 3

4 5 6

3a

3b

3c

7 8

9

Communication Model

SW to RL task communication

Characterised by

Bit widths

Frequency

Control

1

2 3

4 5 6

7 8

9

Communication Model

RL to RL task

Same characteristics

apply?

Have to cater for

possibility of task not

being present later

1

2 3

4 5 6

7 8

9

Implementation Model

Swappable Logic Units

Advantages:

SOA: Dedicated

routing

Parallel Harness:

Routing and

placement issues do

not need to be

considered

Disavantages

SOA: Very difficult to

realise dynamic

routing, fragmentation

Parallel Harness:

Less flexibility

Xilinx Task-Based

Reconfiguration

Advantages:

Commercially
available model

Realisable

Disavantages:

No dynamic
sizing and
placement

Size and location
in multiples of 4

Bus macros must
be used

No parallel
communication
on same row

Passthroughs
required

[Kalte04] Recent Study: Min 1 (S), 6 (M), 55(L)

Large XCV2000E: 80 columns (max 20 possible

modules, about half are bus macros)

Network-on-Chip

Task wrappers and bus macros

provide interfacing

IP1

IP2 IP3

X

X

X

Off-Chip

Marescaux, T., Bartic, A., Verkest, D., Vernalde, S. and Lauwereins, R. (2002).

Interconnection Networks Enabled Fine-Grain Dynamic Multi-tasking on FPGAs.

In proceedings of the 2002 International Conference on Field-Programmable Logic.

1 Dimensional Task Model

Kalte, H., Porrmann, M. and Rückert, U. (2004). System-on-Programmable-Chip

Approach Enabling Online Fine-Grained 1D-Placement. In proceedings of the 11th

Reconfigurable Architectures Workshop 2004.

Hardware Operating Systems

Fixed-size pages, an example of parallel
wiring harness

Steiger, C., Walder, H., and Platzner, M. (2004). Operating Systems for

Reconfigurable Embedded Platforms: Online Scheduling of Real-Time Tasks.

IEEE Transactions on Computers, Vol. 53, No. 11, November 2004.

Research Focus

Embedded systems

SoC with reconfigurable logic

Applications (Partitions & Schedules)

Multiple hardware modules

Run-time dynamism

Specific Applications

Optical flow algorithm

JPEG

Problem to solve:

Given a partition and (dynamic) schedule,
with known flows between components, how
do we satisfy the communication
requirements?

Optical Flow

Determines velocity of pixels from frame to frame

Closer objects have higher relative velocity

System architecture

PC/104

+ Bus

Camera
567x378 @ 27.4
fps

Framegrabber

Motherboard
P4-M 2.6GHz

1024MB DDR 266

BenNUEY board

VirtexII XC2V6000

Optical Flow

FPGA

Smoothing

Gradient
Calculation

Raw Frame

Smoothing

Gradient
Calculation

Iterative
Processing

Optical Flow
Vectors

...

1
|)(|

).(
1

1

,,

,,,,
)(1

v

I

IvIu
u

k

i

iyy

itx

k

iiyx
iNj

k

j
k

i

iN

Core iterative operation:

frame gradients

Optical Flow

FPGA

Smoothing

Gradient
Calculation

Raw Frame

Iterative
Processing

Optical Flow
Vectors

...

1
|)(|

).(
1

1

,,

,,,,
)(1

v

I

IvIu
u

k

i

iyy

itx

k

iiyx
iNj

k

j
k

i

iN

Core iterative operation:

FPGA

Smoothing

Gradient
Calculation

Iterative
Processing

Smoothing

Gradient
Calculation

gradientsvectors

Smoothing

Gradient
Calculation

Iterative
Processing

Raw Image
(Frame t)

Initial Gaussian
Mask (2-D, g g)

2-D Convolution

Smoothed
Image

(Frame t)

Spatial
X-Gradient

Mask (x 1)

Spatial
Y-Gradient

Mask (1 y)

Smoothed
Image

(Frame t-1)

1-D Convolution 1-D Convolution Difference

Ix Spatial X-
Gradient Array

Iy Spatial Y-
Gradient Array

It Temporal T-
Gradient Array

Square Multiply Square Multiply Multiply

Ixx
Tensors

Ixy
Tensors

Iyy
Tensors

Ixt
Tensors

Iyt
Tensors

2-D
Convolution

Product
Gaussian

Mask
(2-D,
p p)

2-D
Convolution

Product

Gaussian
Mask

(2-D,
p p)

2-D
Convolution

Product

Gaussian
Mask

(2-D,
p p)

2-D
Convolution

Product

Gaussian
Mask

(2-D,
p p)

2-D
Convolution

Product

Gaussian
Mask

(2-D,
p p)

I’xx
Tensors

I’xy
Tensors

I’yy
Tensors

I’xt
Tensors

I’yt
Tensors

M1

P1

M2

P2

P3

P4

M3

M4

M5

Partitioning

Module Partitioning

Convolution Units

Horizontal (Row) Unit

Vertical (Column) Unit

Multipliers

Modularised Arithmetic

I

IvIu
u

iyy

itx

k

iiyx
iNj

k

j
k

i

iN
,,

,,,,
)(1

1
|)(|

.
1

Implementation Requirements Implementation Requirements

Convolution Inputs/Outputs

Bitwidths

Module Timing

Design Capture

Analysis, Partitioning
Implementation

Requirements

Implementation

Requirements Analysis

Comms.

Infr.
Implementation

Requirements Analysis

Other Inputs e.g. device size

Number of communication lines per

module

Time allowed per module

Implementation Plan

Scheduling rules (not explicit schedule)

Communication modules

Implementation

Virtex-II Pro/Virtex-4 FX

Comms

/Config

Manager

PowerPC

Core

Mgt.

Code

Row

Conv.

Col.

Conv.

Mult.

Further Work

Formal Definitions

More Applications

Dynamic Framework

