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ASIPs in GeneralASIPs in General

• ASICs vs GPPs situation

• Power & Performance vs 
Design / Manufacturing Cost

• ASIPs are the hybrid of the 
two

• Main characteristic: highly 
configurable

• Consist of a base processor 
and optional components

• Today’s ASIPs are extensible

• Xtensa, Jazz, PEAS-III, 
ARCtangent, Nios, SP5-flex

AimAim

• Automatically create coprocessors for 
critical loops

• Create coprocessors which acquire small 
area, power and fast

• Maximize parallelism

• Design the methodology to create 
coprocessor

• Create estimation methods / ILP 
formulatiom



Related WorkRelated Work

• [Ernst1993] Hardware software cosynthesis for microcontrollers

– Standard processor is connected by the main memory bus to a co-
processing ASIC/FPGA

– Disadvantage: only produce a small amount of improvements; no 
parallelism involved; also degradation in performance

• [Stitt2003] Dynamic Hardware/Software Partitioning: A First 
Approach

– Hardware approach to profile program dynamically

– Synthesize onto FPGA; dynamic partitioning to extract appropriate loop

– Disadvantage: only small regions of code; single cycle loop body; 
sequential address of memory block; number of iterations must be
predetermined

• CriticalBlue

– Provides complete methodology with toolset for converting functions to 
individual coprocessors on the Cascade platform

– Disadvantage: no parallelism between coprocessor and base processor; 
coprocessor is a separate component on the bus

ContributionsContributions

• Coprocessors are generally separate components from 

the main processor, connecting via the main memory 

bus

• My contributions:

– Coprocessors can operate loops in multiclock cycles

– Maximum parallelism

– No limit on loop size

– Minimize resource usage; reducing area usage

– Methodology to generate such a coprocessor

– Reduction in communication overhead

– Accurate prediction to determine the improvement of the code 

segment given a certain constraint and architectural 

configuration

Project ToolsProject Tools

• Rapid Embedded Hardware/Software System Generation

[Peddersen J., Shee S. L., Janapsatya A., Parameswaran S.] 

presented at the 18th IEEE/ACM International Conference on VLSI 

Design, January 2005

– Uses ASIPmeister to generate core then adapts the RTL to complete the 

processor

– Include and exclude any instructions

– Automatic generation of Application Specific Instruction Set

– Implements the Portable Instruction Set Architecture (PISA)

– Part of the SimpleScalar framework

– Support for extended instructions

– Contribution:

• A full SimpleScalar architecture (integer) processor core (synthesizable into SOC or 

FPGA for prototyping)

• A novel approach to generate a processor with various subsets of instructions

More ToolsMore Tools

• Modified SimpleScalar Toolset to support SYSCALL of 
SS CPU
– Take advantage of cache & memory features in SimpleScalar

– Matches clock cycle count of hardware version

– Provides memory dump support

• Loop detection software
– To detect most frequently occurring outer most loops.

– Refers back to the line numbers in the C source code.

– “Dynamic Characteristics of Loops”, [Kobayashi M. 1984]

• Memory dump file analyser

• Hot Function Detector
– Provides the statistics of how much time is spent in each 

function



High Level Synthesis ApproachHigh Level Synthesis Approach

• Previous tools used: SUIF, MACHsuif (particularly for 
unrolling loops)

• Use SPARK for coprocessor creation (inner control)
– a C-to-VHDL high-level synthesis framework that employs a set 

of innovative compiler, parallelizing compiler, and synthesis 
transformations

– takes behavioural ANSI-C code as input, schedules it using 
speculative code motions and loop transformations, runs an 
interconnect-minimizing resource binding pass and generates a 
finite state machine for the scheduled design graph. A backend 
code generation pass outputs synthesizable register-transfer 
level (RTL) VHDL

• SPARK : A High-Level Synthesis Framework For 
Applying Parallelizing Compiler Transformations 
[Gupta2003]

How improvements are obtainedHow improvements are obtained
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HLS Coprocessor FeaturesHLS Coprocessor Features

• Register file sharing

• A wrapper to control the execution of inner 
coprocessor

• SCPR & BCPR Instructions

• Disadvantages:
– Can only read from destination register after write 

back stage; latency number pipeline stages

– Very hard to make loops if input always need to be 
fetched every time

– Have to make wrapper all the time just to 
accommodate SPARK generated component

– Number of input / outputs = number of arguments



More detailsMore details

• Detect loop hotspot in cjpeg program

• Created coprocessor using HLS Approach

• Simulated using ModelSim

• Synthesized using tcbn90gwc technology libraries 
through SYNOPSYS design compiler

• Given a 10ns clock constraint:

• 416.7MHz; 6,199 m2; 2,562 NAND gates
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Why HLS approach was usedWhy HLS approach was used

• Used to unroll loops

• To find out how much parallelism can be obtained

• Parallelism is limited  by how many register ports that can be read at 
any one time

• Area usage & power of register file increases linearly with increasing 
number of ports

• However, loop unrolling will only be beneficial if the fetches / stores
are done in parallel

• We need multiple resources, but we only have 1 base processor! 
Bottleneck!

• No need to fetch data at the last moment

GPR

configuration

2 reads

1 write

4 reads

2 writes

5 reads

3 writes

8 reads

4 writes

NAND gates 19,185 27,813 34,101 42,432

for (i = 0; i < 100; i++)

  g ();

for (i = 0; i < 100; i += 2)

{

  g ();

  g ();

}

Customized ArchitectureCustomized Architecture

• Highly integrated coprocessor architecture

• Something like a coprocessor but integrated within the base 
processor

• Make full used of unused registers (r8 – r15, r24-r25)

• All calculations in the loop (when possible) are done in coprocessor

• Base processor just fetches the required data from memory and 
store the result back to memory

• Coprocessor taps into signal to know when data is ready and when
to start execution

• Assumptions:

– No multitasking

– No preemption, no interrupts

– Coprocessor does not stall CPU; will already know how long it would 
take at creation time; use NOPs

• Problems:

– Latency pipeline stages

– Not good for loops with short / simple computations

AdvantagesAdvantages

• Save register usage

• Fetch data immediately when it is ready at WB 
stage

• Easy coprocessor task generation; basic block 
grouping

• Full control of instruction synthesis

• Maximize parallelism; address calculations are 
also performed

• Memory I/O task given to base processor

• No branch calculations



Customized Coprocessor IntegrationCustomized Coprocessor Integration
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Custom Coprocessor Creation MethodologyCustom Coprocessor Creation Methodology
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Verification MethodologyVerification Methodology

• C/C++ program is run through hardware 

simulation (ModelSim) and software simulation 

(SimpleScalar)

• Memory dump file and execution time produced 

by both simulations should be identical.

• Same method is applied for verification of ICOP 

architecture

• Sim-hexbin (program developed) is used to 

obtain output file from dump file for comparison 

purposes

Loop IdentificationLoop Identification
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How did we fair?How did we fair?

• Detect (same as previous) loop hotspot in cjpeg program

• Created coprocessor using Custom Coprocessor Methodology

• Simulated using ModelSim

• Synthesized using tcbn90gwc technology libraries through 
SYNOPSYS design compiler

• Given a 10ns clock constraint:

• 166.9MHz (1 GHz possible); 16,203 m2; 6,698 NAND gates

• Has potential to acquire less area
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Coprocessor Size
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Input Data BehaviourInput Data Behaviour

Critical Loops in CJPEG
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Future WorkFuture Work

• Formalize methodology

• More concrete model of coprocessor

• Model to predict performance 
improvement

• Able to decide when is ICOP architecture 
feasible

• Analyze performance improvements on 
work on a variety of benchmark 
applications

Thank youThank you


