
Reconfigurable Microprocessors

Lih Wen Koh

05s1 COMP4211 presentation

18 May 2005

2

Presentation Overview

Current Research Direction

Related Work

Experiments

What Next?

3

Current Research Direction

Execute

Address + ALU1 ALU2 FP + FP *, ÷,

Hardware Components of MIPS R10000

Fetch

Instruction Cache
Instruction

Predecode

Branch History
Table

Instruction

TLB

Decode

Instruction Decode
Active List

(32 entries)
Free Register Lists

(1 for Int, 1 For FP)

Register Map Tables

(1 for Int, 1 for FP)

Integer Queue
(16 entries)

FP Queue
(16 entries)

Mem Queue
(16 entries)

Integer Registers/ Bypass

64 x 64 bits

FP Registers / Bypass

64 x 64 bits

Issue

Write

Data

TLB

Data

Cache

[Yeager96]

Wide superscalar, out-of-

order execution processor

core

Exploits ILP

But true data dependencies

are inherent in application

programs

MIPS R10k, NetBurst, AMD

etc. use bypass network to

forward just-computed result

allow back-to-back issue

of dependent instructions

Complexity of bypass

network grows quadratic w.r.t.

issue width

4

Current Research Direction

Observation 1: Multi-cycle broadcast

Wire delays – accounted for in Intel

NetBurst

Allows higher processor clock frequency

at the cost of reduced IPC

Observation 2: FP execution unit is idle

most of the time, even in FP-intensive

applications (5-10%)
[Sassone04]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ra
w

ca
ud

io
ra

w
da

ud
io

ep
ic

un
ep

ic
en

co
de

de
co

de
cj

pe
g

dj
pe

g

m
pe

g2
en

co
de

m
pe

g2
de

co
de

pe
gw

ite
nc

pe
gw

itd
ec

M e diaBe nch Applications

Proportion of Functional Unit Type Re que s te d

Rd/Wr Ports

FP_MULT/DIV

FP_A LU

Int_MULT/DIV

Int_ALU
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16
4.

gzi
p.

gr
ap

hi
c

16
4.

gzi
p.

lo
g

16
4.

gzi
p.

pr
og

ra
m

16
4.

gzi
p.

ra
nd

om

16
4.

gzi
p.

so
ur

ce
17

6.
gcc

18
1.

m
cf

19
7.

par
se

r

16
8.

w
upw

is
e

17
1.

sw
im

17
3.

app
lu

17
9.

art

18
3.

equ
ak

e

18
8.

am
m

p
30

1.
aps

i

SPEC2000 Applications

Proportion of Functional Unit Type Requested

Rd/Wr Ports

FP_MULT/DIV

FP_ALU

Int_MULT/DIV

Int_ALU

5

Literature Survey

[Epalza04]: Dynamic Allocation of

Functional Units in Superscalar

Processors

Switch the execution mode of idle

floating-point units to four

additional integer ALUs

Addition of bypass networks add 1

cycle latency to the modified FPU.

19% speedup for SPECint2000

3.5% speedup for SPECfp2000

Issues:

Need to improve control for

mode switching

6

Plans

Other patterns:

7

Related Work

[Palacharla97] Dependence-based (FIFO queues + clustered execution units)

8

Related Work

Extension to rePLay

framework [Yehia04]

9

Experiment : Chaining pairs of dependent instructions

[Intel01] Double-speed ALUs

from Register File

Normal
Integer

ALU

3-1 Interlock

Collapsing
ALU

Result of

first instruction in

dependent sequence

Result of

second instruction in

dependent sequence

Carry

Lookahead

Adder

Logic

Operations

mux

4 stages

1 stage

Carry-Save

Adder

Logic

Operations
Control

Carry-Lookahead

Adder + Logic

Operations
4 stages

1 stage

[Vassiliadis96] 3-1 Interlock

Collapsing ALUs

10

Instruction Fetch Queue

(IFQ)

Load/Store Queue

(LSQ)

Register Update Unit

(RUU)

Ready Queue

Operands ready EA ready

F_MEM

IntALUs Int Mult/Div Rd/Wr Ports FP Adders FP Mult/Div Chained ALU

Event Queue

Instruction WriteBack

(Broadcast/Bypass Logic)
Branch Misprediction?

If so, recover

Instruction Commit

Issue if requested functional unit is not busy

if the requested functional unit is IntALU &&

 the list of in-flight instructions waiting only on the result of this instruction is non-empty &&

 the chained ALU is not busy

=> schedule this instruction and the first obtained dependent instruction to the chained ALU

ruu_fetch()

ruu_dispatch()

ruu_issue()

ruu_writeback()

ruu_commit()

Experiment :

Chaining pairs of

dependent

instructions

Modifications to

sim-outorder for

SimpleScalar

PISA.

11

Experiment : Chaining pairs of dependent instructions

2 CIALUs sufficient

IPC improvement of ~8%, solely due

to savings of broadcast cycles

Reduces utlization of IALUs by ~50%

Reduces up to 45% of queue entries

waiting for result

Up to 25% speedup as broadcast

cycles = 4

0%

5%

10%

15%

20%

25%

MediaBench Applications

Speedup on IPC for MediaBench Applications

(fetch-decode-issue-commit w idth = 8, ruu:size = 32, #ialu = 8, #cialu = 2)

broad cas t_delay = 1

b road cas t_delay = 2

b road cas t_delay = 3

b road cas t_delay = 4

0%

5%

10%

15%

20%

25%

rawcaudio

rawdaudio
epic

unepic

encode

decode
cjpeg

djpeg

mpeg2encode

mpeg2decode

pegwite
nc

pegwitd
ec

MediaBench Applications

Speedup on IPC for MediaBench Applications

(fetch-decode-issue-commit width = 8, ruu:size = 32, broadcast delay = 1 cycle)

#IntALU = 2, #CIntALU = 1

#IntALU = 4, #CIntALU = 1

#IntALU = 8, #CIntALU = 1

#IntALU = 2, #CIntALU = 2

#IntALU = 4, #CIntALU = 2

#IntALU = 8, #CIntALU = 2

#IntALU = 2, #CIntALU = 3

#IntALU = 4, #CIntALU = 3

#IntALU = 8, #CIntALU = 3

#IntALU = 2, #CIntALU = 4

#IntALU = 4, #CIntALU = 4

#IntALU = 8, #CIntALU = 4

12

What Next?

Chaining sequence of 3 dependent instructions, other patterns out of the 80.

Architectural impact of adding chained units

complexity of local bypass network etc.

Replace chained units by xALUs converted from the CSA trees in a FP

multiply/divide unit

Need to explore the hardware circuits of FP multiply/divide

Develop an adaptive configuration scheme – to best match the interconnections of

the swappable xALUs to the patterns of in-flight instructions.

Need to determine the most frequent subset of patterns

References

[Vassiliadis96] High-Performance 3-1 Interlock Collapsing ALUs. James Phillips and Stamatis

Vassiliadis.

[Yeager96] The MIPS R10000 Superscalar Microprocessor. Kenneth C. Yeager. IEEE Micro

1996.

[Palacharla97] Subbarao Palacharla, Norman P. Jouppi, J.E. Smith. Complexity-Effective

Superscalar Processor. ISCA 1997.

[Intel01] The Microarchitecture of the Pentium® 4 Processor. Glenn Hinton, Dave Sager, Mike

Upton, Darrell Boggs, Doug Carmean, Alan Kyker, Patrice Roussel Intel Technology

Journal Q1. 2001.

[Epalza04] Dynamic Reallocation of Functional Units In Superscalar Processors. Marc Epalza,

Paolo Ienne, Daniel Mlynek. In the 9th Asia-Pacific Computer Systems Architecture

Conference (ACSAC), 2004.

[Yehia04] From Sequences of Dependent Instructions to Functions: A Complexity-Effective

Approach for Improving Performance without ILP or Speculation. Sami Yehia and Olivier

Temam.

[Sassone04] Multicycle Broadcast Bypass: Too Readily Overlooked. Peter G. Sassone and D.

Scott Wills, Proceedings of the Workshop on Complexity-Effective Design (WCED), May

2004.

Thank You

15

Overview of Research Topic

Goal of this research:

“investigate the feasibility and potential benefit of effective, automated runtime compilation

and execution of software binaries on reconfigurable microprocessors”

Software binaries

executing only on

superscalar processor

Profile committed

instructions to identify

critical code regions Identify and extract suitable

instructions from critical

code regions for collapsing

into complex, atomic

instructions

Assembly-to-hardware

mapping of collapsed

instructions

On the next execution

of the transformed

critical region , load

configuration for the

reconfigurable logic

Transfer execution

from superscalar

processor to the

reconfigurable unit

Monitor the

execution of the

coupled system

Continue normal

execution of binary

code following the

transformed critical

code region .

superscalar

processor

reconfigurable

logic

Software

Binaries
Reconfigurable Microprocessor

16

Motivations

Improved execution performance by exploiting parallelism and redundancy in

hardware.

Adaptation of hardware resources based on the dynamic behaviour of programs.

Availability of runtime profile allows exploitation of runtime optimizations

otherwise difficult to exploit at compile time.

Compilation at the binary level allows execution of legacy software binaries.

Runtime compilation allows transparent migration of software code to

hardware.

