CHIMAERA: A High-Performance = DISCLAIMER
Architecture with a Tig htly -COUp led This presentation is based on a paper written by

Reconfigur able Functional Unit Zhi Alex Y1, Andreas Moshovos, Scott Hauck
and Prithiviraj Banerjee. The paper is as named
in the title.

All proposals, implementation, testing, results
Kynan Fraser and figures and tables have been done by the
aforementioned peoples.

These slides however have been produced by me
for educational purposes.

Outline Background

* Background
* Introduction
* Chimaera architecture
e Compiler support Customized vs Flexibility
* Related work (not covered) Benefits vs Risks
* Evaluation
- methodology Reconfigurable solution??
- modelling RFUOP latency Multimedia platforms
- RFUQOP analysis
- working set of RFUOP's
- performance measurements
* Summary




Introduction — Potential
Advantages

Introduction

CHIMAERA
Reconfigurable hardware and compiler

Reduce execution time of dependent instructions
- tmp=R2—R3; R5=tmp+R1
Coupled RFU (Reconfigurable Functional Unit) Reduce dynamic branch count
Implements application specific operations . - if (a>88) a=b+3
9 inputs to 1 output Exploit subword parallelism
Fairly simple compiler . -a=a+3;b=c<<2(ab,c halfwords)
Reduce resource contention

Chimaera Architecture Chimaera Architecture

Reconfigurable Array RFUOP unique ID

- programmable logic Result Bus il el
Shadow Register Single Issue RFUOP

blocks - scheduler
Shadow Register File ' Worst case 23

transistor levels (for

YU L one logic block)

Conﬁguration Control Cache Interface
and CaChing Unit Figure 1: Overview

Host Pipeline

Execution Control Unit




Compiler Support Related Work

Automatically maps groups of instructions to * We are looking at it

RFUOP's

Analyses DFG's * Read section 4 for more information
Schedules across branches

Identifies sub-word parallelism (disabled in this

case due to endangered correctness)

Look later at how many can instructions actually

map to RFUOP's

Configuration Evaluation - Methodology

e -
pos ] e st s O 1 ey L, s e Execution driven

MediaBench Benchmarks

Functional units

e - s timing

 Diraes - Mamnd T2 bie hlock L el W ey * Built over simplescalar

S e e ISA extension of MIPS

) * RFUOP's appear as

' cevi aco
e NOOP's under MIPS
i ISA Honeywell Benchmarks
Functional Unit / RA ! . » d = PreViOU.S Slide :
configuration used

Table 3: Be




Evaluation — Modelling RFUOP
Latency

* First row modelled on
original instruction
sequence critical path

¢ Second row modelled
on transistor levels and
delays

Evaluation — RFUOP Analysis

* Look at how many
instructions replaced
by RFUOP

- dest = srcl op src2 op

* Look at critical path
- of instructions replaced

Evaluation — RFUOP Analysis

 Towl mumberof [T ——
RFUOP's per —

benchmark

* Frequency of
instruction types
mapped to RFUOP's e

Evaluation — Working set of
RFUOP's

* Larger working set = more stalls to configure
* Maintaining 4 MRU almost no misses
* 16 rows sufficient

miss rate
miss rate




Evaluation — Performance Evaluation — Performance
Measurements Measurements

Performance under original instruction timing
latencies (4 issue)

Latency of 2C or better still give speed of 11% or
greater, 3C not worthwhile

3C not worthwhile (only speedup under one
benchmark)

N model improves performance overall
- due to decreased branches and reduced
resource contention

igure 8: Re

Evaluation — Performance Evaluation — Performance
Measurements Measurements

* Performance under transistor timing (4 issue)

* Improvements of 21% even under most
conservative transistor timing

* Performance in optimistic models close to 1-cycle
model (upper bound)

1lP1




Evaluation — Performance
Measurements

* Performance with 8 1ssue
* Only improvements with C, 1, 2 and N timing

* Relative improvements (to 4 issue) small

* Reason: Because limited to one RFUOP issue per
cycle

Evaluation — Performance
Measurements

* Strong relationship between performance
improvement and branches replaced by RFUOP's

¢ Benchmarks with lowest branch reduction have
lowest speedup

* Even under pessimistic assumptions Chimaera still
provides improvements

Evaluation — Performance
Measurements

Summary

* Seen the CHIMAERA architecture

* The C compiler that generates RFUOP's

* Maps sequences of instructions into single
instruction (9input/1output)

* Can eliminate flow control instructions

* Exploits sub-word parallelism (not here)

* 22% on average of all instructions to RFUOP's

* Variety of computations mapped

* Studied under variety of configurations and timing
models




Summary

* 4 way: average 21% speedup for transistor timing

(pessimistic)

* 8 way: average 11% speedup for transistor timing

(pessimistic)

* 4 way: average 28% speedup for transistor timing

(reasonable)

* 8 way: average 25% speedup for transistor timing

(reasonable)




