
A Design Space Evaluation of

Grid Processor Architecture

Jiening Jiang
May, 2005

The presentation based on the paper written by Ramadass Nagarajan,

Karthikeyan Sankaralingam, Doug Burger, Stephen W. Keckler

Outline

• Introduction

• The Block-Atomic Execution Model

• Implementation

• Evaluation

• Design Alternatives

• Conclusion

Introduction

• Microprocessor performance has improved
at a rate of 50-60% per year over the past
decades

– In 70’s, wider datapath and hardware support
for memory management are main contributors

– In 80’s, memory hierarchies, speculation and
superscalar execution are main contributors

– Since then, performance growth mainly from
fast clock rates. (in 90’s, 4/5 growth from CR)

Introduction - Problems Facing

• Clock rates growth slow down soon

– Clock rate comes from technical scaling and

deeper pipelines, more from the latter, however

the deeper pipelines reach limits on the number

of gates per stage.

– Gates rate estimated to improved by 12-19%

– Further performance improvements from ILP,

TLP

Introduction - Problems Facing

• Increasing wire resistance will make

achieving high ILP in conventional

architecture more difficult

– Signal transmission need more CCs

– Limiting number of devices useful

– Wire delays make memory-oriented

architecture slow.

Introduction - GPA and Main

Features

• GPA will achieve faster clock rates and
higher ILP

• No central instruction issue window

• A routed P2P network other than
broadcast bypass network

• Like VLIW, compiler detects the
parallelism and statically schedules
instructions

Introduction - GPA and Main

Features

• Few large structures reside on the critical

execution path

• Large instruction blocks are mapped onto

nodes as single units of computation,

amortizing overheads over a large number

of instructions

The Block-Atomic Execution Model

• Instructions are placed into groups by the compiler

• A group has no internal control transfer

• Three types of data: group inputs; group

temporaries; group outputs

– Inputs must read when the group execute

– Temporaries forward from producers to consumers; no

written back to central storages

– Outputs written back central storages when the group

commit

The Block-Atomic Execution Model

• Each instruction in a group assigned to one of the

name ALU, no ALU has more than one

instruction.

• Move instruction read the group inputs and

forward to appropriate ALUs

• A group instructions fetched and mapped to

substrate once

Simple Example of Block-Atomic Mapping

Key Advantages of this Model

• No centralized associative issue window

• No register renaming table

• Fewer register read and write

• Can execute in dynamic order without hazards
checking or a broadcasting bypassing and
forwarding network

• Producer to consumer can take place along P2P

• Instructions off critical path can afford longer
communication delay

• The scheduler can minimize the critical path

Implementation

• Terminology

– Node: function unit

– Frame: A frame consists of a single instruction

slot in all of the grid nodes. virtual grid

– Hyperblock: A set of predicated basic blocks in

which control may enter from the top, but may

exit from one or more location

Implementation - High-level Grid Processor

Organization
Implementation

• Instruction fetch and map

– I-cache has multiple rows

– A row’s worth of instruction indicate the row
position of inst in the grid

– After a hyperblock mapped, branch and target
predictors in the block sequencer predict the
succeeding hyperblock, and begin fetching and
mapping it onto the grid prior to the completion
of the previous hyperblock

Implementation

• Instruction execution

– The move Instructions mapped to register file
banks

– When a operand arrives the node, control logic
wakeup, select and issue the correspond
instruction

– If all operands ready, the inst issued to the ALU

– If no new operands arrives at a node for a given
circle or must wait more operands, any other
ready instruction is selected and issued

Implementation - Operand

routing

• In GPA-1, every node has 3 inputs and 3
outputs ports

• If more than 3 consumers, split Instruction
insert

• Design trade-off, instruction size, routing
delay, complexity

• Statically showed, 70% producers have 3 or
less consumers

Implementation - Inter-node

Network

• Four kinds of delay

– Routing delay, transmission/wire delay,

instruction wakeup delay, and delay induced by

contention for the wires/ports at the node

– Routing delay and wire delay are most

important factors in overall performance of

GPA-1

Implementation - Hyperblock

Control

• Predication

– GPA-1 uses an execute-all approach, but only

one path delivers a result to the common

instructions

– Special instruction set cmove

– See code example

Implementation - Predication

Code Example

Implementation - Hyperblock

Control

• Early exits

– GPA-1 uses predication to enforce the
sequentiality

– Extra-predication is necessary when the same
register name is to be produced by multiple
instructions in the block and not for every
output instruction

– Those results executed before a prior branch
should filter out by block commit logic using
index (position of static program order)

Implementation - Hyperblock

Control

• Block commit

– Distributed execution make global control

complicated

– Additional logic is needed in block commit

control

– GPA-1 employs a count of output values

associated with each hyperblock

Implementation - Hyperblock

Control

• Block stitching

– Concurrent execution of multiple hyperblocks

• Memory access

– The primary data cache resides on the right

hand side of array

– To maintain the load-store order, use traditional

load-store queues

Evaluation

• SPEC CPU2000 floating-point benchmarks
– equake, ammp, and art

• SPEC CPU2000 integer benchmarks
– parser, gzip, and mcf

• Three Mediabench benchmarks
– adpcm, dct, and mpeg2enc

• Compiled by Trimaran tool set

• Custom instruction scheduler and custom
event-driven timing simulator

Evaluation - Application

Characteristics

• The characteristics of benchmark compiled

by trimaran compiler

Register bandwidth reduced by 30-90%

Evaluation - Application

Characteristics

• Overhead instructions, only cmove and split

consume the instruction slot

Overall 35% of all instructions, 20% instructions

scheduled on the grid

Evaluation - Performance

Evolution

Left bar: GPA-1; right bar: SS; white portion: perfect memory and branch

Evaluation - Block Stitching

Block stitching provided about a factor of 2 speedup

Evaluation - Routing Delay

•3 most significant component: number of hops; inter-node

wire delay and router delay at each hop

•Wire delay affects performance more than the router

delay

Evaluation - Grid Dimension

•Some benchmarks performs best with 8 rows

•Programs with high available ILP and large block size

benefits from the increase in the number of rows

Evaluation - GPA Effectiveness

Design Alternatives

• Grid network design
– To reduce the logic and wire delay

• Larger degree router decreases the number of hops but
increases the delay per hop

• Reduce handshaking overhead

• Express channel

• Predication strategies
– GPA-1: less efficient use of power

– Or: send predicate bits to all instructions in PR

– Or: send to the root of sub-graph.

– Both alternatives limit performance

Design Alternatives

• Memory system
– Compressed format of program codes below L1

– Date memory, speculative and conservative strategies

– The store-load pairs communicate via point-to-point,

bypassing the memory system

• Grid speculation
– Load speculatively, misprediction only trigger the

dependence from the load to the end of the block

Design Alternatives

• Frame management
– The frames speculatively mapped and executed the

hyperblocks in a sequential program

– The frames can support a multithreaded execution

• ALU control
– Add more logic control to each ALU, each ALU as a

simple microprocessor

Conclusion

• GPA intent to continue scaling both clock
rate and instruction throughput.
– Mapping dependence chains onto an array of ALUs

– Conventional large structures can be distributed
throughout the ALU array, permit better scalability of
the processing core

– Mitigate the growing global wire and delay overhead
by P2P communication

– Competitive with idealized superscalar, exceeding
VLIW

Conclusion

• Drawbacks
– Data cache far away from many of ALUs. Thus the

delay between dependent operations can be significant

– The complexity of frame management and block

stitching is significant and may interfere with the goal

of fast clock rate

