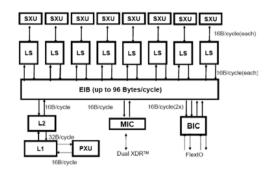

# Networks on Chip : a very quick introduction!

Jeremy Chan 11 May 2005

#### **Overview of Talk**

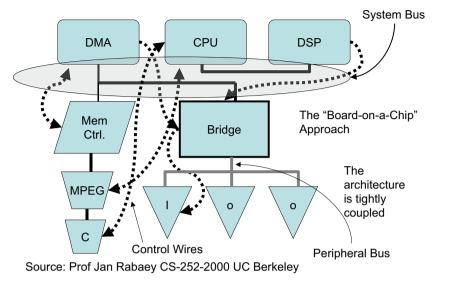
- Introduction
  - SoC Design Trends (communication centric design)
- Communication Centric Design
  - Application Modeling
  - Energy Modeling
  - NoC Optimization
- Conclusions


#### SoC Design Trends

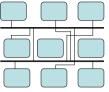


- Focus on communication-centric design
  - Poor wire scaling
  - High Performance
  - Energy efficiency
    - Communication architecture large proportion of energy budget

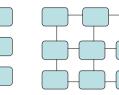
## SoC Design Trends


- MPSoC: STI Cell
  - Eight Synergistic
    Processing
    Elements
  - Ring-based Element Interconnect Bus
    - 128-bit, 4
      concentric rings
- Interconnect delays
  becoming important
  - Pentium 4 has two dedicated drive stages to transport signals across chip




Source: Pham et al ISSCC 2005

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 C Nxt IP TC Fetch Drive Alloc Rename Que Sch Sch Sch Disp Disp RF RF Ex Flgs Br Ck Driv


#### The SoC nightmare



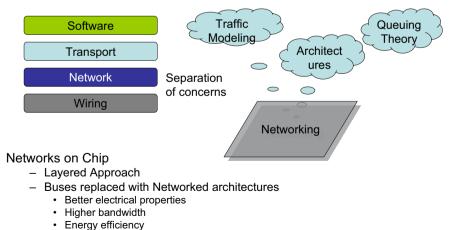
## **On-chip Communication**





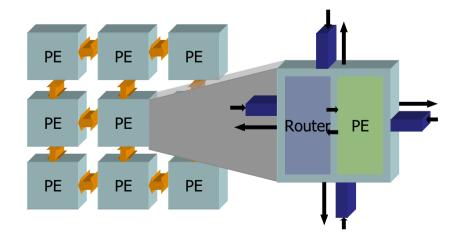


Bus-based architectures Irregular architectures

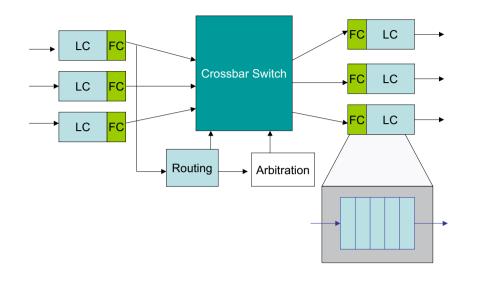

## Bus based interconnect

- Low cost
- Easier to Implement
- Flexible

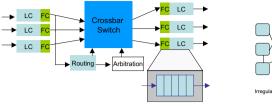
**Regular Architectures** 

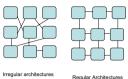

- Networks on Chip – Layered Approach
  - Buses replaced with
  - Buses replaced with Networked architectures
    - Better electrical properties
    - Higher bandwidth
    - Energy efficiency
    - Scalable

## Network on Chip




Scalable

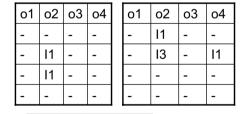

#### **Regular Network on Chip**

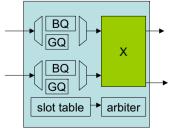



## **Typical NoC Router**

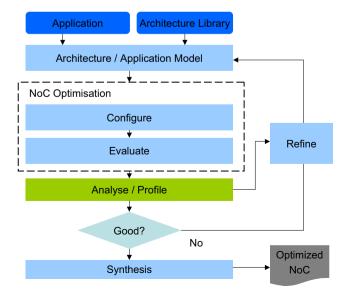


#### **NoC Issues**

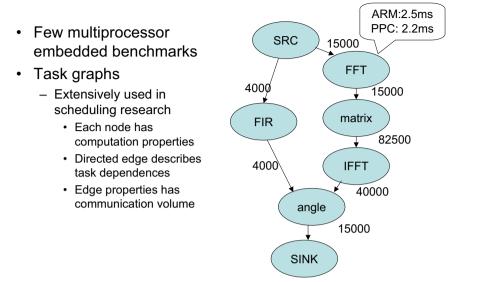



- Application Specific Optimization
  - Buffers
  - Routing
  - Topology
  - Mapping to topology
  - Implementation and Reuse

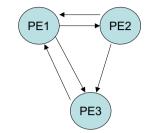

## **NoC Issues**

- Architecture
  - QoS Support
  - What topology will suit a particular application?
- Fault tolerance
  - Gossiping architectures






## **Communication Centric Design**




## How are application described?



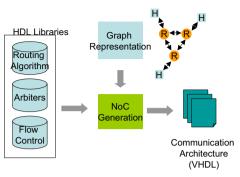
# **Simplifying Application Model**

- With simple energy model,
  - $E_{bit} = n_{hops} \times E_{Sbit} + (n_{hops} 1) \times E_{Lbit}$
  - n<sub>hops</sub> proportional to energy consumption
  - Can abstract communication design problem to



## Simple Router Energy Models

- Hu et al assume:
- $E_{bit} = E_{Sbit} + E_{Bbit} + E_{Wbit} + E_{Lbit}$
- Simplifying assumptions:
  - Buffer implemented using latches and flipflops
  - Negligible Internal wire energy
  - $=> E_{bit} = E_{Sbit} + E_{Bbit} + E_{Wbit} + E_{Lbit}$
- Router to Router Energy (minimal routing)
  - $E_{bit} = n_{hops} \ge E_{Sbit} + (n_{hops} 1) \ge E_{Lbit}$

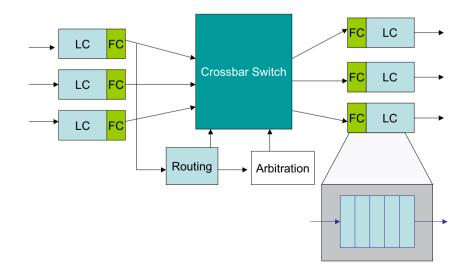

## **Energy-Aware Task mapping**

- Reduce Energy Consumption by placing
- Addressed by Hu et al 2002:
  - Given a CTG and a heterogenous NoC
- Find:
  - A mapping function M : tasks(T) => PEs (P)
  - Assuming the tasks are already scheduled and partitioned
- Solution formulated as a quadratic assignment problem and solved using Branch and Bound with heuristics

## **Energy Model Limitations**

- Ignore:
  - Static energy i.e. leakage power
  - Clock energy flip flops, latches need to be clocked
- Buffering Energy is not free
  - can consume 50-80% of total communication architecture depending on size and depth of FIFOs

#### **NoC Generation**




 Given a parameterized NoC architecture and library of NoC components, generate a synthesizable HDL model.

## **NoC Generation**

- Most packet switched routers contain similar components that are connected
- Can be easily modularized to allow automatic generation

#### **Typical NoC Router**



#### **Current Research**

- Irregular Topology Generation
  - Formulated as MILP problems
  - Genetic algorithm Solution
- Buffer Allocation Problem
  - Assumed Poisson Distributed Traffic
  - Used Queuing Theory to Determine Ideal Buffering for Ports => non uniform buffering depths
- · Integrated solution to optimization problems

## Summary

- NoC is an exciting research area that will lead to an paradigm shift in SoC design.
- NoC research is still in infancy
  - Many open research problems
  - Need better application and traffic models, new optimization techniques
- New Power, Performance, Traffic Models being developed

# Thank You