Cell Processor

Part A: Cell in Context

- Design a high performance processor
- How performance increase has been attained in the past
 - Higher frequency
 - Moore's Law
 - Architecture enhancements
- Why old tricks no longer work
 - Power wall
 - Memory wall
 - Architecture wall

Part B: Cell in Detail

Introduce Cell

- SPE
- PPE
- Memory controller, buses, IO
- Classifying Cell's topology

Performance

- Against Pentium 4, Xenon CPU
- MPEG2 Decode
- Optical flow
- Games

Part C: Evaluation

- Reviewing Cell in terms of initial problems
- Reviewing Cell through P&H design guidelines
- Conclusion

Clock speed improvement

- Clock speed improvements from new fab processes
- 1989: 486 at 25MHz
- 2005: Pentium 4 at 3.6GHz

Improved Architecture

Moore's Law:

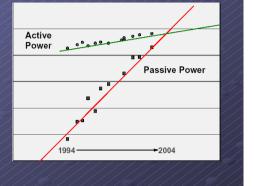
"The complexity for minimum component costs has increased at a rate of roughly a factor of two per year."

-Gordon Moore, April 1965, Vol 38 Num 8, Electronics

- Implication: At the same price point, the number of transistors on a chip increases exponentially
- In 1975, Moore revised it to every 24 months
- Never said 18 months

Using Moore's Law

Intel's Pentium:


- 486: pipelining, FP unit
- Pentium: superscalar, MMX
- Pentium Pro: SSE, OOE
- Pentium 4: Hyper-threading, large cache
- Mainly ILP exploitation
 - Theme of CS4211 so far: increasing ILP further is hard!

Why old tricks no longer work

- IBM's Peter Hofstee identifies three "walls"
 - Power wall
 - Frequency wall
 - Memory wall
- I propose one more:
 - Idea wall "Out of micro-architectural ideas!"

Power Wall

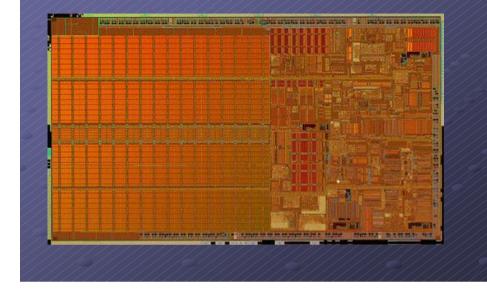
- Gelsinger's Law: 40% performance increase (from design) every time transistor count doubles
- Corollary: Decreasing efficiency
- Too many transistors not doing real work
- Need to boost efficiency

Frequency Wall

- Pentium 4 2001 2003
- 1.5GHz to 3.06GHz
- 2003 now: 3.6GHz
- Problem: power
 - October 2004: 4GHz Pentium cancelled
 - IDF 2005: Intel declares new direction as "multi-core"

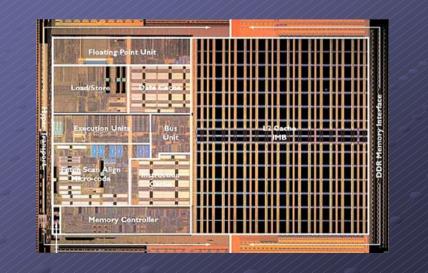
Memory Wall

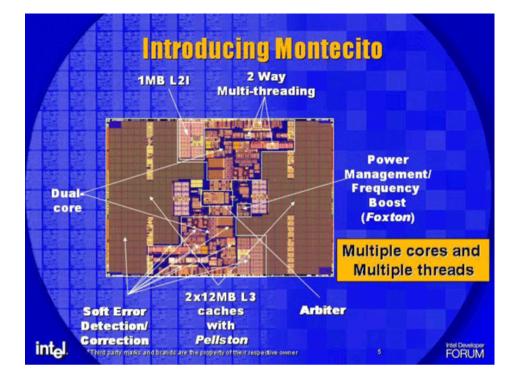
- Memory wall is a huge problem
 - 80486DX
 - CPU and Memory runs at 33MHz
 - Memory latency at about tenths of cycles
 - Pentium 4
 - CPU ~3GHz, memory ~200MHz (DDR)
 - Memory latency at many hundreds of cycles
 - "Approach a thousand cycles in multi-GHz SMP systems" –Hofstee


Idea Wall

OOE/Speculation/Superscalar exhausted
 "Pipelining was the last major win" -Hofstee

Original Pentium


Pentium M (Dothan)



AMD Athlon (K7)

	POATING POINT CONTROL	FLOATING POINT SCHEDULER
- 14 (19) - 152 - 1	TSHCH DIG	SI KRYTE DATA CACHE/CTL
		L1:0168
	MENGEDEC	
	SEANALIGN	

AMD Opteron (K8)

Idea Wall

Lacking new architectural breakthroughs
 "A crisis of ideas" – CS3211 Lecture 2004
 Indefinite increase in cache is not a solution

Diminishing returns

A summary of non-solutions

- More complex OOE, prefetching, execution units
 - Even if good returns, passive power dominates
- Bigger cache
 - Diminishing returns
- Higher frequency
 - Not even Intel believes it anymore

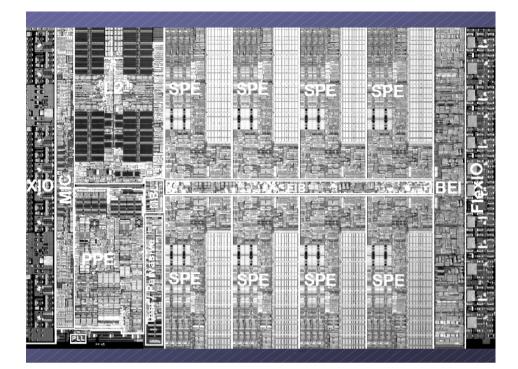
STI's solution: Cell

- STI: Sony, Toshiba and IBM
- Started in 2001 by Ken Kuturagi of Sony Computer Entertainment
- \$400M, 5 years, 300 engineers
- Attacks
 - Memory wall
 - Power wall
 - Idea wall

What's Cell designed for?

- Media applications (SIMD nature)
- Very high floating point performance
- High bandwidth
- Good performance to power ratio
- Characteristics:
 - Streaming nature
 - Scalable architecture
- Target applications:
 - Playstation 3
 - HDTV
 - High performance embedded

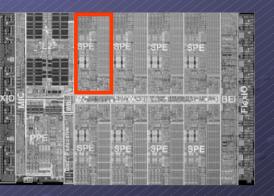
Inspirations


- Playstation 2 CPU: Emotion Engine
 - 2 Vector Units
- IBM BlueGene
 - Scientific computing
 - BlueGene/L currently #1 supercomputer
 - 32,768 processors
 - 91 Teraflops peak
- Cray Supercomputers
 - Little cache, high bandwidth

Key figures

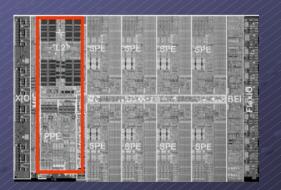
Fundamentals

- 234 million transistors
- 90nm SOI Process
- 221mm² die
- 4GHz clock speed
- Architecture
 - 64-bit Address space, 128-bit SIMD
 - 9 CPU cores on chip
 - Integrated memory controller
 - 100 GB/s total bandwidth (memory, IO)

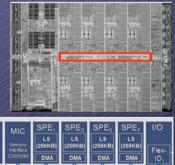

					wine -
		112	11	112	
	IR BELT			TR CALL	
	A BEL	Per Pr			
				Andrew Control of	
					E P

Synergistic Processing Element (SPE)

- Heart of the Cell architecture
- Scalable resource
- 128-bit SIMD
- processors
- Executes any 128-bit combination in one clock:
 - 16 chars
 - 8 shorts
 - 4 Integers or floats



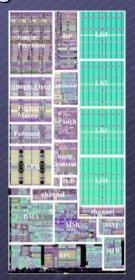
Power Processing Element (PPE)


64-bit Power Architecture

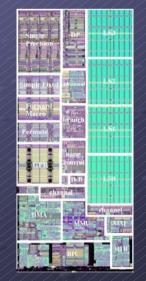
- Designed for OS and general purpose computing
- In order, dual issue
- Hardware multithreading for OS virtualisation
- Conventional memory hierarchy
 - 32kb Instruction cache
 - 32kB Data cache
 - 512kB L2

Element Interconnect Bus (EIB)

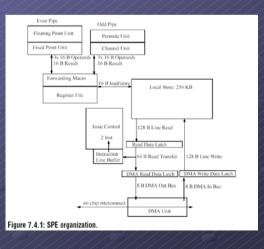

- Ties up all the elements on the chip
 - PPE
 - SPE
 - L2 cache
 - Memory controller
 - **↓** 10 ∕ /
- 4 x 16 Byte data rings
- 96 Bytes a cycle peak
- Over 100 outstanding requests


Memory and IO

- Licensed RAMBUS technology
 - XDR Memory
 High frequency and narrow
 64-bit bus @ 3.2GHz
 - DDR can be supported via external bridge
- XIO <-> MIC talks to main memory
 - 25.6GB/s
- BEI <-> FlexIO talks to IO
 - Two configurable interfaces
 - For GPU, more Cells, IO bridge etc.
 - 76.8GB/s total


Synergistic Processing Element

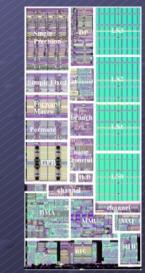
- Not co-processor, but entire, autonomous computer
 - Datapath
 - Control
 - Memory
 - Input
 - Output
- 128 x 128bit Registers
- 256kB Local Store (LS)
 - Unified instructions and data store
- DMA and MMU units
- "Memory anaemic vector computer"


SPE Pipeline

- Dual issue, statically scheduled, in order SIMD pipeline
- The key is in what they've taken out:
 - No Tomasulo
 - No prefetching
 - No speculation
 - No branch prediction tables
 - No cache logic
- In exchange for:
 - Bigger local store & registers
 - Wider execution unit
 - Faster clock
 - Smaller footprint (more cores)
 - Better efficiency (Attacks Power Wall)
- Bottom line: More hardware devoted to work rather than overhead

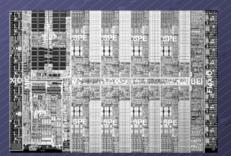
SPE Performance

- Built around 32-bit Floats
- 4 x 32-bit FLOPS / cycle
- 8 FMACS / cycle
- At 4GHz = 4 * 8 = 32GFlops
- Integer 4 x 32-bit
 Int / cycle
- DP is 10x slower

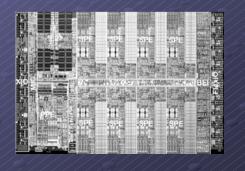

SPE Bandwidth & Latency

Register file

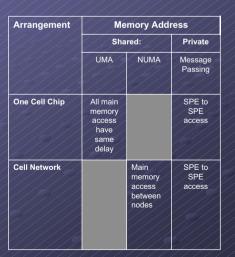
- 6 read ports
- 2 write ports
- 2 cycle latency


Local store

- 6 cycle read
- 4 cycle write
- 16B / cycle
- Compare with a PPC 970:
 - 11 cycle L2 cache
- 128 B / cycle DMA


Classifying Cell

- It's been called all sorts of things
 - Processor with 8 coprocessors
 - DSP
 - Stream processor
 - CPU/GPU hybrid
 - Supercomputer
- Bottom line: On-chip multiprocessor


Classifying Cell

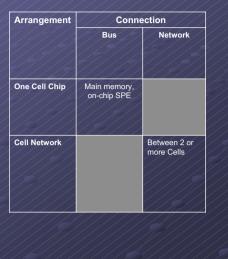
- Using P&H multiprocessor dichotomy:
 - Address space
 UMA
 - NUMA
 - Memory location
 Centralised (dancehall)
 Distributed
 - Connection method
 Bus
 Network

Classifying Cell as a Multiprocessor

- In terms of address space
 - Single chip
 - UMA + Message passing
 - Processors not identical, hence not SMP
 - Multi-chip
 - NUMA + Message passing

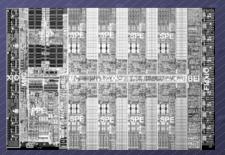
Classifying Cell as a Multiprocessor

In terms of memory location


- Single chip
 - Centralised main memory
 - Distributed local store
- Multi-chip
 - Distributed main memory
 - Distributed local store

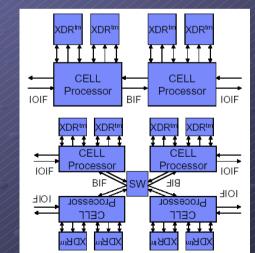
Arrangement	Memory Location			
	Distributed	Centralised		
One Cell Chip	SPE local store	Main memory		
Cell Network	Distributed main memory and LS			

Classifying Cell as a Multiprocessor


In terms of connection

- Single chip
 - EIB Bus ties everything together
- Multi-chip
 - External network IO

Cell's typology


- Main memory is 9 way UMA
 - 1 PPE + 8 SPEs
- Local store of SPE is private memory with messege passing
- Typology: Uniform access shared memory + message passing private memory
 - Single Cell resembles a cluster of memory anaemic vector computers

Cell's typology

• NUMA

 Multiple Cell networks resembles homogenous grid

Performance

- No real world benchmarks released
 Evaluate peak performance
 - Each SPE capable of 32GFlops
 - 8 SPE = 256GFlops
 - "One CELL has a capacity to have 1TFLOPS performance" – Ken Kuturagi
 - •4 Cells on chip is just a matter of time

Cell vs. Pentium 4

- Pentium 4 Dual Core @ 3.5GHz
 - Roughly the same process technology as Cell
 250 Million transistors
 90nm
 - Single core = 3.5 x 4 (SSE) = 14 GFLOPS
 - Dual core = 28 GFLOPS
- Cell @ 3.5GHz = 224GFLOPS
- About 10x higher peak performance

* Excludes P4 FPU and Cell PPE

Cell vs. Xenon

Xenon

- 3 Cores (same as PPE)
- Each more has 1 FPU and 1 VMX Unit
- 10 Flops / cycle
 2 Flops / cycle from FPU
 8 Flops / cycle from SIMD
- At 3.2Ghz = 96GFlops
- Cell at 3.2GHz = 205Glops
- About 2x higher peak performance
 - Not counting Cell's PPE

Applications for Cell

HDTV

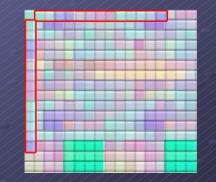
- Toshiba demonstrated Cell decoding 48 SDTV streams
- Sony demonstrated Cell decoding 12 HD streams
- Read / decode
- Resize
- Final 1920 x 1080
- Six SPEs used

Applications for Cell

- Optical Flow Algorithm for path finding
 Input:
 - 567 x 378 @ 27.4FPS
 About 6MPixels / second
 - 8-bit greyscale pixels

Algorithm:

- 5 stage pre-processing
- Gauss-Seidel iteration
 6000 passes per fame!
- Currently work is being done on a FPGA solution


Applications for Cell

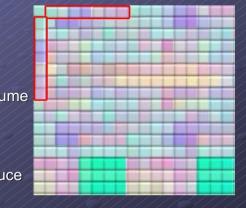
A good match for Cell

- Float intensive
- SIMD
 - SPE friendly
- Small instruction size
- Highly iterative
 Good for reusing local store

Applications for Cell

- Optical Flow Preprocessing
- 1. Smooth
 - 13 element mask
 - Multiply each element by a factor
 - Sum results
 - Assuming 16 element mask
 - 16 FMAC per pixel
 16 * 6MPixels = 96M
 - 16 * 6MPIxels = 96M FMACs / sec
 - 192FMACs/s for both X and Y axis

Applications for Cell


- Optical Flow Preprocessing
- 2. Temporal Gradient
 - Calculate difference between raw and smoothed frame
 - 1 Subtract per pixel
 - 6 MPixels
 - 6 MFLOPS
 - Produces 1 frame (Ft)

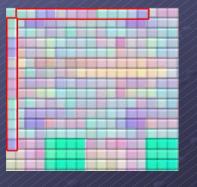
Applications for Cell

- Optical Flow Preprocessing
- 3. Spatial Gradient
 - Same calculation as smoothing
 - 7 element mask, assume
 8
 - 8 FMACs / pixel
 - 48M FMACs / sec
 - 96M FMACS to produce 2 frames (Fx, Fy)

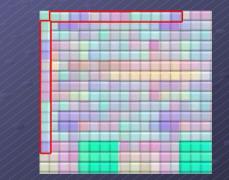
Applications for Cell

Optical Flow Pre-processing

- 4. Compute 5 different frames
 - Fxx = Fx*Fx
 - Fyy = Fy*Fy
 - Fxy = Fx*Fy
 - Ftx = Ft*Fx
 - Fty = Ft*Fy
- 1 FLOP / pixel, 6MFlops /sec
- 30MFlops / sec for 5 frames


Applications for Cell

- Optical Flow Pre-processing
- 5. Final smoothing
 - 11 element mask, assume 12
 - Smooth all five output frames
- 12 FMACs / pixel
- 72M FMACs /sec
- 360M FMACs / sec for 5 frames


Applications for Cell

- Optical Flow Pre-processing
- 5. Pre-processing finished
 192 + 6 + 96 + 30 + 360 = 684MFLOPs/s
- Easily done by 1 SPE

Applications for Cell

- Optical Flow
 - Pre-processing over
 - Final stage is the *real* work
- Gauss-Seidel iteration
- 13 FLOPs / pixel
- 78 MFLOPs / sec
- For 6000 iterations
 - 468GFLOPs
- Will need two Cells!
 - With optimisation, possible with 1
 - Use 16-bit for pixels
 - Alt. algorithm (successive over relaxation)

Evaluating Cell

- Power wall and frequency wall
 - Due to leakage and poor utilisation
- Removed
 - Tomasulo
 - Prefetching
 - Speculation
 - Branch prediction tables
 - Cache logic
- In exchange for:
 - Bigger local store & registers
 - Wider execution unit
 - Faster clock
- Result:
 - Better efficiency

Evaluating Cell

Initial problems

- Power wall
- Frequency wall
- Memory wall
- Idea wall

Evaluating Cell

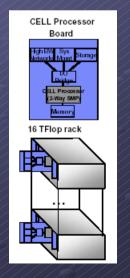
Memory Wall

- Up to 1000 cycle memory latency
- A die full of cache

Cell

- 6 cycle read to local store
- Twice as fast as L2 cache
- Modest cache

Evaluating Cell


Evaluating Cell

Idea wall

- Don't know what to do with extra transistors
- Lack of useful micro-architectural enhancements
- Cell
 - High scalability
 - More SPEs more Cell
 - More Cells per chip
 - Smaller, faster Cells, more of them across network

Evaluating Cell

- 2 Cells per die at 65nm
 - Glueless SMP
- 32 Blade rack yields
 16 Teraflops
- 1 Peta-flop in 64 racks

Patterson & Hennessy Guidelines

- 1. Simplicity favours regularity
 - Each SPE is designed to be as simple as a SIMD core can be
 - Cell is a collection of simple and identical SPEs
- 2. Smaller is faster
 - SPE is small
 - Runs in access of 5GHz by itself

Patterson & Hennessy Guidelines

- 3. Good design demands good compromises
 - Each SPE has only 256kB of memory
 - Not good for many applications but works well for decoders and stream kernels
- 4. Make the common case fast
 - Common memory access use to be L2 cache at around tens of cycles
 - SPE local store has 6 cycle read
 - Very common graphics operation is multiplyaccumulate. SPE supports MAC in one cycle

Finally...

- Playstation 3 announced yesterday
- Cell at 3.2GHz
- 7 SPEs
- NVIDIA GPU
- 512MB total memory

Finally...

 Currently 80 Million PS2s sold world wide
 80 Million PS3s will yield 14 Million Teraflops

Conclusion

- Cell addresses many of the big problems
 - Power wall
 - Memory wall
 - Frequency wall
 - Idea wall
- Cell is scalable
 - Suitable for many platforms
- To the get most out of Cell
 - New programming models

References

- H. Hofstee (2005) Power Efficient Processor Architecture and The Cell Processor, Proceedings of the 11th Int'l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
- B. Flachs et al. (2005) *A Streaming Processor Unit for a Cell Processor*, 7.4 Multimedia Processing, ISSCC2005
- Paul Zimmons (2003) Cell Architecture
- Mark DeLoura (2005) Cell A new platform for digital entertainment, Game Developer's Conference 2005, SCEA