
The Warp Processor

Dynamic SW/HW Partitioning

David Mirabito

A presentation based on the published works of

Dr. Frank Vahid - Principal Investigator
Dr. Sheldon Tan - Co-Principal Investigator
Dr. Walid Najjar - Co-Principal Investigator

et al.

(http://www.cs.ucr.edu/~vahid/warp/)
and supporting papers

So far For Us..

� Ben showed us how instruction collapsing works
and its potential benefits.

� Instead of implementing as <n> LUT accesses, warp
reconfigures the fabric.

� Kynan showed how Chimera uses pre-compiled
code/bitstreams to increase performance.

� Warp dynamically generates the bitstream and modifies
code on the fly.

Warp combines the best of both worlds!

Warp Overview:

�P:Any standard micro
processor

Profiler: Watches the IF
address to determine
critical regions

Instruction /
data memory or
cache

Dynamic Partitioning
Module. Synthesizes HW
for the critical region
and programmes WCLA.
Also updates code
binary.

Warp
Configurable
Logic
Architecture.

Accessed
through mem-
mapped
registers

Warp Overview:

� Warp is the name for the family of processors,
not an individual implementation

� Website has an 100Mhz Arm7 as the main
processor. And another for the DPM.

� Quoted average speedup of 7.4 and energy reduction of
38-94%

� Can also apply to other Arms, MIPS, etc. x86
anyone?



On-Chip Profiler

� With current SOC, snooping address lines no
longer an option.

� Requirements: non-intrusion, low power, and
small area.

� Monitors sb's (short
backwards branch) to show
loop iteration.

� Cache indexed by sbb address. On hit 16bit
counter is incremented. On saturation, all
counters >> 1 to maintain correct ratios.

� 90-95% accuracy, power up by 2.4% and area up by
10.5% (or an extra 0.167 mm2)

On-Chip Profiler

� Much of the power consumption is from the cache
lookup / write.

� Common cache power techniques -> 1.5%

� Can decrease this by coalescing:keep count when
the same sbb is repeatedly seen and only
updating the cache upon sight of a new sbb.

� Now 0.53% power overhead, 11% area.

� For a 5% drop in accuracy, we can allow every nth

ssb to be processed. This sampling drops power
consumption to 0.02% above normal for n = 50.

DPM

� Partitioning – Taken from profiler.

� Decompilation

� DMA Configuration

� RT (Register Transfer) Synthesis

� JIT FPGA Compilation

� Logic Synthesis

� Technology Mapping

� Placement

� Routing

Now have a HW description of code more
appropriate for further synthesis

Decompilation

� Previous binary decompilers were poor.

� Extra optimizations can be made if we have high
level constructs available

� Smart buffers

� Loop unrolling

� Redundant operations due to ISA overhead.

� So we decompile:

� Loops analysed for linear memory strides to determine
array access. Overlaps for iterations placed in smart
buffers rather than main memory.

� Loop bounds found for unrolling

� Size of data types tracked, min bits used for ALU
operations.



DMA Configuration

� Uses the memory access patterns of the
decompiled code to configure the DMA controller.

� Initially all data will be fetched before the
loop begins.

� Then one block can be fetched/written per cycle. The
same rate as the collapsed loop needs it.

� Finally, after the loop one more DMA is
scheduled to write back the final data.

RT Synthesis

� The high level data is then fed into a standard
netlist generator.

� Netlists generated this way were found to be 53%
faster than other forms of binary synthesis.

� When compared to synthesis from source,
decompilation resulted in identical performance
with a 10% increase in surface area.

� Area increase to decompiler's inability to
remove some temporary registers found in long
expressions out of the datapath.

JIT FPGA Compilation

� Logic Synthesis

� Logically analyses the netlist at a gate level to
minimise the amount of gates required.

� Uses the Riverside On Chip Minimiser, an algorithm
optimised for fast execution in a low memory
environment.

� Technology Mapping

� Mapping at a gate level the netlist onto the
configurable material.

� Uses a standard algorithm.

JIT FPGA Compilation
� Routing & Placing:

most expensive part of the synthesis process

� Requires 14.8sec and 12M RAM -> Not good for an
embedded system.

� Developed Riverside On Chip Router (ROCR)

� Commercial FPGAs are overly complex for implementing
only a collection of instructions.

� Designed a simple fabric: easy to route for.

� Another part of Riverside On Chip Partitioning Tools
(ROCPART) suite.

Difficulties:

Solutions:



JIT FPGA Compilation

� Final design has 67x67 CLBs, channel width of
30.

� Simpler, so easier to place and route.

� Suitable for on-chip!

Results:

Code Update

� The DRM also updates the code memory.

� Replaces one instruction with a branch to a
specialises HW routine.

� This starts the WCLA and places the processor in a
sleep state.

� Upon the WCLA's completion, an interrupt wakes the
processor, which then jumps back to the end of the
loop in the original code.

WCLA

� DADG: Data Address generator.

� All mem access to/from WCLA.

� Generate addr for 3 arrays

� Delivers data to Reg{0,1,2}

� LCH: Loop Control Hardware.

� Enables zero overhead looping

� Needs preset loop upper bound, but allows early breaks
depending on some configurable result.

� Regs. Input registers to the configurable logic
fabric. Wired to the MAC, but also accessible
directly from the fabric.

WCLA

� MAC: Multiply and Accumulator.

� Most inner loops require some
addition/multiplication. To save
on logic area and routability,
a dedicated MAC is included.

� SCLF: Simple Configurable
Logic Fabric.

� As described earlier.

� Designed for simple bitstream generation by on chip
devices with limited time and memory resources.



Results – MIPS 60MHz

Details of the tools
running on the
co-processor.

Weight of the critical
regions in tests.

Results using the WARP architecture.
The whole process is automated,
except binary modification with is
currently done by hand.

Results – ARM 100MHz

The speedup of the replaced
kernel. The Notable high
ones are due to the
reimplementation being only
bit shifting via wires, or
mem access being replaced by
a single block DMA transfer

Overall speedup across the
entire execution of the
benchmark. Of note is the
minimum speedup of 2.2 and an
average of 7.4
This is accompanied with a
38-94% savings in energy
consumption

FPGAs All The Way

� The developers of Warp also investigated putting
the entire system on a FPGA.

� Soft-core MicroBlazes on a Spartan3

� One is the system processor

� Other runs the DPM (currently)

� Ideally WCLA would directly utilise the
underlying reconfigurable fabric.

� Currently simulating the WCLA

� And looking into implementing it on top.

� Ideally use the spartan's own configurable fabric.

Implementation

� Modified MicroBlaze to include the profiler.

� Simulated execution on Xilinx apps to obtain
program trace.

� Trace used to simulate behaviour of profiler,
found single critical region.

� Used ROCPART to generate HW circuits.

� Measured these in a VHDL model of WCLA, combined
with traces to obtain final performance / energy
measurements.

What they did:



Results:

� Warp architecture more than compensated for
traditional speed/power issues normally found in
FPGA solutions.

� Still maintains flexibility.

� Gives custom-built systems a run for their money

What they found:

Resources
� Frequent Loop Detection Using Efficient Non-Intrusive On-Chip

Hardware, Ann Gordon-Ross and Frank Vahid.
http://www.cs.ucr.edu/~vahid/pubs/cases03_profile.pdf

� Dynamic FPGA Routing for Just-in-Time FPGA Compilation, Roman
Lysecky, Frank Vahida and Sheldon X.-D. Tan.
http://www.cs.ucr.edu/~vahid/pubs/dac04_jitfpgaroute.pdf

� Dynamic Hardware/Software Partitioning: A First Approach, Greg
Stitt, Roman Lysecky and Frank Vahid.
http://www.cs.ucr.edu/~rlysecky/papers/dac03-dhsp.pdf

� A Configurable Logic Architecture for Dynamic Hardware/Software
Partitioning,Roman Lysecky and Frank Vahid
http://www.cs.ucr.edu/~rlysecky/papers/date04_clf.pdf

� A Study of the Speedups and Competitiveness of FPGA Soft
Processor Cores using Dynamic Hardware/Software Partitioning,
Roman Lysecky and Frank Vahid
http://www.cs.ucr.edu/~vahid/pubs/date05_warp_microblaze.pdf

� Techniques for Synthesizing Binaries to an Advanced
Register/Memory Structure, Greg Stitt, Zhi Guo, Frank Vahid and
Walid Najjar.
http://www.cs.ucr.edu/~vahid/pubs/fpga05_binsyn.pdf


