
From Sequences of Dependent
Instructions to Functions

An Approach for Improving Performance
without ILP or Speculation

Ben Rudzyn

Disclaimer

The approach presented here comes from a paper of the
same title. Written by Sami Yehia and Oliver Temam of
Paris XI University. Presented at the 31st Annual
International Symposium on Computer Architecture
(ISCA’04)

While this presentation is my own work, the
methodologies, experimental results, and graphs come
from this paper.

Outline

• Background
• Instruction collapsing
• Potential performance improvements
• Limitations of the approach
• Implementation
• Improvements to the approach
• Summary

Background

• Current processor trends are heavily reliant on
pipelining and ILP exploitation

• On chip space devoted to these techniques, rather
than to physical computing resources (ie FU’s)

• Better improvements rely on software and hardware
co-exploitation, but STILL look at ILP

• Propose a new approach that exploits circuit level
parallelism, rather than instruction level parallelism

Instruction collapsing

• Take a sequential set of dependent
instructions

– ILP exploitation useless
• Could implement as a Function

– Can be collapsed to a
combinational 2 level sum of
products (OR’s of AND’s) or LUT

Instruction collapsing

• Exploit CLP at the cost of redundant operations

• Cost: 2 64 bit inputs 2128 bit truth table!!!
• One solution: implement as a set of n 1 bit operators
with multiple carry propagation

Progress

• Background
• Instruction collapsing
• Potential performance improvements
• Limitations of the approach
• Implementation
• Improvements to the approach
• Summary

Potential performance improvement

• Potential speedup determined by the number of
collapsible dependent instructions

– Need to identify all disjoint DFG’s in the program
trace

• Speed up is the average height of all DFG’s
– Avg of 1.5 for instruction traces with 1024 window

Limitations of the approach

• Number of physical inputs (register + carries)
– Hardware operator size fixed

• Load instructions
– Cannot be combined with dependent instructions
– Still semi collapsible
– Avg 24.4% of instructions

• Non collapsible instructions
– Eg syscalls, FP divide
– Avg 15% of instructions

• Result: only consider integer add/sub, constant shift,
bit operations/manipulations and conditional branches

Limitations of the approach

• Significant bit carries

• Height limitation
– Consider only those DFG’s with height greater than
the Function unit latency
– Allows better utilisation of all FU’s

Progress

• Background
• Instruction collapsing
• Potential performance improvements
• Limitations of the approach
• Implementation
• Improvements to the approach
• Summary

Implementation

• 4 main components
– DFGT : Data Flow Graph Table
– POT : Producing Output Table
– FGE : Function Generation Engine
– FRT : Function Repository Table

Implementation

• Output flag set to indicate which instruction is an
output of the DFGT
• Use the POT to keep track of data dependencies

– Each entry has an index into the DFGT to the
instruction that produces the result for that register
– The combination of the POT and DFGT is similar to
that of the ROB, except that it is done offline

• Once an instruction is loaded into the DFGT, compose
this operation with the functions producing its source
operands, thus creating a more complex function

Implementation

• FGE (Function Generation Engine)
– Three types of inputs
– If the operand is a result of a previous instruction,
send the function producing this operand as a truth
table

• FRT (Function Repository Table)
– Stores the result of each function as a 64 bit truth
table (6 inputs for each function)
– One truth table for EACH bit of the input word
– Each entry in the DFGT contains an index to the
corresponding function results in the FRT
– Also stores the number of inputs of the truth table

r9 r10 Ci F Co

0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1

Implementation

• How does the FGE create a new truth table from the
previous ones?

– For each combination of the inputs, it looks up the
truth table of the operands
– Uses the result to look up the truth table of the
operation itself (this is stored in an additional library
of operations)
– The library also indicates if additional variables (ie
carries) must be introduced

• The final function truth table is stored back into the
FRT, and linked through the DFGT again

Hardware implementation

• From truth table to reconfigurable Function Unit
• Function unit advantages

– Combinational logic only
– Single row
– No complex interconnections

• Disadvantages
– Significant number of inputs large logic blocks

Hardware implementation

• Major issue
– Overhead of dynamically building DFG’s and
functions on the fly
– Assembling large traces
– Trace DFG Function truth table Macro

• rePLay framework
– Not going into details
– Speed up of branch resolution
– Effect of Function delay (reconfig and process)

Progress

• Background
• Instruction collapsing
• Potential performance improvements
• Limitations of the approach
• Implementation
• Improvements to the approach
• Summary

Improvements to the approach

• Increase the number of inputs?

• Increase trace window for frames?
• Alleviate load cuts through address prediction?
• Combine Functions with existing ILP techniques

– Best of both worlds

Summary

• Exploits circuit level parallelism
• Collapse dependent instructions into 2 level
combinational circuits
• Works independently of ILP

– Targets a different set of instructions

