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Disclaimer

The approach presented here comes from a paper of the 
same title. Written by Sami Yehia and Oliver Temam of 
Paris XI University.  Presented at the 31st Annual
International Symposium on Computer Architecture 
(ISCA’04)

While this presentation is my own work, the 
methodologies, experimental results, and graphs come 
from this paper. 
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Background

• Current processor trends are heavily reliant on 
pipelining and ILP exploitation

• On chip space devoted to these techniques, rather 
than to physical computing resources (ie FU’s)

• Better improvements rely on software and hardware 
co-exploitation, but STILL look at ILP

• Propose a new approach that exploits circuit level 
parallelism, rather than instruction level parallelism



Instruction collapsing

• Take a sequential set of dependent 
instructions

– ILP exploitation useless 
• Could implement as a Function

– Can be collapsed to a 
combinational 2 level sum of 
products (OR’s of AND’s) or LUT

Instruction collapsing

• Exploit CLP at the cost of redundant operations

• Cost: 2 64 bit inputs 2128 bit truth table!!! 
• One solution: implement as a set of n 1 bit operators 
with multiple carry propagation
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Potential performance improvement

• Potential speedup determined by the number of 
collapsible dependent instructions 

– Need to identify all disjoint DFG’s in the program 
trace

• Speed up is the average height of all DFG’s 
– Avg of 1.5 for instruction traces with 1024 window



Limitations of the approach

• Number of physical inputs (register + carries) 
– Hardware operator size fixed

• Load instructions
– Cannot be combined with dependent instructions
– Still semi collapsible 
– Avg 24.4% of instructions 

• Non collapsible instructions
– Eg syscalls, FP divide
– Avg 15% of instructions

• Result: only consider integer add/sub, constant shift, 
bit operations/manipulations and conditional branches

Limitations of the approach

• Significant bit carries

• Height limitation
– Consider only those DFG’s with height greater than 
the Function unit latency
– Allows better utilisation of all FU’s 
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Implementation

• 4 main components
– DFGT : Data Flow Graph Table
– POT : Producing Output Table
– FGE : Function Generation Engine
– FRT : Function Repository Table 



Implementation

• Output flag set to indicate which instruction is an 
output of the DFGT
• Use the POT to keep track of data dependencies

– Each entry has an index into the DFGT to the 
instruction that produces the result for that register
– The combination of the POT and DFGT is similar to 
that of the ROB, except that it is done offline

• Once an instruction is loaded into the DFGT, compose 
this operation with the functions producing its source 
operands, thus creating a more complex function 

Implementation

• FGE (Function Generation Engine)
– Three types of inputs
– If the operand is a result of a previous instruction, 
send the function producing this operand as a truth 
table

• FRT (Function Repository Table)
– Stores the result of each function as a 64 bit truth 
table (6 inputs for each function)
– One truth table for EACH bit of the input word
– Each entry in the DFGT contains an index to the 
corresponding function results in the FRT
– Also stores the number of inputs of the truth table
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Implementation

• How does the FGE create a new truth table from the 
previous ones?

– For each combination of the inputs, it looks up the 
truth table of the operands
– Uses the result to look up the truth table of the 
operation itself (this is stored in an additional library 
of operations)
– The library also indicates if additional variables (ie 
carries) must be introduced

• The final function truth table is stored back into the 
FRT, and linked through the DFGT again

Hardware implementation

• From truth table to reconfigurable Function Unit 
• Function unit advantages

– Combinational logic only
– Single row
– No complex interconnections

• Disadvantages
– Significant number of inputs large logic blocks



Hardware implementation

• Major issue
– Overhead of dynamically building DFG’s and 
functions on the fly
– Assembling large traces 
– Trace DFG Function truth table Macro

• rePLay framework
– Not going into details
– Speed up of branch resolution
– Effect of Function delay (reconfig and process) 
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Improvements to the approach

• Increase the number of inputs?

• Increase trace window for frames?
• Alleviate load cuts through address prediction?
• Combine Functions with existing ILP techniques

– Best of both worlds 



Summary

• Exploits circuit level parallelism 
• Collapse dependent instructions into 2 level 
combinational circuits 
• Works independently of ILP

– Targets a different set of instructions 


