Resonant Tunnelling Devices

A survey on their progress

CMOS Scaling has been key to performance increase

- CMOS scaling gives us three things:
 - Higher clock
 - More components
 - Same cost
- We are currently at 90nm
- 65nm in 2006
- Everybody's favourite line: Moore's law will hit a wall (so far all false)
- Some technology will eventually replace CMOS
- What is that technology?

Research idea: Find the next CMOS

- So many post-CMSO proposals
 - Quantum computing
 - Molecular electronics
 - DNA computing
 - ... (countless)
- Hear about "breakthroughs" everyday
- Yet we're still using silicon transistors
- So are we really?

How things fit

- Plain CMOS scaling will carry us to 10nm (and maybe more)
- That means at least another 10-15 years before we must switch to a new tech
- But it might make sense to switch ealier
- Key theme: below 100nm, two options are available:
 - Smaller CMOS
 - Quantum-effect based devices

What about all the "breakthroughs"?

Why Resonant Tunnelling Devices?

- Works at room temperature!
- Extremely high switching speed (THz)
- Low power consumption
- Well demonstrated uses
 - · Logic gates, fast adders, ADC etc.
- Can be integrated on existing processes
- In one word: Feasible

What we've been using: The MOSFET

Source: Scientific American

Resonant Tunnelling Diodes

Resonant Tunnelling Diodes

- Fundamentally different operating principle
 - Quantisation
 - Quantum tunnelling
- Computation comes from Negative Differential Resistance (NDR)

Negative Differential Resistance

Example Circuit: TSRAM

Example Circuit: Shift Register

Fig.6: Static shift register comparison: (a) CMOS/TD and (b) CMOS only.

Problem

- Up until now, all usable circuits made using III-V compound semiconductors
 - Eg. GaAs, InP
 - Good PVCR and current density
 - Good for high frequency switching applications
 - CMOS incompatible
- Need a silicon solution before any chance of mass uptake

Silicon based RTDs

- Prior to 1998, Si based RTD displayed no usable NDR
- In 1998, Rommel et al produced first Si/SiGe/Si RITD with NDR at room temperature
- RITD exhibits better PVCR

Integration with CMOS

- In 2003, monolithic integration with CMOS demonstrated
- Performance comparable to discrete RITD

Fig. 4. I–V characteristics of the first integrated $25\times25~\mu m^2$ patterned growth RITD. The RITD is in the same die as the CMOS devices plotted in Fig. 3.

Integrated FET/RITD

Fig. 2. Schematic diagram of the monolithically integrated CMOS and Si/SiGe RITD

What does it mean for architecture?

- CMOS / RTD hybrid circuits
 - Factor of reduction in component complexity
 - Higher operating frequency
 - Lower power consumption
- TSRAM
 - 1 transistor SRAM with DRAM density on chip
 - Greatly reduced power consumption
 - More design options with eDRAM

Take home message

- CMOS scaling will continue, one way or another
 - Double Gate MOSFET will get us to 10nm
 - Plenty of new options
- The transistor of the future will exploit quantum effects
 - SET, QD, Molecular, Spin transistor
- Silicon RTDs can now be integrated with CMOS
 - Excellent for extending CMOS
- Good chance they will be the first quantum effect devices to become mainstream

A Roadmap to RTDs?

