Advanced Computer Architecture:

s1/2005

Project Presentation —David Mirabito

Handling branchesthrough
context forking

Currently:

0x100
0x104
0x108
0x10c
0x110
0x114

add

mul

or

lw

and

beq 0x100

Hypothetical instruction stream
(operandsremoved)

Currently:

0x100
0x104
0x108
0x10c
0x110
0x114

add

mul

or

lw

and

beq 0x100“

What now?The operands of thisbranch won't
be fetched, compared and have

theresult known until end of the EX

stage... 3more cycles!

Currently:

0x100
0x104
0x108
0x10c
0x110
0x114

add

mul

or

lw

and

beq 0x100*

Currenty handled by large, complex, power
consuming branch prediction logic.

In test-printf thisisfound to be 91.9% accurate
for dir prediction, and 90.3% accurate with
target address.

| |
Currently: Currently:

0x100 add 0x100 add

0x104 mul 0x104 mul

0x108 or Assumue: Branch SHOULD betaken 0x108 or Assumue: Branch SHOULD be taken

0x10c lw Predicted correctly 0x10c lw Predicted correctly

0x110 and 0x110 and

0x114 beq 0x100* 0x114 beq 0x100*

0x100 add At thjs stage (3 cycleslater) we can be sure we 0x100 add At thﬁs stage (3 cycleslater) we can be sure we

0x104 mul predicted correctly. 0x104 mul predicted correctly.

0x108 or “ 0x108 or *

BUT, 10% of the time...
| |
Currently: Currently:

0x100 add 0x100 add

0x104 mul 0x104 mul

0x108 or Assumue: Branch SHOULD be taken 0x108 or Assumue: Branch SHOULD be taken

gxigg lw q Predicted incorrectly 8)(128 IWd Predicted incorrectly

X an X an

0x114 beq 0x100® 0x114 beq 0x100*
0x118 ori Herewe real_ise.we were wrong. _
Ox11c sub Have to nullify incorrect instsand start again.
0x120 sw “

The amount of nullified instructions will only
increace as fetch, dispatch and execute widths
grow. On thissimplescalar model, thiscan be up
to 4instructions per cycle: 12 potential
instructions wasted.

Currently: Currently:
0x100 add 0x100 add
0x104 mul 0x104 mul
Ox108 IOr Assumue: Branch SHOULD be taken (108 IOI‘ Assumue: Branch SHOULD be taken
0x10c w Predicted incorrectly 0x10c w Predicted incorrectly
0x110 and 0x110 and
Ox114 be_q OX]'OO‘) Ox114 be_q OX]‘OO‘ These represent wasted fetch bandwidth,
Ox318 ort Here we realise we were wrong. _ Ox318 of Y computation cycles and instigate fetching
Ox14 sub Have to nullify incorrect insts and start again. Oxdle sub = unneded data/instsfrom
- - system memory.
Ox220 S The amount of nullified instructionswill only 0120 S
0x100 add increace as fetch, dispatch and execute widths 0x100 add)
0x104 mul grow. On thissimplescalar model, thiscan be up 0x104 mul 8.1% x 254825 branches comitted
to 4instructions per cycle: 12 potential =20640 mispredicted branches
0x108 or instructions wasted. 0x108 or = 61922 P
= wasted cycles
=4.9% of execution time.
Elsewhere... Combiningthetwo...
0x400 Sw
. 0x100 add 0x100 add
Instruction 0x104 mul 0x404 sdd 0x104 mul Initially, things proceed as normal.
streams from 0x108 or 0x408 mov 0x108 or
2independent oxi10c Iw Ox40c sl 0x10c Iw
threads 0x110 and 0x410 addi 0x110 and
0x114 beq 0x100 1 1 0x414 lui
0x118 ori J 0x418 subu
Ox11c sub / 0x41c sub
Lookahead 0x120 sw \ 0x420 sb
window. |
Split 50/ 50 for each
thread
Multiple
execute units / /
ina
superscalar
arch

HyperThreading allows two threadsto be run concurrently, with one
using the execution unitsthat the other doesn't need. Backend of cpu is
the similar, only instrictions need to writeback to correct register file.

Combiningthetwo... Combiningthetwo...
0x100 add 0x100 add
0x104 mul Initially, things proceed asnormal. 0x104 mul Now, the fetch bandwidth is shared
0x108 or 0x108 or between each of the new 'forked contexts'
0x10c Iw Until abranch ishit, in which case the 0x10c lw (2insts/ cycle each, instead of 4)
0x110 and single stream becomes two logical 0x110 and
O0x114 beq0x100 {preads, one following each path of Ox114 beq 0x100 geyond the frontend things remain similar,
execution (taken / not taken) asin HT. Only we must ensure instructions
only retire to the appropriate context
\4 IS \ ~
0x118 ori 0x100 add 0x118 ori 0x100 add
Ox1lc sub 0x104 mul

Combiningthetwo... Combiningthetwo...
0x100 add 0x100 add
0x104 mul At this stage, the result of the comparison 0x104 mul At this stage, the result of the comparison
0x108 or ismade known. 0x108 or ismade known.
0x10c Iw 0x10c Iw We can now take the correct context and
giﬁg ggg X100 8?%2 ggg oo Mergeany changes to its register file /
0x100 add memory back with the parent context
0x104 mul A
0x108 or
Py
0x118 ori A 0x100 add
Ox1lc sub 0x104 mul

0x120 sw 0x108 or

|
Unfortunately...

Implementing thisfunctionality on top of sim-outorder.c within the
simplescalar test suite was a much larger undertaking than originally
anticipated.

Currently:

Can fork context upon abranch instruction and split incoming
instructions between these 50/ 50. When the branch reaches writeback
the appropriate context is selected and the modified registersare
written back to the parent.

But:

Execution doesnot run to completion, memory reads/ writes across
contextsare being corrupted, thisleadsto an incorrect address being
loaded and an attempted read from 0x00000000, crashingthe app.

However:

Thisis after 4043 cycles, or 3626 instructions, so | will attempt to

make what conclusions| can.

]
Stats...

Num branches encountered: 781

% cyclesin forked state: 64.3% (2603 / 4043)
avgnum insssin context[0]:

avd num instsin context[1]:

%time stalled context[0]:

%time stalled context[1]:
% time stalled context[2]:

avg amount of registers/ mem locationswrittenback during context:

Observations...
Some things | noticed whilst stepping through traces:

* Thiswill only ever be worthwhile if we only fork the timeswe mis-predict.
Perhaps not necessary to do this every branch.

* Still quite useful during compulsory missesin the branch predictor

* Can aid performance by prematurely warming cache for the exit code of aloop.

We can brace against the cost of tIb/ cache miss on this code during the 2" and
other iterations of aloop.

* It might be beneficial to take advantage of known compiler quirks:
eg: beq r0 r0 XXX should be considered anon-conditional branch and not be
forked. It isadvantagousthat thisisn't currently done for Jinsts.

* Jtisallowablein the PISA architecture to have 2 adjacent branch insts. Quite
often one or both child contexts stall when they too come across a branch and
cannot fork. Thisindicates that more contextswould allow increaced
performance (and troubles)

]
Wishlist...

Other thingsto implement: (in increacing order of need):

* Varyingpriorities to each context (eg: 27/ 75), based on confidence
level of the branch predictor.

* Support for morethan 1 level of forking, so if aforked context
encounteres another branch it no longer needs to stall.

* Smarter handling of JAL / JRcombinations. Currently can only be
donein root context, to save corruption of the return addr stack in the
branch predictor
Better reporting/ accounting.

Complete program correctness

Some of these can/will be achieved before the report isdue.

Conclusions...

* Inall likelyhood, thisideais not worth beingimplemented, considering
cost:benefit ratio.

* Haveread other papersdoing similar thingsthat concluded the same
thing.

* Implementing anew idea and seeing how it affectsthe program trace++
* Yet stillimmensely useful as alearning exercise: Actually seeing register,
control and data dependancieswork themselves out in an out of order

environment perfectly bringshome ideaslearned in class

* Also skillsinvolved in working on alarge, forign codebase built upon

